Scaling and Unifying SciKit Learn and Apache Spark Pipelines

Databricks
DatabricksDeveloper Marketing and Relations at MuleSoft
Scaling and Unifying
Scikit Learn and Spark
Pipelines using Ray
Raghu Ganti
Principal Research Staff Member
IBM T J Watson Research Center
Team (IBM & Red Hat):
Michael Behrendt, Linsong Chu, Carlos
Costa, Erik Erlandson, Mudhakar Srivatsa
So many pipelines…
And many more…
Ray.IO
§ Can we do pipelines on
Ray?
§ Can we scale popular
AI/ML pipelines on Ray?
§ Can we unify scikit learn
and Spark pipelines?
Current pipeline API
• Focus on scikit learn and Spark pipelines
• Scikit learn missing scaling; Spark focus on data parallel
scaling
Transform
Fit
X
X
y
X’
Fitted model
Scaling Pipelines: I/O as List of Objects
Transform
Fit
[X1, X2, … XN]
[X1, X2, … XN]
[y1, y2, … yN]
[X1’, X2’, …, XN’]
[FM1, FM2, … FMN]
Scaling Pipelines: AND/OR Graphs
And node
X1
X2
XN
X1’
X2’
XM’
Or node
X
Step1
Step2
StepN
X’
X’
X’
Key Features
▪ Python function as
unit of compute
▪ Intuitive for data
scientist
▪ Follows transformer
APIs
▪ MPI-style scaling
▪ Object references
as I/O for unit of
compute
▪ Sharing of objects
using Plasma store
▪ Enables zero-copy
object sharing
• List of objects as I/O
• Function as unit of
compute
▪ Scikit learn typically
in Python
▪ Ray.IO with RayDP
enables efficient
data exchange
• Cross environment
▪ Enriched DAGs from
plain pipelines
▪ OR nodes for fan-
out expressions
▪ AND nodes for
arbitrary lambdas
• AND/OR Graphs
Illustrative Example
8
Preprocess
Random
Forest
Gradient
Boost
Decision
Tree
Sample Pipeline
Scikit learn Pipeline
Our Pipeline
Pipelines Galore…
Airflow Kubeflow Scikit learn
Spark
Pipeline
Our
pipeline
Task
parallelism
✓ ✓ ✗ ✓ ✓
Data
parallelism
✗ ✗ ✗ ✓ ✓
And/Or Graphs ✓ ✓ ✗ ✗ ✓
Computational
unit
Container Container
Python
function
Python/Java
function
Python/Java
function
Mutability of
DAG
✗ ✗ ✓ ✓ ✓
What to expect?
• Execution strategies based on graph traversals
• Early stopping criteria
• Mutability of execution pipelines
• Current status: Proposal discussion with Ray and OSS
community
Q&A
Contacts:
Raghu Ganti (rganti@us.ibm.com)
Michael Behrendt (michaelbehrendt@de.ibm.com)
Linsong Chu (lchu@us.ibm.com)
Carlos Costa (chcost@us.ibm.com)
Erik Erlandson (eerlands@redhat.com)
Mudhakar Srivatsa (msrivats@us.ibm.com)
Feedback
Your feedback is important to us.
Don’t forget to rate and review the sessions.
1 of 12

Recommended

Apache Arrow: Open Source Standard Becomes an Enterprise Necessity by
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityWes McKinney
1.1K views26 slides
Running Apache Spark on Kubernetes: Best Practices and Pitfalls by
Running Apache Spark on Kubernetes: Best Practices and PitfallsRunning Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and PitfallsDatabricks
2.9K views36 slides
Apache Iceberg - A Table Format for Hige Analytic Datasets by
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsAlluxio, Inc.
6.6K views28 slides
Moving to Databricks & Delta by
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & DeltaDatabricks
890 views27 slides
Free Training: How to Build a Lakehouse by
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseDatabricks
3.4K views42 slides
Batch Processing at Scale with Flink & Iceberg by
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergFlink Forward
591 views18 slides

More Related Content

What's hot

Modularized ETL Writing with Apache Spark by
Modularized ETL Writing with Apache SparkModularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache SparkDatabricks
374 views54 slides
A Thorough Comparison of Delta Lake, Iceberg and Hudi by
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiDatabricks
11.1K views27 slides
Data Lakehouse Symposium | Day 4 by
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
1.8K views74 slides
Databricks Delta Lake and Its Benefits by
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks
5.1K views21 slides
Iceberg: A modern table format for big data (Strata NY 2018) by
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Ryan Blue
2K views34 slides
Building Reliable Lakehouses with Apache Flink and Delta Lake by
Building Reliable Lakehouses with Apache Flink and Delta LakeBuilding Reliable Lakehouses with Apache Flink and Delta Lake
Building Reliable Lakehouses with Apache Flink and Delta LakeFlink Forward
570 views31 slides

What's hot(20)

Modularized ETL Writing with Apache Spark by Databricks
Modularized ETL Writing with Apache SparkModularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache Spark
Databricks374 views
A Thorough Comparison of Delta Lake, Iceberg and Hudi by Databricks
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks11.1K views
Data Lakehouse Symposium | Day 4 by Databricks
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks1.8K views
Databricks Delta Lake and Its Benefits by Databricks
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
Databricks5.1K views
Iceberg: A modern table format for big data (Strata NY 2018) by Ryan Blue
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue2K views
Building Reliable Lakehouses with Apache Flink and Delta Lake by Flink Forward
Building Reliable Lakehouses with Apache Flink and Delta LakeBuilding Reliable Lakehouses with Apache Flink and Delta Lake
Building Reliable Lakehouses with Apache Flink and Delta Lake
Flink Forward570 views
Making Apache Spark Better with Delta Lake by Databricks
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks5.4K views
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard by Paris Data Engineers !
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardDelta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Achieving Lakehouse Models with Spark 3.0 by Databricks
Achieving Lakehouse Models with Spark 3.0Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0
Databricks622 views
Architect’s Open-Source Guide for a Data Mesh Architecture by Databricks
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
Databricks3.1K views
Observability for Data Pipelines With OpenLineage by Databricks
Observability for Data Pipelines With OpenLineageObservability for Data Pipelines With OpenLineage
Observability for Data Pipelines With OpenLineage
Databricks626 views
Databricks Platform.pptx by Alex Ivy
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy3.3K views
Parquet performance tuning: the missing guide by Ryan Blue
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue40.5K views
Intro to databricks delta lake by Mykola Zerniuk
 Intro to databricks delta lake Intro to databricks delta lake
Intro to databricks delta lake
Mykola Zerniuk316 views
Delta lake and the delta architecture by Adam Doyle
Delta lake and the delta architectureDelta lake and the delta architecture
Delta lake and the delta architecture
Adam Doyle1K views
How to build a streaming Lakehouse with Flink, Kafka, and Hudi by Flink Forward
How to build a streaming Lakehouse with Flink, Kafka, and HudiHow to build a streaming Lakehouse with Flink, Kafka, and Hudi
How to build a streaming Lakehouse with Flink, Kafka, and Hudi
Flink Forward488 views
Physical Plans in Spark SQL by Databricks
Physical Plans in Spark SQLPhysical Plans in Spark SQL
Physical Plans in Spark SQL
Databricks7K views

Similar to Scaling and Unifying SciKit Learn and Apache Spark Pipelines

Python business intelligence (PyData 2012 talk) by
Python business intelligence (PyData 2012 talk)Python business intelligence (PyData 2012 talk)
Python business intelligence (PyData 2012 talk)Stefan Urbanek
22.4K views58 slides
Balancing Infrastructure with Optimization and Problem Formulation by
Balancing Infrastructure with Optimization and Problem FormulationBalancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem FormulationAlex D. Gaudio
847 views55 slides
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 by
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Herman Wu
648 views57 slides
Scilab Challenge@NTU 2014/2015 Project Briefing by
Scilab Challenge@NTU 2014/2015 Project BriefingScilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project BriefingTBSS Group
1.2K views34 slides
Graph Analytics in Spark by
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in SparkPaco Nathan
21.8K views59 slides
GraphX: Graph analytics for insights about developer communities by
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesPaco Nathan
11.8K views60 slides

Similar to Scaling and Unifying SciKit Learn and Apache Spark Pipelines(20)

Python business intelligence (PyData 2012 talk) by Stefan Urbanek
Python business intelligence (PyData 2012 talk)Python business intelligence (PyData 2012 talk)
Python business intelligence (PyData 2012 talk)
Stefan Urbanek22.4K views
Balancing Infrastructure with Optimization and Problem Formulation by Alex D. Gaudio
Balancing Infrastructure with Optimization and Problem FormulationBalancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem Formulation
Alex D. Gaudio847 views
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 by Herman Wu
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Herman Wu648 views
Scilab Challenge@NTU 2014/2015 Project Briefing by TBSS Group
Scilab Challenge@NTU 2014/2015 Project BriefingScilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project Briefing
TBSS Group1.2K views
Graph Analytics in Spark by Paco Nathan
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in Spark
Paco Nathan21.8K views
GraphX: Graph analytics for insights about developer communities by Paco Nathan
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communities
Paco Nathan11.8K views
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ... by Jose Quesada (hiring)
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
Jose Quesada (hiring)10.1K views
YARN webinar series: Using Scalding to write applications to Hadoop and YARN by Hortonworks
YARN webinar series: Using Scalding to write applications to Hadoop and YARNYARN webinar series: Using Scalding to write applications to Hadoop and YARN
YARN webinar series: Using Scalding to write applications to Hadoop and YARN
Hortonworks5.3K views
IBM Strategy for Spark by Mark Kerzner
IBM Strategy for SparkIBM Strategy for Spark
IBM Strategy for Spark
Mark Kerzner752 views
MathWorks Interview Lecture by John Yates
MathWorks Interview LectureMathWorks Interview Lecture
MathWorks Interview Lecture
John Yates532 views
Introduction to elasticsearch by hypto
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
hypto2.3K views
What’s New in the Berkeley Data Analytics Stack by Turi, Inc.
What’s New in the Berkeley Data Analytics StackWhat’s New in the Berkeley Data Analytics Stack
What’s New in the Berkeley Data Analytics Stack
Turi, Inc.1.3K views
Practicing at the Cutting Edge by C4Media
Practicing at the Cutting EdgePracticing at the Cutting Edge
Practicing at the Cutting Edge
C4Media684 views
Apache Arrow (Strata-Hadoop World San Jose 2016) by Wes McKinney
Apache Arrow (Strata-Hadoop World San Jose 2016)Apache Arrow (Strata-Hadoop World San Jose 2016)
Apache Arrow (Strata-Hadoop World San Jose 2016)
Wes McKinney17K views

More from Databricks

DW Migration Webinar-March 2022.pptx by
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDatabricks
4.3K views25 slides
Data Lakehouse Symposium | Day 1 | Part 1 by
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Databricks
1.5K views43 slides
Data Lakehouse Symposium | Day 1 | Part 2 by
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Databricks
743 views16 slides
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop by
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
6.3K views64 slides
Democratizing Data Quality Through a Centralized Platform by
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDatabricks
1.4K views36 slides
Learn to Use Databricks for Data Science by
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceDatabricks
1.6K views12 slides

More from Databricks(20)

DW Migration Webinar-March 2022.pptx by Databricks
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks4.3K views
Data Lakehouse Symposium | Day 1 | Part 1 by Databricks
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks1.5K views
Data Lakehouse Symposium | Day 1 | Part 2 by Databricks
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks743 views
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop by Databricks
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks6.3K views
Democratizing Data Quality Through a Centralized Platform by Databricks
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks1.4K views
Learn to Use Databricks for Data Science by Databricks
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks1.6K views
Why APM Is Not the Same As ML Monitoring by Databricks
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks743 views
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix by Databricks
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks689 views
Stage Level Scheduling Improving Big Data and AI Integration by Databricks
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks850 views
Simplify Data Conversion from Spark to TensorFlow and PyTorch by Databricks
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks1.8K views
Scaling your Data Pipelines with Apache Spark on Kubernetes by Databricks
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks2.1K views
Sawtooth Windows for Feature Aggregations by Databricks
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks606 views
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink by Databricks
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks677 views
Re-imagine Data Monitoring with whylogs and Spark by Databricks
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks551 views
Raven: End-to-end Optimization of ML Prediction Queries by Databricks
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks450 views
Processing Large Datasets for ADAS Applications using Apache Spark by Databricks
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks513 views
Massive Data Processing in Adobe Using Delta Lake by Databricks
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks719 views
Machine Learning CI/CD for Email Attack Detection by Databricks
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks389 views
Jeeves Grows Up: An AI Chatbot for Performance and Quality by Databricks
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks260 views
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue by Databricks
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + FugueIntuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Databricks348 views

Recently uploaded

Cross-network in Google Analytics 4.pdf by
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdfGA4 Tutorials
6 views7 slides
Organic Shopping in Google Analytics 4.pdf by
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdfGA4 Tutorials
16 views13 slides
PRIVACY AWRE PERSONAL DATA STORAGE by
PRIVACY AWRE PERSONAL DATA STORAGEPRIVACY AWRE PERSONAL DATA STORAGE
PRIVACY AWRE PERSONAL DATA STORAGEantony420421
7 views56 slides
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks by
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks
[DSC Europe 23] Aleksandar Tomcic - Adversarial AttacksDataScienceConferenc1
5 views20 slides
SUPER STORE SQL PROJECT.pptx by
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
13 views16 slides
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... by
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...DataScienceConferenc1
5 views18 slides

Recently uploaded(20)

Cross-network in Google Analytics 4.pdf by GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
Organic Shopping in Google Analytics 4.pdf by GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials16 views
PRIVACY AWRE PERSONAL DATA STORAGE by antony420421
PRIVACY AWRE PERSONAL DATA STORAGEPRIVACY AWRE PERSONAL DATA STORAGE
PRIVACY AWRE PERSONAL DATA STORAGE
antony4204217 views
SUPER STORE SQL PROJECT.pptx by khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862013 views
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... by DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
Product Research sample.pdf by AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson29 views
Ukraine Infographic_22NOV2023_v2.pdf by AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.4K views
CRM stick or twist workshop by info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821712 views
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf by Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotus23 views
LIVE OAK MEMORIAL PARK.pptx by ms2332always
LIVE OAK MEMORIAL PARK.pptxLIVE OAK MEMORIAL PARK.pptx
LIVE OAK MEMORIAL PARK.pptx
ms2332always7 views
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf by DataScienceConferenc1
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf
CRIJ4385_Death Penalty_F23.pptx by yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1007 views
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx by DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... by DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
Dr. Ousmane Badiane-2023 ReSAKSS Conference by AKADEMIYA2063
Dr. Ousmane Badiane-2023 ReSAKSS ConferenceDr. Ousmane Badiane-2023 ReSAKSS Conference
Dr. Ousmane Badiane-2023 ReSAKSS Conference
AKADEMIYA20635 views
CRM stick or twist.pptx by info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821711 views

Scaling and Unifying SciKit Learn and Apache Spark Pipelines

  • 1. Scaling and Unifying Scikit Learn and Spark Pipelines using Ray Raghu Ganti Principal Research Staff Member IBM T J Watson Research Center Team (IBM & Red Hat): Michael Behrendt, Linsong Chu, Carlos Costa, Erik Erlandson, Mudhakar Srivatsa
  • 3. Ray.IO § Can we do pipelines on Ray? § Can we scale popular AI/ML pipelines on Ray? § Can we unify scikit learn and Spark pipelines?
  • 4. Current pipeline API • Focus on scikit learn and Spark pipelines • Scikit learn missing scaling; Spark focus on data parallel scaling Transform Fit X X y X’ Fitted model
  • 5. Scaling Pipelines: I/O as List of Objects Transform Fit [X1, X2, … XN] [X1, X2, … XN] [y1, y2, … yN] [X1’, X2’, …, XN’] [FM1, FM2, … FMN]
  • 6. Scaling Pipelines: AND/OR Graphs And node X1 X2 XN X1’ X2’ XM’ Or node X Step1 Step2 StepN X’ X’ X’
  • 7. Key Features ▪ Python function as unit of compute ▪ Intuitive for data scientist ▪ Follows transformer APIs ▪ MPI-style scaling ▪ Object references as I/O for unit of compute ▪ Sharing of objects using Plasma store ▪ Enables zero-copy object sharing • List of objects as I/O • Function as unit of compute ▪ Scikit learn typically in Python ▪ Ray.IO with RayDP enables efficient data exchange • Cross environment ▪ Enriched DAGs from plain pipelines ▪ OR nodes for fan- out expressions ▪ AND nodes for arbitrary lambdas • AND/OR Graphs
  • 9. Pipelines Galore… Airflow Kubeflow Scikit learn Spark Pipeline Our pipeline Task parallelism ✓ ✓ ✗ ✓ ✓ Data parallelism ✗ ✗ ✗ ✓ ✓ And/Or Graphs ✓ ✓ ✗ ✗ ✓ Computational unit Container Container Python function Python/Java function Python/Java function Mutability of DAG ✗ ✗ ✓ ✓ ✓
  • 10. What to expect? • Execution strategies based on graph traversals • Early stopping criteria • Mutability of execution pipelines • Current status: Proposal discussion with Ray and OSS community
  • 11. Q&A Contacts: Raghu Ganti (rganti@us.ibm.com) Michael Behrendt (michaelbehrendt@de.ibm.com) Linsong Chu (lchu@us.ibm.com) Carlos Costa (chcost@us.ibm.com) Erik Erlandson (eerlands@redhat.com) Mudhakar Srivatsa (msrivats@us.ibm.com)
  • 12. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.