We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Machine learning (ML) models are typically part of prediction queries that consist of a data processing part (e.g., for joining, filtering, cleaning, featurization) and an ML part invoking one or more trained models. In this presentation, we identify significant and unexplored opportunities for optimization. To the best of our knowledge, this is the first effort to look at prediction queries holistically, optimizing across both the ML and SQL components.
We will present Raven, an end-to-end optimizer for prediction queries. Raven relies on a unified intermediate representation that captures both data processing and ML operators in a single graph structure.
This allows us to introduce optimization rules that
(i) reduce unnecessary computations by passing information between the data processing and ML operators
(ii) leverage operator transformations (e.g., turning a decision tree to a SQL expression or an equivalent neural network) to map operators to the right execution engine, and
(iii) integrate compiler techniques to take advantage of the most efficient hardware backend (e.g., CPU, GPU) for each operator.
We have implemented Raven as an extension to Spark’s Catalyst optimizer to enable the optimization of SparkSQL prediction queries. Our implementation also allows the optimization of prediction queries in SQL Server. As we will show, Raven is capable of improving prediction query performance on Apache Spark and SQL Server by up to 13.1x and 330x, respectively. For complex models, where GPU acceleration is beneficial, Raven provides up to 8x speedup compared to state-of-the-art systems. As part of the presentation, we will also give a demo showcasing Raven in action.
Machine learning (ML) models are typically part of prediction queries that consist of a data processing part (e.g., for joining, filtering, cleaning, featurization) and an ML part invoking one or more trained models. In this presentation, we identify significant and unexplored opportunities for optimization. To the best of our knowledge, this is the first effort to look at prediction queries holistically, optimizing across both the ML and SQL components.
We will present Raven, an end-to-end optimizer for prediction queries. Raven relies on a unified intermediate representation that captures both data processing and ML operators in a single graph structure.
This allows us to introduce optimization rules that
(i) reduce unnecessary computations by passing information between the data processing and ML operators
(ii) leverage operator transformations (e.g., turning a decision tree to a SQL expression or an equivalent neural network) to map operators to the right execution engine, and
(iii) integrate compiler techniques to take advantage of the most efficient hardware backend (e.g., CPU, GPU) for each operator.
We have implemented Raven as an extension to Spark’s Catalyst optimizer to enable the optimization of SparkSQL prediction queries. Our implementation also allows the optimization of prediction queries in SQL Server. As we will show, Raven is capable of improving prediction query performance on Apache Spark and SQL Server by up to 13.1x and 330x, respectively. For complex models, where GPU acceleration is beneficial, Raven provides up to 8x speedup compared to state-of-the-art systems. As part of the presentation, we will also give a demo showcasing Raven in action.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!