Eric Liang
6/7/2017
TEAM
About Databricks
Started Spark project (now Apache Spark) at UC Berkeley in 2009
22
PRODUCT
Unified Analytics Platform
MISSION
Making Big Data Simple
3
Overview
Deep dive on challenges in writing to Cloud storage (e.g. S3) with
Spark
• Why transactional writes are important
• Cloud storage vs HDFS
• Current solutions are tuned for HDFS
• What we are doing about this
4
What are the requirements for writers?
Spark: unified analytics stack
Common end-to-end use case we've seen: chaining Spark jobs
ETL => analytics
ETL => ETL
Requirements for writes come from downstream Spark jobs
5
Writer example (ETL)
spark.read.csv("s3://source")
.groupBy(...)
.agg(...)
.write.mode("append")
.parquet("s3://dest")
Extract
Transform
Load
6
Reader example (analytics)
spark.read.parquet("s3://dest")
.groupBy(...)
.agg(...)
.show()
Extract
Transform
7
Reader requirement #1
• With chained jobs,
• Failures of upstream jobs shouldn't corrupt data
Distributed
Filesystem
Distributed
Filesystem
read readwrite
Writer job fails
8
Reader requirement #2
• Don't want to read outputs of in-progress jobs
Distributed
Filesystem
Distributed
Filesystem
read
read
read
readwrite
9
Reader requirement #3
• Data shows up (eventual consistency)
read
FileNotFoundException
Cloud
Storage
10
Summary of requirements
Writes should be committed transactionally by Spark
Writes commit atomically
Reads see consistent snapshot
11
How Spark supports this today
• Spark's commit protocol (inherited from Hadoop) ensures
reliable output for jobs
• HadoopMapReduceCommitProtocol:
Spark stages output
files to a temporary
location
Commit?
Move staged files to final
locations
Abort; Delete staged files
yes
no
12
Executor
Executor
Executor
Executor
Driver
Spark commit protocol
Job Start
Task 1
Task 2
Task 3
Task 4 Task 5
Task 6
Commit
Timeline
Task 7
13
Commit on HDFS
• HDFS is the Hadoop distributed filesystem
• Highly available, durable
• Supports fast atomic metadata operations
• e.g. file moves
• HadoopMapReduceCommitProtocol uses series of files
moves for Job commit
• on HDFS, good performance
• close to transactional in practice
14
Does it meet requirements?
Spark commit on HDFS:
1. No partial results on failures => yes*
2. Don't see results of in-progress jobs => yes*
3. Data shows up => yes
* window of failure during commit is small
15
What about the Cloud?
Reliable output works on HDFS, but what about the Cloud?
• Option 1: run HDFS worker on each node (e.g. EC2 instance)
• Option 2: Use Cloud-native storage (e.g. S3)
– Challenge: systems like S3 are not true filesystems
16
Object stores as Filesystems
• Not so hard to provide Filesystem API over object stores such
as S3
• e.g. S3A Filesystem
• Traditional Hadoop applications / Spark continue to work
over Cloud storage using these adapters
•What do you give up (transactionality, performance)?
17
The remainder of this talk
1. Why HDFS has no place in the Cloud
2. Tradeoffs when using existing Hadoop commit protocols with
Cloud storage adapters
3. New commit protocol we built that provides transactional
writes in Databricks
18
Evaluating storage systems
1. Cost
2. SLA (availability and durability)
3. Performance
Let's compare HDFS and S3
19
(1) Cost
• Storage cost per TB-month
• HDFS: $103 with d2.8xl dense storage instances
• S3: $23
• Human cost
• HDFS: team of Hadoop engineers or vendor
• S3: $0
• Elasticity
• Cloud storage is likely >10x cheaper
20
(2) SLA
• Amazon claims 99.99% availability and 99.999999999%
durability.
• Our experience:
• S3 only down twice in last 6 years
• Never lost data
• Most Hadoop clusters have uptime <= 99.9%
21
(3) Performance
• Raw read/write performance
• HDFS offers higher per-node throughput with disk locality
• S3 decouples storage from compute
– performance can scale to your needs
• Metadata performance
• S3: Listing files much slower
– Better w/scalable partition handling in Spark 2.1
• S3: File moves require copies (expensive!)
22
Cloud storage is preferred
• Cloud-native storage wins in cost and SLA
• better price-performance ratio
• more reliable
• However it brings challenges for ETL
• mostly around transactional write requirement
• what is the right commit protocol?
https://databricks.com/blog/2017/05/31/top-5-reasons-for-choos
ing-s3-over-hdfs.html
23
Evaluating commit protocols
• Two commit protocol variations in use today
• HadoopMapReduceCommitProtocol V1
– (as described previously)
• HadoopMapReduceCommitProtocol V2
• DirectOutputCommitter
• deprecated and removed from Spark
• Which one is most suitable for Cloud?
24
Evaluation Criteria
1. Performance – how fast is the protocol at committing files?
2. Transactionality – can a job cause partial or corrupt results to
be visible to readers?
25
Performance Test
Command to write out 100 files to S3:
spark.range(10e6.toLong)
.repartition(100).write.mode("append")
.option(
"mapreduce.fileoutputcommitter.algorithm.version",
version)
.parquet(s"s3:/tmp/test-$version")
26
Performance Test
Time to write out 100 files to S3:
27
Executor
Executor
Executor
Executor
Driver
Hadoop Commit V1
Job Start
Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Job Commit (moves outputs of tasks 1-6)
Timeline
28
Executor
Executor
Executor
Executor
Driver
Hadoop Commit V2
Job Start
Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Timeline
Successful task outputs
moved to final locations
ASAP
29
Performance Test
• The V1 commit protocol is slow
• it moves each file serially on the driver
• moves require a copy in S3
• The V2 Hadoop commit protocol is almost five times faster
than V1
• parallel move on executors
30
Transactionality
• Example: What happens if a job fails due to a bad task?
• Common situation if certain input files have bad records
• The job should fail cleanly
• No partial outputs visible to readers
• Let's evaluate Hadoop commit protocols {V1, V2} again
31
Fault Test
Simulate a job failure due to bad records:
spark.range(10000).repartition(7).map { i =>
if (i == 123) { throw new RuntimeException("oops!") }
else i
}.write.option("mapreduce.fileoutputcommitter.algorithm.version
", version)
.mode("append").parquet(s"s3:/tmp/test-$version")
32
Fault Test
Did the failed job leave behind any partial results?
33
Fault Test
• The V2 protocol left behind ~8k garbage rows for the failed
job.
• This is duplicate data that needs to be "manually" cleaned up before
running the job again
• We see empirically that while V2 is faster, it also leaves behind
partial results on job failures, breaking transactionality
requirements
34
Concurrent Readers Test
• Wait, is V1 really transactional?
spark.range(1e9.toLong)
.repartition(70)
.write.mode("append")
.parquet("s3:/test")
spark.read("s3:/test").count()
> 0
> 0
> 14285714
> 814285714
> 1000000000
35
Transactionality Test
• V1 isn't very "transactional" on Cloud storage either
• Long commit phase
• What if driver fails?
• What if another job reads concurrently?
• On HDFS the window of vulnerability is much smaller because
file moves are O(millisecond)
36
The problem with Hadoop commit
• Key design assumption of Hadoop commit V1: file moves are
fast
• V2 is a workaround for Cloud storage, but sacrifices
transactionality
• This tradeoff isn't fundamental
• How can we get both strong transactionality guarantees and
the best performance?
37
Executor
Executor
Executor
Executor
Driver
Ideal commit protocol?
Job Start
Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Timeline
Instantaneous commit
38
No compromises with DBIO
transactional commit
• When a user writes a file in a job
• Embed a unique txn id in the file name
• Write the file directly to its final location
• Mark the txn id as committed if the job
commits
• When a user is listing files
• Ignore the file if it has a txn id that is
uncommitted
DBIO
Cloud
Storage
39
DBIO transactional commit
40
Fault analysis
41
Concurrent Readers Test
• DBIO provides atomic commit
spark.range(1e9.toLong)
.repartition(70)
.write.mode("append")
.parquet("s3:/test")
spark.read("s3:/test").count()
> 0
> 0
> 0
> 0
> 1000000000
42
Other benefits of DBIO commit
• High performance
• Strong correctness guarantees
+ Safe Spark task speculation
+ Atomically add and remove sets of files
+ Enhanced consistency
43
Implementation challenges
• Challenge: compatibility with external systems like Hive
• Solution:
• relaxed transactionality guarantees: If you read from an external
system you might read uncommitted files as before
• %sql VACUUM command to clean up files (also auto-vacuum)
• Challenge: how to reliably track transaction status
• Solution:
• hybrid of metadata files and service component
• more data warehousing features in the future
44
Rollout status
Enabled by default starting with Spark 2.1-db5 in Databricks
Process of gradual rollout
>100 customers already using DBIO transactional commit
45
Summary
• Cloud Storage >> HDFS, however
• Different design required for commit protocols
• No compromises with DBIO transactional commit
See our engineering blog post for more details
https://databricks.com/blog/2017/05/31/transactional-writes-clo
ud-storage.html
UNIFIED ANALYTICS PLATFORM
Try Apache Spark in Databricks!
• Collaborative cloud environment
• Free version (community edition)
4646
DATABRICKS RUNTIME 3.0
• Apache Spark - optimized for the cloud
• Caching and optimization layer - DBIO
• Enterprise security - DBES
Try for free today.
databricks.com

Transactional writes to cloud storage with Eric Liang

  • 1.
  • 2.
    TEAM About Databricks Started Sparkproject (now Apache Spark) at UC Berkeley in 2009 22 PRODUCT Unified Analytics Platform MISSION Making Big Data Simple
  • 3.
    3 Overview Deep dive onchallenges in writing to Cloud storage (e.g. S3) with Spark • Why transactional writes are important • Cloud storage vs HDFS • Current solutions are tuned for HDFS • What we are doing about this
  • 4.
    4 What are therequirements for writers? Spark: unified analytics stack Common end-to-end use case we've seen: chaining Spark jobs ETL => analytics ETL => ETL Requirements for writes come from downstream Spark jobs
  • 5.
  • 6.
  • 7.
    7 Reader requirement #1 •With chained jobs, • Failures of upstream jobs shouldn't corrupt data Distributed Filesystem Distributed Filesystem read readwrite Writer job fails
  • 8.
    8 Reader requirement #2 •Don't want to read outputs of in-progress jobs Distributed Filesystem Distributed Filesystem read read read readwrite
  • 9.
    9 Reader requirement #3 •Data shows up (eventual consistency) read FileNotFoundException Cloud Storage
  • 10.
    10 Summary of requirements Writesshould be committed transactionally by Spark Writes commit atomically Reads see consistent snapshot
  • 11.
    11 How Spark supportsthis today • Spark's commit protocol (inherited from Hadoop) ensures reliable output for jobs • HadoopMapReduceCommitProtocol: Spark stages output files to a temporary location Commit? Move staged files to final locations Abort; Delete staged files yes no
  • 12.
    12 Executor Executor Executor Executor Driver Spark commit protocol JobStart Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Commit Timeline Task 7
  • 13.
    13 Commit on HDFS •HDFS is the Hadoop distributed filesystem • Highly available, durable • Supports fast atomic metadata operations • e.g. file moves • HadoopMapReduceCommitProtocol uses series of files moves for Job commit • on HDFS, good performance • close to transactional in practice
  • 14.
    14 Does it meetrequirements? Spark commit on HDFS: 1. No partial results on failures => yes* 2. Don't see results of in-progress jobs => yes* 3. Data shows up => yes * window of failure during commit is small
  • 15.
    15 What about theCloud? Reliable output works on HDFS, but what about the Cloud? • Option 1: run HDFS worker on each node (e.g. EC2 instance) • Option 2: Use Cloud-native storage (e.g. S3) – Challenge: systems like S3 are not true filesystems
  • 16.
    16 Object stores asFilesystems • Not so hard to provide Filesystem API over object stores such as S3 • e.g. S3A Filesystem • Traditional Hadoop applications / Spark continue to work over Cloud storage using these adapters •What do you give up (transactionality, performance)?
  • 17.
    17 The remainder ofthis talk 1. Why HDFS has no place in the Cloud 2. Tradeoffs when using existing Hadoop commit protocols with Cloud storage adapters 3. New commit protocol we built that provides transactional writes in Databricks
  • 18.
    18 Evaluating storage systems 1.Cost 2. SLA (availability and durability) 3. Performance Let's compare HDFS and S3
  • 19.
    19 (1) Cost • Storagecost per TB-month • HDFS: $103 with d2.8xl dense storage instances • S3: $23 • Human cost • HDFS: team of Hadoop engineers or vendor • S3: $0 • Elasticity • Cloud storage is likely >10x cheaper
  • 20.
    20 (2) SLA • Amazonclaims 99.99% availability and 99.999999999% durability. • Our experience: • S3 only down twice in last 6 years • Never lost data • Most Hadoop clusters have uptime <= 99.9%
  • 21.
    21 (3) Performance • Rawread/write performance • HDFS offers higher per-node throughput with disk locality • S3 decouples storage from compute – performance can scale to your needs • Metadata performance • S3: Listing files much slower – Better w/scalable partition handling in Spark 2.1 • S3: File moves require copies (expensive!)
  • 22.
    22 Cloud storage ispreferred • Cloud-native storage wins in cost and SLA • better price-performance ratio • more reliable • However it brings challenges for ETL • mostly around transactional write requirement • what is the right commit protocol? https://databricks.com/blog/2017/05/31/top-5-reasons-for-choos ing-s3-over-hdfs.html
  • 23.
    23 Evaluating commit protocols •Two commit protocol variations in use today • HadoopMapReduceCommitProtocol V1 – (as described previously) • HadoopMapReduceCommitProtocol V2 • DirectOutputCommitter • deprecated and removed from Spark • Which one is most suitable for Cloud?
  • 24.
    24 Evaluation Criteria 1. Performance– how fast is the protocol at committing files? 2. Transactionality – can a job cause partial or corrupt results to be visible to readers?
  • 25.
    25 Performance Test Command towrite out 100 files to S3: spark.range(10e6.toLong) .repartition(100).write.mode("append") .option( "mapreduce.fileoutputcommitter.algorithm.version", version) .parquet(s"s3:/tmp/test-$version")
  • 26.
    26 Performance Test Time towrite out 100 files to S3:
  • 27.
    27 Executor Executor Executor Executor Driver Hadoop Commit V1 JobStart Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Job Commit (moves outputs of tasks 1-6) Timeline
  • 28.
    28 Executor Executor Executor Executor Driver Hadoop Commit V2 JobStart Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Timeline Successful task outputs moved to final locations ASAP
  • 29.
    29 Performance Test • TheV1 commit protocol is slow • it moves each file serially on the driver • moves require a copy in S3 • The V2 Hadoop commit protocol is almost five times faster than V1 • parallel move on executors
  • 30.
    30 Transactionality • Example: Whathappens if a job fails due to a bad task? • Common situation if certain input files have bad records • The job should fail cleanly • No partial outputs visible to readers • Let's evaluate Hadoop commit protocols {V1, V2} again
  • 31.
    31 Fault Test Simulate ajob failure due to bad records: spark.range(10000).repartition(7).map { i => if (i == 123) { throw new RuntimeException("oops!") } else i }.write.option("mapreduce.fileoutputcommitter.algorithm.version ", version) .mode("append").parquet(s"s3:/tmp/test-$version")
  • 32.
    32 Fault Test Did thefailed job leave behind any partial results?
  • 33.
    33 Fault Test • TheV2 protocol left behind ~8k garbage rows for the failed job. • This is duplicate data that needs to be "manually" cleaned up before running the job again • We see empirically that while V2 is faster, it also leaves behind partial results on job failures, breaking transactionality requirements
  • 34.
    34 Concurrent Readers Test •Wait, is V1 really transactional? spark.range(1e9.toLong) .repartition(70) .write.mode("append") .parquet("s3:/test") spark.read("s3:/test").count() > 0 > 0 > 14285714 > 814285714 > 1000000000
  • 35.
    35 Transactionality Test • V1isn't very "transactional" on Cloud storage either • Long commit phase • What if driver fails? • What if another job reads concurrently? • On HDFS the window of vulnerability is much smaller because file moves are O(millisecond)
  • 36.
    36 The problem withHadoop commit • Key design assumption of Hadoop commit V1: file moves are fast • V2 is a workaround for Cloud storage, but sacrifices transactionality • This tradeoff isn't fundamental • How can we get both strong transactionality guarantees and the best performance?
  • 37.
    37 Executor Executor Executor Executor Driver Ideal commit protocol? JobStart Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Timeline Instantaneous commit
  • 38.
    38 No compromises withDBIO transactional commit • When a user writes a file in a job • Embed a unique txn id in the file name • Write the file directly to its final location • Mark the txn id as committed if the job commits • When a user is listing files • Ignore the file if it has a txn id that is uncommitted DBIO Cloud Storage
  • 39.
  • 40.
  • 41.
    41 Concurrent Readers Test •DBIO provides atomic commit spark.range(1e9.toLong) .repartition(70) .write.mode("append") .parquet("s3:/test") spark.read("s3:/test").count() > 0 > 0 > 0 > 0 > 1000000000
  • 42.
    42 Other benefits ofDBIO commit • High performance • Strong correctness guarantees + Safe Spark task speculation + Atomically add and remove sets of files + Enhanced consistency
  • 43.
    43 Implementation challenges • Challenge:compatibility with external systems like Hive • Solution: • relaxed transactionality guarantees: If you read from an external system you might read uncommitted files as before • %sql VACUUM command to clean up files (also auto-vacuum) • Challenge: how to reliably track transaction status • Solution: • hybrid of metadata files and service component • more data warehousing features in the future
  • 44.
    44 Rollout status Enabled bydefault starting with Spark 2.1-db5 in Databricks Process of gradual rollout >100 customers already using DBIO transactional commit
  • 45.
    45 Summary • Cloud Storage>> HDFS, however • Different design required for commit protocols • No compromises with DBIO transactional commit See our engineering blog post for more details https://databricks.com/blog/2017/05/31/transactional-writes-clo ud-storage.html
  • 46.
    UNIFIED ANALYTICS PLATFORM TryApache Spark in Databricks! • Collaborative cloud environment • Free version (community edition) 4646 DATABRICKS RUNTIME 3.0 • Apache Spark - optimized for the cloud • Caching and optimization layer - DBIO • Enterprise security - DBES Try for free today. databricks.com