Proving Triangles
Congruent
Triangle Congruency Short-Cuts
If you can prove one of the following short
cuts, you have two congruent triangles
1.SSS (side-side-side)
2.SAS (side-angle-side)
3.ASA (angle-side-angle)
4.AAS (angle-angle-side)
5.HL (hypotenuse-leg) right triangles only!
Built – In Information in
Triangles
Identify the ‘built-in’ part
Identify the ‘built-in’ part
Shared side
Shared side
Parallel lines
Parallel lines
-> AIA
-> AIA
Shared side
Shared side
Vertical angles
Vertical angles
SAS
SAS
SAS
SAS
SSS
SSS
SOME REASONS For Indirect
SOME REASONS For Indirect
Information
Information
• Def of midpoint
Def of midpoint
• Def of a bisector
Def of a bisector
• Vert angles are congruent
Vert angles are congruent
• Def of perpendicular bisector
Def of perpendicular bisector
• Reflexive property (shared side)
Reflexive property (shared side)
• Parallel lines ….. alt int angles
Parallel lines ….. alt int angles
• Property of Perpendicular Lines
Property of Perpendicular Lines
This is called a common side.
This is called a common side.
It is a side for both triangles.
It is a side for both triangles.
We’ll use the reflexive property.
We’ll use the reflexive property.
HL
HL( hypotenuse leg ) is used
( hypotenuse leg ) is used
only with right triangles, BUT,
only with right triangles, BUT,
not all right triangles.
not all right triangles.
HL
HL ASA
ASA
Name That Postulate
Name That Postulate
(when possible)
SAS
SAS
SAS
SAS
SAS
SAS
Reflexive
Property
Vertical
Angles
Vertical
Angles
Reflexive
Property SSA
SSA
Let’s Practice
Let’s Practice
Indicate the additional information needed
to enable us to apply the specified
congruence postulate.
For ASA:
For SAS:
B  D
For AAS: A  F
AC  FE
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔGIH  ΔJIK by AAS
G
I
H J
K
Ex 4
ΔABC  ΔEDC by ASA
B A
C
E
D
Ex 5
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔACB  ΔECD by SAS
B
A
C
E
D
Ex 6
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔJMK  ΔLKM by SAS or ASA
J K
L
M
Ex 7
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
Not possible
K
J
L
T
U
Ex 8
Determine if whether each pair of triangles is
congruent by SSS, SAS, ASA, or AAS. If it is
not possible to prove that they are congruent,
write not possible.
V
Problem #4
Statements Reasons
AAS
Given
Given
Vertical Angles Thm
AAS Postulate
Given: A C
BE BD
Prove: ABE  CBD
E
C
D
A
B
4. ABE  CBD
37
Problem #5
3. AC AC

Statements Reasons
C
B D
AHL
Given
Given
Reflexive Property
HL Postulate
4. ABC  ADC
1. ABC, ADC right s
AB AD

Given ABC, ADC right s,
Prove:
AB AD

ABC ADC
 
38
Congruence Proofs
1. Mark the Given.
2. Mark …
Reflexive Sides or Angles / Vertical Angles
Also: mark info implied by given info.
3. Choose a Method. (SSS , SAS, ASA)
4. List the Parts …
in the order of the method.
5. Fill in the Reasons …
why you marked the parts.
6. Is there more?
39
Given implies Congruent
Parts
midpoint
parallel
segment bisector
angle bisector
perpendicular
segments

angles

segments

angles

angles

40
Example Problem
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
41
Step 1: Mark the Given … and
what it
implies
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
42
•Reflexive Sides
•Vertical Angles
Step 2: Mark . . .
… if they exist.
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
43
Step 3: Choose a Method
SSS
SAS
ASA
AAS
HL
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
44
Step 4: List the Parts
STATEMENTS REASONS
… in the order of the Method
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
BAC DAC
AB AD
AC AC
S
A
S
45
Step 5: Fill in the Reasons
(Why did you mark those parts?)
STATEMENTS REASONS
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
BAC DAC
AB AD
AC AC
Given
Def. of Bisector
Reflexive (prop.)
S
A
S
46
S
A
S
Step 6: Is there more?
STATEMENTS REASONS
C
B D
A
Given: AC bisects BAD
AB AD
Prove: ABC  ADC
BAC DAC
AB AD
AC AC
Given
AC bisects BAD Given
Def. of Bisector
Reflexive (prop.)
ABC  ADC SAS (pos.)
1.
2.
3.
4.
5.
1.
2.
3.
4.
5. 47
Congruent Triangles Proofs
1. Mark the Given and what it implies.
2. Mark … Reflexive Sides / Vertical Angles
3. Choose a Method. (SSS , SAS, ASA)
4. List the Parts …
in the order of the method.
5. Fill in the Reasons …
why you marked the parts.
6. Is there more?
53
Решение задач по
Решение задач по
учебнику геометрия 7
учебнику геометрия 7
класс Шыныбеков
класс Шыныбеков
HOMEWORK
Повторить теоретический материал
Геометрия 7 класс, Шыныбеков
Стр. 33 № 2.3
Стр. 34 № 2.7

Triangle congruence. First criterion for triangle congruence.ppt

  • 1.
  • 2.
    Triangle Congruency Short-Cuts Ifyou can prove one of the following short cuts, you have two congruent triangles 1.SSS (side-side-side) 2.SAS (side-angle-side) 3.ASA (angle-side-angle) 4.AAS (angle-angle-side) 5.HL (hypotenuse-leg) right triangles only!
  • 3.
    Built – InInformation in Triangles
  • 4.
    Identify the ‘built-in’part Identify the ‘built-in’ part
  • 5.
    Shared side Shared side Parallellines Parallel lines -> AIA -> AIA Shared side Shared side Vertical angles Vertical angles SAS SAS SAS SAS SSS SSS
  • 6.
    SOME REASONS ForIndirect SOME REASONS For Indirect Information Information • Def of midpoint Def of midpoint • Def of a bisector Def of a bisector • Vert angles are congruent Vert angles are congruent • Def of perpendicular bisector Def of perpendicular bisector • Reflexive property (shared side) Reflexive property (shared side) • Parallel lines ….. alt int angles Parallel lines ….. alt int angles • Property of Perpendicular Lines Property of Perpendicular Lines
  • 7.
    This is calleda common side. This is called a common side. It is a side for both triangles. It is a side for both triangles. We’ll use the reflexive property. We’ll use the reflexive property.
  • 8.
    HL HL( hypotenuse leg) is used ( hypotenuse leg ) is used only with right triangles, BUT, only with right triangles, BUT, not all right triangles. not all right triangles. HL HL ASA ASA
  • 9.
    Name That Postulate NameThat Postulate (when possible) SAS SAS SAS SAS SAS SAS Reflexive Property Vertical Angles Vertical Angles Reflexive Property SSA SSA
  • 10.
    Let’s Practice Let’s Practice Indicatethe additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: B  D For AAS: A  F AC  FE
  • 11.
    Determine if whethereach pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. ΔGIH  ΔJIK by AAS G I H J K Ex 4
  • 12.
    ΔABC  ΔEDCby ASA B A C E D Ex 5 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 13.
    ΔACB  ΔECDby SAS B A C E D Ex 6 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 14.
    ΔJMK  ΔLKMby SAS or ASA J K L M Ex 7 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 15.
    Not possible K J L T U Ex 8 Determineif whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. V
  • 16.
    Problem #4 Statements Reasons AAS Given Given VerticalAngles Thm AAS Postulate Given: A C BE BD Prove: ABE  CBD E C D A B 4. ABE  CBD 37
  • 17.
    Problem #5 3. ACAC  Statements Reasons C B D AHL Given Given Reflexive Property HL Postulate 4. ABC  ADC 1. ABC, ADC right s AB AD  Given ABC, ADC right s, Prove: AB AD  ABC ADC   38
  • 18.
    Congruence Proofs 1. Markthe Given. 2. Mark … Reflexive Sides or Angles / Vertical Angles Also: mark info implied by given info. 3. Choose a Method. (SSS , SAS, ASA) 4. List the Parts … in the order of the method. 5. Fill in the Reasons … why you marked the parts. 6. Is there more? 39
  • 19.
    Given implies Congruent Parts midpoint parallel segmentbisector angle bisector perpendicular segments  angles  segments  angles  angles  40
  • 20.
    Example Problem C B D A Given:AC bisects BAD AB AD Prove: ABC  ADC 41
  • 21.
    Step 1: Markthe Given … and what it implies C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC 42
  • 22.
    •Reflexive Sides •Vertical Angles Step2: Mark . . . … if they exist. C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC 43
  • 23.
    Step 3: Choosea Method SSS SAS ASA AAS HL C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC 44
  • 24.
    Step 4: Listthe Parts STATEMENTS REASONS … in the order of the Method C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC BAC DAC AB AD AC AC S A S 45
  • 25.
    Step 5: Fillin the Reasons (Why did you mark those parts?) STATEMENTS REASONS C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC BAC DAC AB AD AC AC Given Def. of Bisector Reflexive (prop.) S A S 46
  • 26.
    S A S Step 6: Isthere more? STATEMENTS REASONS C B D A Given: AC bisects BAD AB AD Prove: ABC  ADC BAC DAC AB AD AC AC Given AC bisects BAD Given Def. of Bisector Reflexive (prop.) ABC  ADC SAS (pos.) 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 47
  • 27.
    Congruent Triangles Proofs 1.Mark the Given and what it implies. 2. Mark … Reflexive Sides / Vertical Angles 3. Choose a Method. (SSS , SAS, ASA) 4. List the Parts … in the order of the method. 5. Fill in the Reasons … why you marked the parts. 6. Is there more? 53
  • 28.
    Решение задач по Решениезадач по учебнику геометрия 7 учебнику геометрия 7 класс Шыныбеков класс Шыныбеков
  • 33.
    HOMEWORK Повторить теоретический материал Геометрия7 класс, Шыныбеков Стр. 33 № 2.3 Стр. 34 № 2.7