SlideShare a Scribd company logo
1 of 34
An Introduction to Time Series
Ginger Davis
VIGRE Computational Finance Seminar
Rice University
November 26, 2003
What is a Time Series?
• Time Series
– Collection of observations
indexed by the date of each
observation
• Lag Operator
– Represented by the symbol L
• Mean of Yt = μt
 
T
y
y
y ,
,
, 2
1 
1

 t
t x
Lx
White Noise Process
• Basic building block for time series processes
 
 
 
  0
0
2
2













t
t
t
t
t
E
E
E
White Noise Processes, cont.
• Independent White Noise Process
– Slightly stronger condition that and are
independent
• Gaussian White Noise Process
 
2
,
0
~ 
 N
t
t
 

Autocovariance
• Covariance of Yt with its own lagged value
• Example: Calculate autocovariances for:
  
j
t
j
t
t
t
jt Y
Y
E 
 

 


    
j
t
t
j
t
t
jt
t
t
E
Y
Y
E
Y

 












Stationarity
• Covariance-stationary or weakly stationary
process
– Neither the mean nor the autocovariances depend on
the date t
 
   j
j
t
t
t
Y
Y
E
Y
E









Stationarity, cont.
• 2 processes
– 1 covariance stationary, 1 not covariance
stationary
t
t
t
t
t
Y
Y








Stationarity, cont.
• Covariance stationary processes
– Covariance between Yt and Yt-j depends only on
j (length of time separating the observations) and
not on t (date of the observation)
j
j 
 

Stationarity, cont.
• Strict stationarity
– For any values of j1, j2, …, jn, the joint
distribution of (Yt, Yt+j1
, Yt+j2
, ..., Yt+jn
) depends
only on the intervals separating the dates and
not on the date itself
Gaussian Processes
• Gaussian process {Yt}
– Joint density
is Gaussian for any
• What can be said about a covariance stationary
Gaussian process?
 
n
n
j
t
j
t j
t
j
t
t
Y
Y
Y y
y
y
f 



,
,
, 1
1
1 ,
,
, 

n
j
j
j ,
,
, 2
1 
Ergodicity
• A covariance-stationary process is said to be
ergodic for the mean if
converges in probability to E(Yt) as



T
t
t
y
T
y
1
1


T
Describing the dynamics
of a Time Series
• Moving Average (MA) processes
• Autoregressive (AR) processes
• Autoregressive / Moving Average (ARMA)
processes
• Autoregressive conditional heteroscedastic
(ARCH) processes
Moving Average Processes
• MA(1): First Order MA process
• “moving average”
– Yt is constructed from a weighted sum of the two
most recent values of .
1



 t
t
t
Y 



Properties of MA(1)
 
   
 
 
     
 
   0
1
2
2
2
1
2
2
2
1
1
2
1
1
1
2
2
2
1
2
1
2
2
1
2































































j
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Y
Y
E
E
E
Y
Y
E
E
E
Y
E
Y
E
for j>1
MA(1)
• Covariance stationary
– Mean and autocovariances are not functions of time
• Autocorrelation of a covariance-stationary
process
• MA(1)
0


 j
j 
   
2
2
2
2
1
1
1 









Autocorrelation Function for White Noise:
0.0
0.2
0.4
0.6
0.8
1.0
0 5 10 15 20
Lag
Autocorrelation
t
t
Y 

Autocorrelation Function for MA(1):
1
8
.
0 

 t
t
t
Y 

0.0
0.2
0.4
0.6
0.8
1.0
0 5 10 15 20
Lag
Autocorrelation
Moving Average Processes
of higher order
• MA(q): qth order moving average process
• Properties of MA(q)
q
t
q
t
t
t
t
Y 

 




 






 
2
2
1
1
 
 
q
j
q
j
j
j
q
q
j
j
j
j
q
















,
0
,
,
2
,
1
,
1
2
2
2
1
1
2
2
2
2
2
1
0


















Autoregressive Processes
• AR(1): First order autoregression
• Stationarity: We will assume
• Can represent as an MA
t
t
t Y
c
Y 
 

 1
1


     
 

























2
2
1
2
2
1
1
t
t
t
t
t
t
t
c
c
c
c
Y










:
)
(
Properties of AR(1)
 
 
 
 
 
2
2
2
4
2
2
2
2
1
2
0
1
1
1































t
t
t
t
E
Y
E
c
Properties of AR(1), cont.
  
   
 
 
 
j
j
j
j
j
j
j
j
j
t
j
t
j
t
j
t
j
t
t
t
j
t
t
j
E
Y
Y
E






































































0
2
2
2
4
2
2
4
2
2
2
1
2
2
1
1
1 




Autocorrelation Function for AR(1):
t
t
t Y
Y 

 1
8
.
0
0.0
0.2
0.4
0.6
0.8
1.0
0 5 10 15 20
Lag
Autocorrelation
Autocorrelation Function for AR(1):
t
t
t Y
Y 


 1
8
.
0
-0.5
0.0
0.5
1.0
0 5 10 15 20
Lag
Autocorrelation
Gaussian White Noise
0 20 40 60 80 100
-2
-1
0
1
2
AR(1),
0 20 40 60 80 100
-3
-2
-1
0
1
2 5
.
0


AR(1),
0 20 40 60 80 100
-2
0
2
4 9
.
0


AR(1),
0 20 40 60 80 100
-4
-2
0
2
4 9
.
0



Autoregressive Processes
of higher order
• pth order autoregression: AR(p)
• Stationarity: We will assume that the roots of
the following all lie outside the unit circle.
t
p
t
p
t
t
t Y
Y
Y
c
Y 


 




 

 
2
2
1
1
0
1 2
2
1 



 p
p z
z
z 

 
Properties of AR(p)
• Can solve for autocovariances /
autocorrelations using Yule-Walker
equations
 
p
c










2
1
1
Mixed Autoregressive Moving
Average Processes
• ARMA(p,q) includes both autoregressive and
moving average terms
q
t
q
t
t
t
p
t
p
t
t
t Y
Y
Y
c
Y




























2
2
1
1
2
2
1
1
Time Series Models
for Financial Data
• A Motivating Example
– Federal Funds rate
– We are interested in forecasting not only the
level of the series, but also its variance.
– Variance is not constant over time
U. S. Federal Funds Rate
Time
1955 1960 1965 1970 1975
2
4
6
8
10
12
Modeling the Variance
• AR(p):
• ARCH(m)
– Autoregressive conditional heteroscedastic process
of order m
– Square of ut follows an AR(m) process
– wt is a new white noise process
t
p
t
p
t
t
t u
y
y
y
c
y 




 

 

 
2
2
1
1
t
m
t
m
t
t
t w
u
u
u
u 




 


2
2
2
2
2
1
1
2



 
References
• Investopia.com
• Economagic.com
• Hamilton, J. D. (1994), Time Series
Analysis, Princeton, New Jersey: Princeton
University Press.

More Related Content

Similar to Timeseries_presentation.ppt

2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
nozomuhamada
 
Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4
Cdiscount
 
State Space Model
State Space ModelState Space Model
State Space Model
Cdiscount
 

Similar to Timeseries_presentation.ppt (20)

Introduction to time series.pptx
Introduction to time series.pptxIntroduction to time series.pptx
Introduction to time series.pptx
 
Univariate Financial Time Series Analysis
Univariate Financial Time Series AnalysisUnivariate Financial Time Series Analysis
Univariate Financial Time Series Analysis
 
Time series Analysis
Time series AnalysisTime series Analysis
Time series Analysis
 
Signals and Systems 1.pptx
Signals and Systems 1.pptxSignals and Systems 1.pptx
Signals and Systems 1.pptx
 
Schrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.pptSchrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.ppt
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
15963128.ppt
15963128.ppt15963128.ppt
15963128.ppt
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptx
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
IST module 1
IST module 1IST module 1
IST module 1
 
Signal
SignalSignal
Signal
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4
 
State Space Model
State Space ModelState Space Model
State Space Model
 
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 

Recently uploaded

Orientation Canvas Course Presentation.pdf
Orientation Canvas Course Presentation.pdfOrientation Canvas Course Presentation.pdf
Orientation Canvas Course Presentation.pdf
Elizabeth Walsh
 

Recently uploaded (20)

dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
 
Orientation Canvas Course Presentation.pdf
Orientation Canvas Course Presentation.pdfOrientation Canvas Course Presentation.pdf
Orientation Canvas Course Presentation.pdf
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
 
Ernest Hemingway's For Whom the Bell Tolls
Ernest Hemingway's For Whom the Bell TollsErnest Hemingway's For Whom the Bell Tolls
Ernest Hemingway's For Whom the Bell Tolls
 
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxMichaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 

Timeseries_presentation.ppt

  • 1. An Introduction to Time Series Ginger Davis VIGRE Computational Finance Seminar Rice University November 26, 2003
  • 2. What is a Time Series? • Time Series – Collection of observations indexed by the date of each observation • Lag Operator – Represented by the symbol L • Mean of Yt = μt   T y y y , , , 2 1  1   t t x Lx
  • 3. White Noise Process • Basic building block for time series processes         0 0 2 2              t t t t t E E E
  • 4. White Noise Processes, cont. • Independent White Noise Process – Slightly stronger condition that and are independent • Gaussian White Noise Process   2 , 0 ~   N t t   
  • 5. Autocovariance • Covariance of Yt with its own lagged value • Example: Calculate autocovariances for:    j t j t t t jt Y Y E              j t t j t t jt t t E Y Y E Y               
  • 6. Stationarity • Covariance-stationary or weakly stationary process – Neither the mean nor the autocovariances depend on the date t      j j t t t Y Y E Y E         
  • 7. Stationarity, cont. • 2 processes – 1 covariance stationary, 1 not covariance stationary t t t t t Y Y        
  • 8. Stationarity, cont. • Covariance stationary processes – Covariance between Yt and Yt-j depends only on j (length of time separating the observations) and not on t (date of the observation) j j    
  • 9. Stationarity, cont. • Strict stationarity – For any values of j1, j2, …, jn, the joint distribution of (Yt, Yt+j1 , Yt+j2 , ..., Yt+jn ) depends only on the intervals separating the dates and not on the date itself
  • 10. Gaussian Processes • Gaussian process {Yt} – Joint density is Gaussian for any • What can be said about a covariance stationary Gaussian process?   n n j t j t j t j t t Y Y Y y y y f     , , , 1 1 1 , , ,   n j j j , , , 2 1 
  • 11. Ergodicity • A covariance-stationary process is said to be ergodic for the mean if converges in probability to E(Yt) as    T t t y T y 1 1   T
  • 12. Describing the dynamics of a Time Series • Moving Average (MA) processes • Autoregressive (AR) processes • Autoregressive / Moving Average (ARMA) processes • Autoregressive conditional heteroscedastic (ARCH) processes
  • 13. Moving Average Processes • MA(1): First Order MA process • “moving average” – Yt is constructed from a weighted sum of the two most recent values of . 1     t t t Y    
  • 14. Properties of MA(1)                      0 1 2 2 2 1 2 2 2 1 1 2 1 1 1 2 2 2 1 2 1 2 2 1 2                                                                j t t t t t t t t t t t t t t t t t t t t t t t Y Y E E E Y Y E E E Y E Y E for j>1
  • 15. MA(1) • Covariance stationary – Mean and autocovariances are not functions of time • Autocorrelation of a covariance-stationary process • MA(1) 0    j j      2 2 2 2 1 1 1          
  • 16. Autocorrelation Function for White Noise: 0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 Lag Autocorrelation t t Y  
  • 17. Autocorrelation Function for MA(1): 1 8 . 0    t t t Y   0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 Lag Autocorrelation
  • 18. Moving Average Processes of higher order • MA(q): qth order moving average process • Properties of MA(q) q t q t t t t Y                   2 2 1 1     q j q j j j q q j j j j q                 , 0 , , 2 , 1 , 1 2 2 2 1 1 2 2 2 2 2 1 0                  
  • 19. Autoregressive Processes • AR(1): First order autoregression • Stationarity: We will assume • Can represent as an MA t t t Y c Y      1 1                                    2 2 1 2 2 1 1 t t t t t t t c c c c Y           : ) (
  • 20. Properties of AR(1)           2 2 2 4 2 2 2 2 1 2 0 1 1 1                                t t t t E Y E c
  • 21. Properties of AR(1), cont.              j j j j j j j j j t j t j t j t j t t t j t t j E Y Y E                                                                       0 2 2 2 4 2 2 4 2 2 2 1 2 2 1 1 1     
  • 22. Autocorrelation Function for AR(1): t t t Y Y    1 8 . 0 0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 Lag Autocorrelation
  • 23. Autocorrelation Function for AR(1): t t t Y Y     1 8 . 0 -0.5 0.0 0.5 1.0 0 5 10 15 20 Lag Autocorrelation
  • 24. Gaussian White Noise 0 20 40 60 80 100 -2 -1 0 1 2
  • 25. AR(1), 0 20 40 60 80 100 -3 -2 -1 0 1 2 5 . 0  
  • 26. AR(1), 0 20 40 60 80 100 -2 0 2 4 9 . 0  
  • 27. AR(1), 0 20 40 60 80 100 -4 -2 0 2 4 9 . 0   
  • 28. Autoregressive Processes of higher order • pth order autoregression: AR(p) • Stationarity: We will assume that the roots of the following all lie outside the unit circle. t p t p t t t Y Y Y c Y               2 2 1 1 0 1 2 2 1      p p z z z    
  • 29. Properties of AR(p) • Can solve for autocovariances / autocorrelations using Yule-Walker equations   p c           2 1 1
  • 30. Mixed Autoregressive Moving Average Processes • ARMA(p,q) includes both autoregressive and moving average terms q t q t t t p t p t t t Y Y Y c Y                             2 2 1 1 2 2 1 1
  • 31. Time Series Models for Financial Data • A Motivating Example – Federal Funds rate – We are interested in forecasting not only the level of the series, but also its variance. – Variance is not constant over time
  • 32. U. S. Federal Funds Rate Time 1955 1960 1965 1970 1975 2 4 6 8 10 12
  • 33. Modeling the Variance • AR(p): • ARCH(m) – Autoregressive conditional heteroscedastic process of order m – Square of ut follows an AR(m) process – wt is a new white noise process t p t p t t t u y y y c y              2 2 1 1 t m t m t t t w u u u u          2 2 2 2 2 1 1 2     
  • 34. References • Investopia.com • Economagic.com • Hamilton, J. D. (1994), Time Series Analysis, Princeton, New Jersey: Princeton University Press.