SlideShare a Scribd company logo
1 of 26
Multiple Access
By,
B. R. Chandavarkar,
CSE Dept., NITK, Surathkal
Ref: B. A. Forouzan, 5th Edition
• When nodes or stations are connected and use a common link, called a
multipoint or broadcast link, we need a multiple-access protocol to
coordinate access to the link.
• The problem of controlling the access to the medium is similar to the
rules of speaking in an assembly. The procedures guarantee that the
right to speak is upheld and ensure that two people do not speak at the
same time, do not interrupt each other, do not monopolize the
discussion, and so on.
• Many protocols have been devised to handle access to a shared link.
All of these protocols belong to a sublayer in the data-link layer called
media access control (MAC).
Random Access
• In random-access or contention methods, no station is superior to
another station and none is assigned control over another.
• At each instance, a station that has data to send uses a procedure
defined by the protocol to make a decision on whether or not to send.
• This decision depends on the state of the medium (idle or busy). In
other words, each station can transmit when it desires on the condition
that it follows the predefined procedure, including testing the state of
the medium.
• Two features give this method its name.
– First, there is no scheduled time for a station to transmit. Transmission is random
among the stations. That is why these methods are called random access.
– Second, no rules specify which station should send next. Stations compete with
one another to access the medium. That is why these methods are also called
contention methods.
• In a random-access method, each station has the right to the medium
without being controlled by any other station.
• However, if more than one station tries to send, there is an access
conflict—collision—and the frames will be either destroyed or
modified.
• To avoid access conflict or to resolve it when it happens, each station
follows a procedure that answers the following questions:
– When can the station access the medium?
– What can the station do if the medium is busy?
– How can the station determine the success or failure of the
transmission?
– What can the station do if there is an access conflict?
• The random-access methods we study in this chapter have evolved
from a very interesting protocol known as ALOHA, which used a very
simple procedure called multiple access (MA).
• The method was improved with the addition of a procedure that forces
the station to sense the medium before transmitting. This was called
carrier sense multiple access (CSMA).
• This method later evolved into two parallel methods:
– carrier sense multiple access with collision detection (CSMA/CD),
which tells the station what to do when a collision is detected, and
– carrier sense multiple access with collision avoidance
(CSMA/CA), which tries to avoid the collision.
ALOHA
• ALOHA, the earliest random access method, was developed at the
University of Hawaii in early 1970.
• It was designed for a radio (wireless) LAN, but it can be used on any
shared medium.
• It is obvious that there are potential collisions in this arrangement. The
medium is shared between the stations. When a station sends data,
another station may attempt to do so at the same time. The data from
the two stations collide and become garbled.
Pure ALOHA
• The original ALOHA protocol is called pure ALOHA. This is a simple
but elegant protocol.
• The idea is that each station sends a frame whenever it has a frame to
send (multiple access).
• However, since there is only one channel to share, there is the
possibility of collision between frames from different stations.
• The pure ALOHA protocol relies on acknowledgments from the
receiver.
• When a station sends a frame, it expects the receiver to send an
acknowledgment. If the acknowledgment does not arrive after a time-
out period, the station assumes that the frame (or the
acknowledgment) has been destroyed and resends the frame.
• A collision involves two or more stations. If all these stations try to
resend their frames after the time-out, the frames will collide again.
• Pure ALOHA dictates that when the time-out period passes, each
station waits a random amount of time before resending its frame.
• The randomness will help avoid more collisions. We call this time the
backoff time TB.
Vulnerable time
• Let us find the vulnerable time, the length of time in which there is a
possibility of collision.
• We assume that the stations send fixed-length frames with each frame
taking Tfr seconds to send.
Pure ALOHA vulnerable time = 2 X Tfr
Throughput
• Let us call G the average number of frames generated by the system
during one frame transmission time. Then it can be proven that the
average number of successfully transmitted
• frames for pure ALOHA is S = G × e-2G. The maximum throughput
Smax is 0.184, for G = 1/2. (We can find it by setting the derivative of
S with respect to G to 0; see Exercises.)
• In other words, if one-half a frame is generated during one frame
transmission time (one frame during two frame transmission times),
then 18.4 percent of these frames reach their destination successfully.
We
Slotted ALOHA
• Pure ALOHA has a vulnerable time of 2 × Tfr. This is so because there
is no rule that defines when the station can send.
• A station may send soon after another station has started or just before
another station has finished.
• Slotted ALOHA was invented to improve the efficiency of pure
ALOHA.
• In slotted ALOHA we divide the time into slots of Tfr seconds and
force the station to send only at the beginning of the time slot.
Vulnerable Time
Throughput
• It can be proven that the average number of successful transmissions
for slotted ALOHA is S = G × e-G.
• The maximum throughput Smax is 0.368, when G = 1.
• In other words, if one frame is generated during one frame
transmission time, then 36.8 percent of these frames reach their
destination successfully.
CSMA
• To minimize the chance of collision and, therefore, increase the
performance, the CSMA method was developed.
• The chance of collision can be reduced if a station senses the medium
before trying to use it.
• Carrier sense multiple access (CSMA) requires that each station first
listen to the medium (or check the state of the medium) before
sending.
• In other words, CSMA is based on the principle “sense before
transmit” or “listen before talk.”
• CSMA can reduce the possibility of collision, but it cannot eliminate
it.
• The possibility of collision still exists because of propagation delay;
when a station sends a frame, it still takes time (although very short)
for the first bit to reach every station and for every station to sense it.
In other words, a station may sense the medium and find it idle, only
because the first bit sent by another station has not yet been received.
Vulnerable Time
• The vulnerable time for CSMA is the propagation time Tp.
• This is the time needed for a signal to propagate from one end of the
medium to the other. When a station sends a frame and any other
station tries to send a frame during this time, a collision will result.
• But if the first bit of the frame reaches the end of the medium, every
station will already have heard the bit and will refrain from sending.
Persistence Methods
• What should a station do if the channel is busy?
• What should a station do if the channel is idle?
• Three methods have been devised to answer these questions: the 1-
persistent method, the nonpersistent method, and the p-persistent
method.
1-Persistent
• The 1-persistent method is simple and straightforward. In this method, after the
station finds the line idle, it sends its frame immediately (with probability 1).
• This method has the highest chance of collision because two or more stations may
find the line idle and send their frames immediately.
Nonpersistent
• In the nonpersistent method, a station that has a frame to send senses the line. If the
line is idle, it sends immediately. If the line is not idle, it waits a random amount of
time and then senses the line again.
• The nonpersistent approach reduces the chance of collision because it is unlikely
that two or more stations will wait the same amount of time and retry to send
simultaneously. However, this method reduces the efficiency of the network because
the medium remains idle when there may be stations with frames to send.
p-Persistent
• The p-persistent method is used if the channel has time slots with a slot duration
equal to or greater than the maximum propagation time.
• The p-persistent approach combines the advantages of the other two strategies. It
reduces the chance of collision and improves efficiency.
• In this method, after the station finds the line idle it follows these
steps:
– With probability p, the station sends its frame.
– With probability q = 1 − p, the station waits for the beginning of
the next time slot and checks the line again.
• a. If the line is idle, it goes to step 1.
• b. If the line is busy, it acts as though a collision has occurred
and uses the backoff procedure.
CSMA/CD
• The CSMA method does not specify the procedure following a
collision.
• Carrier sense multiple access with collision detection (CSMA/CD)
augments the algorithm to handle the collision.
• In this method, a station monitors the medium after it sends a frame to
see if the transmission was successful. If so, the station is finished. If,
however, there is a collision, the frame is sent again.
Minimum Frame Size
• For CSMA/CD to work, we need a restriction on the frame size.
• Before sending the last bit of the frame, the sending station must
detect a collision, if any, and abort the transmission.
• This is so because the station, once the entire frame is sent, does not
keep a copy of the frame and does not monitor the line for collision
detection. Therefore, the frame transmission time Tfr must be at least
two times the maximum propagation time Tp.
CSMA/CA
the Multiple Access SLIDE for university students

More Related Content

Similar to the Multiple Access SLIDE for university students

MEDIUM-ACCESS CONTROL SUB LAYER.ppt
MEDIUM-ACCESS CONTROL SUB LAYER.pptMEDIUM-ACCESS CONTROL SUB LAYER.ppt
MEDIUM-ACCESS CONTROL SUB LAYER.pptDrTThendralCompSci
 
Csma(carriers sense-multiple-acess)
Csma(carriers sense-multiple-acess) Csma(carriers sense-multiple-acess)
Csma(carriers sense-multiple-acess) Rajan Kandel
 
Dc ch09 : high speed la ns and wireless lans
Dc ch09 : high speed la ns and wireless lansDc ch09 : high speed la ns and wireless lans
Dc ch09 : high speed la ns and wireless lansSyaiful Ahdan
 
Multiple Access Methods
Multiple Access MethodsMultiple Access Methods
Multiple Access MethodsPrateek Soni
 
Csma protocols
Csma protocolsCsma protocols
Csma protocolsManal Shah
 
Media Access Control
Media Access ControlMedia Access Control
Media Access ControlHusnainHadi
 
CSMA /CD PPT ON SLIDESHARE
CSMA /CD PPT ON SLIDESHARECSMA /CD PPT ON SLIDESHARE
CSMA /CD PPT ON SLIDESHAREKhushboo Pal
 
multiacess protocol
multiacess protocolmultiacess protocol
multiacess protocolKanwal Khan
 
RANDOM ACCESS PROTOCOL IN COMMUNICATION
RANDOM ACCESS PROTOCOL IN COMMUNICATION           RANDOM ACCESS PROTOCOL IN COMMUNICATION
RANDOM ACCESS PROTOCOL IN COMMUNICATION AMOGHA A K
 
Computer Network presention Pravin Bhargav , Surykant Ratrey (1).pptx
Computer Network presention  Pravin Bhargav , Surykant Ratrey (1).pptxComputer Network presention  Pravin Bhargav , Surykant Ratrey (1).pptx
Computer Network presention Pravin Bhargav , Surykant Ratrey (1).pptxPravinbhargav
 
Wireless medium Access Control-multiple terminals need to communicate at the ...
Wireless medium Access Control-multiple terminals need to communicate at the ...Wireless medium Access Control-multiple terminals need to communicate at the ...
Wireless medium Access Control-multiple terminals need to communicate at the ...Papitha7
 
Multiple Access Protocal
Multiple Access ProtocalMultiple Access Protocal
Multiple Access Protocaltes31
 
Unit-2 Media Access Protocols.pdf
Unit-2 Media Access Protocols.pdfUnit-2 Media Access Protocols.pdf
Unit-2 Media Access Protocols.pdfSmtPArunaKumari
 
9 multiple access
9 multiple access9 multiple access
9 multiple accessampas03
 

Similar to the Multiple Access SLIDE for university students (20)

MEDIUM-ACCESS CONTROL SUB LAYER.ppt
MEDIUM-ACCESS CONTROL SUB LAYER.pptMEDIUM-ACCESS CONTROL SUB LAYER.ppt
MEDIUM-ACCESS CONTROL SUB LAYER.ppt
 
Csma(carriers sense-multiple-acess)
Csma(carriers sense-multiple-acess) Csma(carriers sense-multiple-acess)
Csma(carriers sense-multiple-acess)
 
Mac sub layer
Mac sub layerMac sub layer
Mac sub layer
 
Unit 3 - Data Link Layer - Part B
Unit 3 - Data Link Layer - Part BUnit 3 - Data Link Layer - Part B
Unit 3 - Data Link Layer - Part B
 
Dc ch09 : high speed la ns and wireless lans
Dc ch09 : high speed la ns and wireless lansDc ch09 : high speed la ns and wireless lans
Dc ch09 : high speed la ns and wireless lans
 
Multiple Access Methods
Multiple Access MethodsMultiple Access Methods
Multiple Access Methods
 
The medium access sublayer
 The medium  access sublayer The medium  access sublayer
The medium access sublayer
 
Csma protocols
Csma protocolsCsma protocols
Csma protocols
 
clas 8
clas 8clas 8
clas 8
 
Unit 1 mac vsd
Unit 1 mac vsdUnit 1 mac vsd
Unit 1 mac vsd
 
Media Access Control
Media Access ControlMedia Access Control
Media Access Control
 
CSMA /CD PPT ON SLIDESHARE
CSMA /CD PPT ON SLIDESHARECSMA /CD PPT ON SLIDESHARE
CSMA /CD PPT ON SLIDESHARE
 
IV_UNIT.ppt
IV_UNIT.pptIV_UNIT.ppt
IV_UNIT.ppt
 
multiacess protocol
multiacess protocolmultiacess protocol
multiacess protocol
 
RANDOM ACCESS PROTOCOL IN COMMUNICATION
RANDOM ACCESS PROTOCOL IN COMMUNICATION           RANDOM ACCESS PROTOCOL IN COMMUNICATION
RANDOM ACCESS PROTOCOL IN COMMUNICATION
 
Computer Network presention Pravin Bhargav , Surykant Ratrey (1).pptx
Computer Network presention  Pravin Bhargav , Surykant Ratrey (1).pptxComputer Network presention  Pravin Bhargav , Surykant Ratrey (1).pptx
Computer Network presention Pravin Bhargav , Surykant Ratrey (1).pptx
 
Wireless medium Access Control-multiple terminals need to communicate at the ...
Wireless medium Access Control-multiple terminals need to communicate at the ...Wireless medium Access Control-multiple terminals need to communicate at the ...
Wireless medium Access Control-multiple terminals need to communicate at the ...
 
Multiple Access Protocal
Multiple Access ProtocalMultiple Access Protocal
Multiple Access Protocal
 
Unit-2 Media Access Protocols.pdf
Unit-2 Media Access Protocols.pdfUnit-2 Media Access Protocols.pdf
Unit-2 Media Access Protocols.pdf
 
9 multiple access
9 multiple access9 multiple access
9 multiple access
 

More from novrain1

Chuong 2- Tin & Luong tin.ppt slide for teaching
Chuong 2- Tin & Luong tin.ppt slide for teachingChuong 2- Tin & Luong tin.ppt slide for teaching
Chuong 2- Tin & Luong tin.ppt slide for teachingnovrain1
 
Channel coding chuong 6 ma hoa kenh phan ma chap.ppt
Channel coding chuong 6 ma hoa kenh phan ma chap.pptChannel coding chuong 6 ma hoa kenh phan ma chap.ppt
Channel coding chuong 6 ma hoa kenh phan ma chap.pptnovrain1
 
Xu ly tin hieu am thanh và hình ảnh giảng dạy slide
Xu ly tin hieu am thanh và hình ảnh giảng dạy slideXu ly tin hieu am thanh và hình ảnh giảng dạy slide
Xu ly tin hieu am thanh và hình ảnh giảng dạy slidenovrain1
 
RFID Estimation Problem in RFID system.ppt
RFID Estimation Problem in RFID system.pptRFID Estimation Problem in RFID system.ppt
RFID Estimation Problem in RFID system.pptnovrain1
 
mobile communication for student and lecture
mobile communication for student and lecturemobile communication for student and lecture
mobile communication for student and lecturenovrain1
 
Introduce mobile communication generation.ppt
Introduce mobile communication generation.pptIntroduce mobile communication generation.ppt
Introduce mobile communication generation.pptnovrain1
 
random variable and probability distributions
random variable and probability distributionsrandom variable and probability distributions
random variable and probability distributionsnovrain1
 
Fast and Reliable Estimation Schemes in RFID Systems.ppt
Fast and Reliable Estimation Schemes in RFID Systems.pptFast and Reliable Estimation Schemes in RFID Systems.ppt
Fast and Reliable Estimation Schemes in RFID Systems.pptnovrain1
 
discrete and continuous probability distributions pptbecdoms-120223034321-php...
discrete and continuous probability distributions pptbecdoms-120223034321-php...discrete and continuous probability distributions pptbecdoms-120223034321-php...
discrete and continuous probability distributions pptbecdoms-120223034321-php...novrain1
 
Understanding RFID Counting Protocols.ppt
Understanding RFID Counting Protocols.pptUnderstanding RFID Counting Protocols.ppt
Understanding RFID Counting Protocols.pptnovrain1
 

More from novrain1 (10)

Chuong 2- Tin & Luong tin.ppt slide for teaching
Chuong 2- Tin & Luong tin.ppt slide for teachingChuong 2- Tin & Luong tin.ppt slide for teaching
Chuong 2- Tin & Luong tin.ppt slide for teaching
 
Channel coding chuong 6 ma hoa kenh phan ma chap.ppt
Channel coding chuong 6 ma hoa kenh phan ma chap.pptChannel coding chuong 6 ma hoa kenh phan ma chap.ppt
Channel coding chuong 6 ma hoa kenh phan ma chap.ppt
 
Xu ly tin hieu am thanh và hình ảnh giảng dạy slide
Xu ly tin hieu am thanh và hình ảnh giảng dạy slideXu ly tin hieu am thanh và hình ảnh giảng dạy slide
Xu ly tin hieu am thanh và hình ảnh giảng dạy slide
 
RFID Estimation Problem in RFID system.ppt
RFID Estimation Problem in RFID system.pptRFID Estimation Problem in RFID system.ppt
RFID Estimation Problem in RFID system.ppt
 
mobile communication for student and lecture
mobile communication for student and lecturemobile communication for student and lecture
mobile communication for student and lecture
 
Introduce mobile communication generation.ppt
Introduce mobile communication generation.pptIntroduce mobile communication generation.ppt
Introduce mobile communication generation.ppt
 
random variable and probability distributions
random variable and probability distributionsrandom variable and probability distributions
random variable and probability distributions
 
Fast and Reliable Estimation Schemes in RFID Systems.ppt
Fast and Reliable Estimation Schemes in RFID Systems.pptFast and Reliable Estimation Schemes in RFID Systems.ppt
Fast and Reliable Estimation Schemes in RFID Systems.ppt
 
discrete and continuous probability distributions pptbecdoms-120223034321-php...
discrete and continuous probability distributions pptbecdoms-120223034321-php...discrete and continuous probability distributions pptbecdoms-120223034321-php...
discrete and continuous probability distributions pptbecdoms-120223034321-php...
 
Understanding RFID Counting Protocols.ppt
Understanding RFID Counting Protocols.pptUnderstanding RFID Counting Protocols.ppt
Understanding RFID Counting Protocols.ppt
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 

the Multiple Access SLIDE for university students

  • 1. Multiple Access By, B. R. Chandavarkar, CSE Dept., NITK, Surathkal Ref: B. A. Forouzan, 5th Edition
  • 2. • When nodes or stations are connected and use a common link, called a multipoint or broadcast link, we need a multiple-access protocol to coordinate access to the link. • The problem of controlling the access to the medium is similar to the rules of speaking in an assembly. The procedures guarantee that the right to speak is upheld and ensure that two people do not speak at the same time, do not interrupt each other, do not monopolize the discussion, and so on. • Many protocols have been devised to handle access to a shared link. All of these protocols belong to a sublayer in the data-link layer called media access control (MAC).
  • 3.
  • 4. Random Access • In random-access or contention methods, no station is superior to another station and none is assigned control over another. • At each instance, a station that has data to send uses a procedure defined by the protocol to make a decision on whether or not to send. • This decision depends on the state of the medium (idle or busy). In other words, each station can transmit when it desires on the condition that it follows the predefined procedure, including testing the state of the medium. • Two features give this method its name. – First, there is no scheduled time for a station to transmit. Transmission is random among the stations. That is why these methods are called random access. – Second, no rules specify which station should send next. Stations compete with one another to access the medium. That is why these methods are also called contention methods.
  • 5. • In a random-access method, each station has the right to the medium without being controlled by any other station. • However, if more than one station tries to send, there is an access conflict—collision—and the frames will be either destroyed or modified. • To avoid access conflict or to resolve it when it happens, each station follows a procedure that answers the following questions: – When can the station access the medium? – What can the station do if the medium is busy? – How can the station determine the success or failure of the transmission? – What can the station do if there is an access conflict?
  • 6. • The random-access methods we study in this chapter have evolved from a very interesting protocol known as ALOHA, which used a very simple procedure called multiple access (MA). • The method was improved with the addition of a procedure that forces the station to sense the medium before transmitting. This was called carrier sense multiple access (CSMA). • This method later evolved into two parallel methods: – carrier sense multiple access with collision detection (CSMA/CD), which tells the station what to do when a collision is detected, and – carrier sense multiple access with collision avoidance (CSMA/CA), which tries to avoid the collision.
  • 7. ALOHA • ALOHA, the earliest random access method, was developed at the University of Hawaii in early 1970. • It was designed for a radio (wireless) LAN, but it can be used on any shared medium. • It is obvious that there are potential collisions in this arrangement. The medium is shared between the stations. When a station sends data, another station may attempt to do so at the same time. The data from the two stations collide and become garbled. Pure ALOHA • The original ALOHA protocol is called pure ALOHA. This is a simple but elegant protocol. • The idea is that each station sends a frame whenever it has a frame to send (multiple access). • However, since there is only one channel to share, there is the possibility of collision between frames from different stations.
  • 8.
  • 9. • The pure ALOHA protocol relies on acknowledgments from the receiver. • When a station sends a frame, it expects the receiver to send an acknowledgment. If the acknowledgment does not arrive after a time- out period, the station assumes that the frame (or the acknowledgment) has been destroyed and resends the frame. • A collision involves two or more stations. If all these stations try to resend their frames after the time-out, the frames will collide again. • Pure ALOHA dictates that when the time-out period passes, each station waits a random amount of time before resending its frame. • The randomness will help avoid more collisions. We call this time the backoff time TB.
  • 10.
  • 11. Vulnerable time • Let us find the vulnerable time, the length of time in which there is a possibility of collision. • We assume that the stations send fixed-length frames with each frame taking Tfr seconds to send. Pure ALOHA vulnerable time = 2 X Tfr
  • 12. Throughput • Let us call G the average number of frames generated by the system during one frame transmission time. Then it can be proven that the average number of successfully transmitted • frames for pure ALOHA is S = G × e-2G. The maximum throughput Smax is 0.184, for G = 1/2. (We can find it by setting the derivative of S with respect to G to 0; see Exercises.) • In other words, if one-half a frame is generated during one frame transmission time (one frame during two frame transmission times), then 18.4 percent of these frames reach their destination successfully. We
  • 13. Slotted ALOHA • Pure ALOHA has a vulnerable time of 2 × Tfr. This is so because there is no rule that defines when the station can send. • A station may send soon after another station has started or just before another station has finished. • Slotted ALOHA was invented to improve the efficiency of pure ALOHA. • In slotted ALOHA we divide the time into slots of Tfr seconds and force the station to send only at the beginning of the time slot.
  • 14. Vulnerable Time Throughput • It can be proven that the average number of successful transmissions for slotted ALOHA is S = G × e-G. • The maximum throughput Smax is 0.368, when G = 1. • In other words, if one frame is generated during one frame transmission time, then 36.8 percent of these frames reach their destination successfully.
  • 15. CSMA • To minimize the chance of collision and, therefore, increase the performance, the CSMA method was developed. • The chance of collision can be reduced if a station senses the medium before trying to use it. • Carrier sense multiple access (CSMA) requires that each station first listen to the medium (or check the state of the medium) before sending. • In other words, CSMA is based on the principle “sense before transmit” or “listen before talk.” • CSMA can reduce the possibility of collision, but it cannot eliminate it. • The possibility of collision still exists because of propagation delay; when a station sends a frame, it still takes time (although very short) for the first bit to reach every station and for every station to sense it. In other words, a station may sense the medium and find it idle, only because the first bit sent by another station has not yet been received.
  • 16.
  • 17. Vulnerable Time • The vulnerable time for CSMA is the propagation time Tp. • This is the time needed for a signal to propagate from one end of the medium to the other. When a station sends a frame and any other station tries to send a frame during this time, a collision will result. • But if the first bit of the frame reaches the end of the medium, every station will already have heard the bit and will refrain from sending.
  • 18. Persistence Methods • What should a station do if the channel is busy? • What should a station do if the channel is idle? • Three methods have been devised to answer these questions: the 1- persistent method, the nonpersistent method, and the p-persistent method.
  • 19. 1-Persistent • The 1-persistent method is simple and straightforward. In this method, after the station finds the line idle, it sends its frame immediately (with probability 1). • This method has the highest chance of collision because two or more stations may find the line idle and send their frames immediately. Nonpersistent • In the nonpersistent method, a station that has a frame to send senses the line. If the line is idle, it sends immediately. If the line is not idle, it waits a random amount of time and then senses the line again. • The nonpersistent approach reduces the chance of collision because it is unlikely that two or more stations will wait the same amount of time and retry to send simultaneously. However, this method reduces the efficiency of the network because the medium remains idle when there may be stations with frames to send. p-Persistent • The p-persistent method is used if the channel has time slots with a slot duration equal to or greater than the maximum propagation time. • The p-persistent approach combines the advantages of the other two strategies. It reduces the chance of collision and improves efficiency.
  • 20. • In this method, after the station finds the line idle it follows these steps: – With probability p, the station sends its frame. – With probability q = 1 − p, the station waits for the beginning of the next time slot and checks the line again. • a. If the line is idle, it goes to step 1. • b. If the line is busy, it acts as though a collision has occurred and uses the backoff procedure.
  • 21.
  • 22. CSMA/CD • The CSMA method does not specify the procedure following a collision. • Carrier sense multiple access with collision detection (CSMA/CD) augments the algorithm to handle the collision. • In this method, a station monitors the medium after it sends a frame to see if the transmission was successful. If so, the station is finished. If, however, there is a collision, the frame is sent again.
  • 23. Minimum Frame Size • For CSMA/CD to work, we need a restriction on the frame size. • Before sending the last bit of the frame, the sending station must detect a collision, if any, and abort the transmission. • This is so because the station, once the entire frame is sent, does not keep a copy of the frame and does not monitor the line for collision detection. Therefore, the frame transmission time Tfr must be at least two times the maximum propagation time Tp.
  • 24.