SlideShare a Scribd company logo
Research Articles
than the typical GRB localized by
Swift. However, even accounting for its
proximity, the intense gamma-ray fluxes observed imply an apparent isotropic
energy release of nearly 1054 ergs and
rank it among the more powerful GRBs
ever detected (3). Subsequent optical
monitoring discovered the emergence
of a broad-line supernova at the GRB
1
1
1
1
1
W. T. Vestrand, * J. A. Wren, A. Panaitescu, P. R. Wozniak, H. Davis, D. M.
location (8).
1
2
2
3
3
4
Palmer, G. Vianello, N. Omodei, S. Xiong, M. S. Briggs, M. Elphick, W.
This powerful GRB also generated
Paciesas,5 W. Rosing4
an extremely bright flash of optical
1
emission and a long-lived, bright, optiLos Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA. 2W.W. Hansen
cal afterglow. Three independent
Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of
Physics, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA.
RAPTOR (RAPid Telescopes for Opti3
Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman
cal Response) full sky monitoring teleDr., Huntsville, AL 35899, USA. 4Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona
scopes (9), at locations in New Mexico
5
Drive, Suite 102, Santa Barbara, CA 93117, USA. Universities Space Research Association, 320
and Hawaii, detected the emergence of
Sparkman Dr., Huntsville, AL 35899, USA.
a bright flash, temporally coincident
*Corresponding author. E-mail: vestrand@lanl.gov
with the onset of gamma-ray emission,
at the location of GRB 130427A. The
The optical light generated simultaneously with x-rays and gamma-rays during a
optical flash rapidly peaked at a magnitude 7.03 ± 0.03 (unfiltered observagamma-ray burst (GRB) provides clues about the nature of the explosions that
occur as massive stars collapse. We report on the bright optical flash and fading
tions calibrated to Sloan r’ band) in an
exposure that covered the time interval
afterglow from powerful burst GRB 130427A. The optical and >100 MeV gamma-ray
flux show a close correlation during the first 7000 s, best explained by reverse
To + 9.31 to To + 19.31 s. After the
shock emission co-generated in the relativistic burst ejecta as it collides with
peak, the flash faded with a power-law
surrounding material. At later times, optical observations show the emergence of
flux decay with index α = –1.67 ± 0.07
emission generated by a forward shock traversing the circumburst environment.
(χ2 = 0.68/5 dof) and was detected for
The link between optical afterglow and >100 MeV emission suggests that nearby
about 80 s until it faded below the
early peaked afterglows will be the best candidates for studying particle
~10th magnitude sensitivity limit of the
acceleration at GeV/TeV energies.
RAPTOR full sky monitors.
The taxonomy for optical emission
detected during the prompt gamma-ray
Long-duration gamma-ray bursts are associated with the collapse of emitting interval identifies two broad classes: prompt optical emission
massive stars to form black holes (1) or rapidly-spinning, highly- correlated with prompt gamma-ray emission (10–12) and early optical
magnetized, neutron stars (2). This collapse is believed to eject collimat- afterglow emission uncorrelated with the prompt gamma-ray emission
ed relativistic jets that, through internal dissipation processes and colli- (11, 13, 14). In context of the standard fireball model (15, 16), the
sions with the surroundings, generate luminous outbursts of prompt optical emission is attributed to internal shocks in an ultraelectromagnetic radiation that have been detected at radio frequencies to relativistic jet outflow generated by the central engine and the afterglow
very high (GeV) gamma-ray energies. Most of the outburst energy is emission to external shocks generated by interaction with the surroundemitted in the gamma-rays. But, starting with the first observations that ing medium. The prompt optical emission therefore reflects the impulestablished that GRBs occur at cosmological distances (3), correlative sive energy injection into the jet and the early afterglow emission
optical observations, in particular, have proven themselves as important measures the response of the jet/environment system to the energy injectools for unraveling the nature of GRB explosions. Here we present ob- tion. Bright optical flashes from reverse shocks were predicted on theoservations of the optical flash and early afterglow for a nearby burst that retical grounds (16, 17) before observational evidence was seen in GRB
is bright enough in very high energy gamma-rays to allow a detailed 990123 (13). The optical flash light-curve for GRB 130427A shows a
comparison of the >100 MeV gamma-ray and optical light curves. These single peak delayed with respect to the keV-MeV prompt gamma-ray
optical observations cover the critical early phases of the explosion from peak (Fig. 1) and a steep power-law flux that is consistent with the prethe time interval before the event onset, through the bright optical and dictions of models for optical flashes from reverse shocks (17). Based on
prompt gamma-ray emitting period, and well into the early afterglow the above taxonomy, the brightness of the flash, and the rapid power law
phase.
flux decay, it makes sense to associate the optical flash with reverse
Starting at 27 April 2013 at 07:47:06.42 UTC (hereafter To), the shock emission.
Gamma Ray Burst Monitor (GBM) on the Fermi Satellite, the Burst
To explore the evolution of the broad band GRB spectrum during the
Alert Telescope (BAT) on the Swift Satellite, and an armada of other optical flash, we constructed spectral energy distributions (SED) using
space-based gamma-ray detectors detected the onset of a powerful gam- simultaneous measurements taken with the Fermi GBM and the Fermi
ma-ray burst (GRB) (4, 5). This GRB, called GRB 130427A, had the Large Area Telescope (LAT). Each snapshot of the time evolving SED
largest gamma-ray fluence (~2.7 × 10–3 erg/cm2 in the 20 keV-1200 keV was formed by integrating the GRB flux over the same time interval as
band) measured in more than 18 years of operation by Konus-Wind (6) the optical exposure. We found that the broad-band SEDs (Fig. 2) varied
and set a record for duration of the >100 MeV gamma-ray emitting in- rapidly during the first 40 s and the optical measurements fell far from
terval (5). Spectroscopy of the optical counterpart (7), coarsely localized the values expected from extrapolation of the keV-MeV SED. However
by the Swift BAT and later refined by follow-up with optical telescopes, as the intensity of the outburst declined during the next 40 s interval, the
places the GRB at a redshift z = 0.34—a distance about five times closer SED shape stabilized and the optical measurements started to converge

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 1 / 10.1126/science.1242316

Downloaded from www.sciencemag.org on December 1, 2013

The Bright Optical Flash and Afterglow
from the Gamma-Ray Burst GRB
130427A
on the values predicted by a straightforward linear extrapolation of the
keV-MeV SED. By the end of the optical flash, the optical to 10 MeV
spectrum is consistent with a single power law with index β = –0.64.
In response to the Swift BAT localization alert at 127.8 s after the
GBM trigger, our RAPTOR response telescopes began unfiltered and
simultaneous multicolor (g’, r’, i’, z’) optical observations at To + 132.9
s that continued until To + 7585.9 s. This photometry begins near the
peak of a prominent flare in keV-MeV x-ray/gamma-rays that lasts until
~To +400 s. The optical light curves show a smooth monotonic decline
but no indication of the steep decline nor the break to a slower powerlaw decay at ~400 s measured at x-ray energies (4). Instead, the structure
of the optical light-curve shows a steepening at about To + 270 s. This
steepening is essentially achromatic and the color of the optical emission
is consistent with a ν–0.70 ± 0.05 spectrum and constant until it starts to
become bluer (ν–0.59 ± 0.05) at ~3000 s after the GBM trigger (see bottom
panel of Fig. 3).
In marked contrast with the keV-MeV emission, the optical light
curves after To + 100 s show a striking similarity with the >100 MeV
photon flux light curve measured by the Fermi LAT (5). The LAT light
curve has a break at about 300 s, just like the optical afterglow. Straightforward scaling of the RAPTOR optical light curve by a factor of ~10−6
provides a reasonable description of the LAT observations out to ~To +
7000 s. This close correspondence argues for a common origin of both
components in external shocks.
The optical light curve until ~To + 3000 s is best modeled by synchrotron emission from a reverse shock in a wind density profile. Most
optical afterglows have been modeled with forward shocks in a homogeneous medium. But the peak brightness (~6 Jy) and steep decay of the
optical flash suggest origin in a reverse shock. The relative faintness of
the radio afterglow peak (~1 mJy) also argues for generation by a reverse
shock in a wind-like medium (18). To explain the optical flash by reverse shock emission in a wind (R–2) requires either a long-lived electron
energy injection up to ~40 s or a shorter (~20 s) followed by adiabatic
cooling. Figure 4 shows the best fit to the optical flash with the short
interval of injection (on at To + 4 s and off at To + 20 s) and, for selfconsistency, the same dynamical parameters that we infer from fits to the
later afterglow forward shock emission discussed below. This model
employs an electron distribution with power-law energy index p = 1.88
and corresponds to an injected energy of 8.0 × 1053 ergs. The slower
optical fading after the flash interval requires a second episode of energy
injection to sustain the optical afterglow or a continuous outflow with a
variable Lorentz factor (19). This sustained reverse shock model reproduces the closely tracking variability observed by the RAPTOR telescopes and the Fermi LAT and suggests that the optical and most of the
>100 MeV emission is generated by synchrotron emitting electrons that
are accelerated by the reverse shocks.
This reverse shock model cannot, by itself, explain the properties of
the prompt keV-MeV emission nor some of the properties of the late
time afterglows. The evolution to a bluer color after ~3000 s observed by
RAPTOR and the slowing of the optical brightness decay suggests the
emergence of a forward shock component. This transition to forward
shock dominance at late times would also naturally explain the late time
x-ray light-curve and the sustained >100 MeV emission after 10,000 s.
Emergence of a bluer optical component at late time is similar to the
afterglow evolution of GRB 080319B—another burst with a bright optical flash. For GRB 080319B, the color change was also interpreted as
marking the transition from reverse shock emission dominance to forward shock dominance (12, 20, 21).
During most of the interval before To + 400 s, the keV-MeV xray/gamma-ray emission is consistent with the standard assumption that
the prompt emission is generated by internal shocks in the relativistic jet
ejecta. Our predicted >100 MeV flux from the reverse shock that generates the optical flash is slightly less (~ factor of 2) than the peak meas-

ured by the Fermi LAT (Fig. 4). But the keV-MeV flux is significantly
underpredicted by at least a factor of 10. So the reverse shock in a wind
model requires prompt emission to explain the keV-MeV emission and
might require additional >100 MeV emission to explain the LAT lightcurve peak. In this picture, the keV-MeV light-curve is a proxy that traces the injection of internal jet energy by the central engine. The keVMeV emission therefore indicates two periods of significant energy injection into the jet: the initial 20 s and a period from ~120 to 300 s. The
interesting potential exception to prompt emission dominance in the
keV-MeV range is the period just before onset of the flare at To + 120 s.
During the interval To + 79 s to To + 89 s, the optical afterglow flux
measured by RAPTOR falls right on the extrapolation of the power-law
(index = ~–0.6) measured in the 10 keV-20 MeV energy band by the
GBM. This gamma-ray spectral slope is also similar to spectral slope
that we measure for optical afterglow emission at later times. The
“notch” in the keV-MeV light curve before the flare at To + 120 may be
providing a rare glimpse, similar to that seen in GRB 980923 (22), of
afterglow emission at MeV energies between prompt emission intervals.
The exceptional optical properties observed for the optical flash and
afterglow from GRB 130427A are mostly a result of burst proximity.
The flash peak luminosity for GRB 130427A is among the most powerful events, but its value is consistent with the anti-correlation between
peak time and peak luminosity (Fig. 5) found for optical afterglows (23).
If optical afterglows and >100 MeV gamma-ray afterglows have a common origin, then the peaked optical afterglows that peak early should be
the best candidates for detection at GeV/TeV gamma-ray energies.
References and Notes
1. S. E. Woosley, J. S. Bloom, The supernova gamma-ray burst connection. Annu.
Rev.
Astron.
Astrophys.
44,
507–556
(2006).
doi:10.1146/annurev.astro.43.072103.150558
2. B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini, E. Quataert, The
protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413,
2031–2056 (2011). doi:10.1111/j.1365-2966.2011.18280.x
3. M. R. Metzger, S. G. Djorgovski, S. R. Kulkarni, C. C. Steidel, K. L.
Adelberger, D. A. Frail, E. Costa, F. Frontera, Spectral constraints on the
redshift of the optical counterpart to the gamma-ray burst of 8 May 1997.
Nature 387, 878 (1997). doi:10.1038/43132
4. A. Maselli, A. Melandri, L. Nava, C. G. Mundell, N. Kawai, S. Campana, S.
Covino, J. R. Cummings, G. Cusumano, P. A. Evans, G. Ghirlanda, G.
Ghisellini, C. Guidorzi, S. Kobayashi, P. Kuin, V. La Parola, V. Mangano, S.
Oates, T. Sakamoto, M. Serino, F. Virgili, B.-B. Zhang, S. Barthelmy, A.
Beardmore, M. G. Bernardini, D. Bersier, D. Burrows, G. Calderone, M.
Capalbi, J. Chiang, P. D’Avanzo, V. D’Elia, M. De Pasquale, D. Fugazza, N.
Gehrels, A. Gomboc, R. Harrison, H. Hanayama, J. Japelj, J. Kennea, D.
Kopac, C. Kouveliotou, D. Kuroda, A. Levan, D. Malesani, F. Marshall, J.
Nousek, P. O’Brien, J. P. Osborne, C. Pagani, K. L. Page, M. Page, M. Perri,
T. Pritchard, P. Romano, Y. Saito, B. Sbarufatti, R. Salvaterra, I. Steele, N.
Tanvir, G. Vianello, B. Weigand, K. Wiersema, Y. Yatsu, T. Yoshii, G.
Tagliaferri, GRB 130427A: A nearby ordinary monster. Science
10.1126/science.1242279 (2013).
5. M. Ackermann, M. Ajello, K. Asano, W. B. Atwood, M. Axelsson, L. Baldini,
J. Ballet, G. Barbiellini, M. G. Baring, D. Bastieri, K. Bechtol, R. Bellazzini,
E. Bissaldi, E. Bonamente, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, J.
Michael Burgess, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo,
C. Cecchi, V. Chaplin, E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang,
G. Chiaro, S. Ciprini, R. Claus, W. Cleveland, J. Cohen-Tanugi, A. Collazzi,
L. R. Cominsky, V. Connaughton, J. Conrad, S. Cutini, F. D’Ammando, A.
de Angelis, M. DeKlotz, F. de Palma, C. D. Dermer, R. Desiante, A.
Diekmann, L. Di Venere, P. S. Drell, A. Drlica-Wagner, C. Favuzzi, S. J.
Fegan, E. C. Ferrara, J. Finke, G. Fitzpatrick, W. B. Focke, A. Franckowiak,
Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, N. Gehrels, S. Germani, M.
Gibby, N. Giglietto, M. Giles, F. Giordano, M. Giroletti, G. Godfrey, J.
Granot, I. A. Grenier, J. E. Grove, D. Gruber, S. Guiriec, D. Hadasch, Y.
Hanabata, A. K. Harding, M. Hayashida, E. Hays, D. Horan, R. E. Hughes, Y.
Inoue, T. Jogler, G. Jóhannesson, W. N. Johnson, T. Kawano, J. Knödlseder,

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 2 / 10.1126/science.1242316
D. Kocevski, M. Kuss, J. Lande, S. Larsson, L. Latronico, F. Longo, F.
Loparco, M. N. Lovellette, P. Lubrano, M. Mayer, M. N. Mazziotta, J. E.
McEnery, P. F. Michelson, T. Mizuno, A. A. Moiseev, M. E. Monzani, E.
Moretti, A. Morselli, I. V. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, M.
Ohno, T. Ohsugi, A. Okumura, N. Omodei, M. Orienti, D. Paneque, V.
Pelassa, J. S. Perkins, M. Pesce-Rollins, V. Petrosian, F. Piron, G. Pivato, T.
A. Porter, J. L. Racusin, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A.
Reimer, O. Reimer, S. Ritz, M. Roth, F. Ryde, A. Sartori, P. M.
Saz Parkinson, J. D. Scargle, A. Schulz, C. Sgrò, E. J. Siskind, E. Sonbas, G.
Spandre, P. Spinelli, H. Tajima, H. Takahashi, J. G. Thayer, J. B. Thayer, D.
J. Thompson, L. Tibaldo, M. Tinivella, D. F. Torres, G. Tosti, E. Troja, T. L.
Usher, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, B. L. Winer,
K. S. Wood, R. Yamazaki, G. Younes, H.-F. Yu, S. J. Zhu, P. N. Bhat, M. S.
Briggs, D. Byrne, S. Foley, A. Goldstein, P. Jenke, R. M. Kippen, C.
Kouveliotou, S. McBreen, C. Meegan, W. S. Paciesas, R. Preece, A. Rau, D.
Tierney, A. J. van der Horst, A. von Kienlin, C. Wilson-Hodge, S. Xiong, G.
Cusumano, V. La Parola, J. R. Cummings, Fermi-LAT observations of the
gamma-ray burst GRB 130427A. Science 10.1126/science.1242353 (2013).
6. S. Golenetskii et al., “Konus-wind observation of GRB 130427A,” GCN
Circular #14486 (2013).
7. A. J. Levan et al., “GRB 130427A: Gemini-north redshift,” GCN circular
#14455 (2013).
8. D. Xu, A. de Ugarte Postigo, G. Leloudas, T. Krühler, Z. Cano, J. Hjorth, D.
Malesani, J. P. U. Fynbo, C. C. Thöne, R. Sánchez-Ramírez, S. Schulze, P.
Jakobsson, L. Kaper, J. Sollerman, D. J. Watson, A. Cabrera-Lavers, C. Cao,
S. Covino, H. Flores, S. Geier, J. Gorosabel, S. M. Hu, B. Milvang-Jensen, M.
Sparre, L. P. Xin, T. M. Zhang, W. K. Zheng, Y. C. Zou, Discovery of the
broad-lined Type Ic SN 2013cq associated with the very energetic GRB
130427A. Astrophys. J. 776, 98 (2013). doi:10.1088/0004-637X/776/2/98
9. J. Wren, W. T. Vestrand, P. Wozniak, H. Davis, A portable observatory for
persistent monitoring of the night sky. Proc. SPIE 7737, 773723 (2010).
doi:10.1117/12.859039
10. W. T. Vestrand, P. R. Wozniak, J. A. Wren, E. E. Fenimore, T. Sakamoto, R.
R. White, D. Casperson, H. Davis, S. Evans, M. Galassi, K. E. McGowan, J.
A. Schier, J. W. Asa, S. D. Barthelmy, J. R. Cummings, N. Gehrels, D.
Hullinger, H. A. Krimm, C. B. Markwardt, K. McLean, D. Palmer, A.
Parsons, J. Tueller, A link between prompt optical and prompt gamma-ray
emission in gamma-ray bursts. Nature 435, 178–180 (2005). Medline
doi:10.1038/nature03515
11. W. T. Vestrand, J. A. Wren, P. R. Wozniak, R. Aptekar, S. Golentskii, V.
Pal’shin, T. Sakamoto, R. R. White, S. Evans, D. Casperson, E. Fenimore,
Energy input and response from prompt and early optical afterglow emission
in gamma-ray bursts. Nature 442, 172–175 (2006). Medline
doi:10.1038/nature04913
12. J. L. Racusin, S. V. Karpov, M. Sokolowski, J. Granot, X. F. Wu, V. Pal’shin,
S. Covino, A. J. van der Horst, S. R. Oates, P. Schady, R. J. Smith, J.
Cummings, R. L. Starling, L. W. Piotrowski, B. Zhang, P. A. Evans, S. T.
Holland, K. Malek, M. T. Page, L. Vetere, R. Margutti, C. Guidorzi, A. P.
Kamble, P. A. Curran, A. Beardmore, C. Kouveliotou, L. Mankiewicz, A.
Melandri, P. T. O’Brien, K. L. Page, T. Piran, N. R. Tanvir, G. Wrochna, R.
L. Aptekar, S. Barthelmy, C. Bartolini, G. M. Beskin, S. Bondar, M. Bremer,
S. Campana, A. Castro-Tirado, A. Cucchiara, M. Cwiok, P. D’Avanzo, V.
D’Elia, M. D. Valle, A. de Ugarte Postigo, W. Dominik, A. Falcone, F. Fiore,
D. B. Fox, D. D. Frederiks, A. S. Fruchter, D. Fugazza, M. A. Garrett, N.
Gehrels, S. Golenetskii, A. Gomboc, J. Gorosabel, G. Greco, A. Guarnieri, S.
Immler, M. Jelinek, G. Kasprowicz, V. La Parola, A. J. Levan, V. Mangano,
E. P. Mazets, E. Molinari, A. Moretti, K. Nawrocki, P. P. Oleynik, J. P.
Osborne, C. Pagani, S. B. Pandey, Z. Paragi, M. Perri, A. Piccioni, E.
Ramirez-Ruiz, P. W. Roming, I. A. Steele, R. G. Strom, V. Testa, G. Tosti,
M. V. Ulanov, K. Wiersema, R. A. Wijers, J. M. Winters, A. F. Zarnecki, F.
Zerbi, P. Mészáros, G. Chincarini, D. N. Burrows, Broadband observations of
the naked-eye gamma-ray burst GRB 080319B. Nature 455, 183–188 (2008).
Medline doi:10.1038/nature07270
13. C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson,
T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, R. Kehoe, B.
Lee, S. Marshall, T. McKay, R. Miller, L. Piro, W. Priedhorsky, J.
Szymanski, J. Wren, Observations of contemporaneous optical radiation from
a gamma-ray burst. Nature 398, 400–402 (1999). doi:10.1038/18837
14. E. Rykoff, F. Aharonian, C. W. Akerlof, M. C. B. Ashley, S. D. Barthelmy, H.

A. Flewelling, N. Gehrels, E. Göǧüş, T. Güver, Ü. Kiziloǧlu, H. A. Krimm, T.
A. McKay, M. Özel, A. Phillips, R. M. Quimby, G. Rowell, W. Rujopakarn,
B. E. Schaefer, D. A. Smith, W. T. Vestrand, J. C. Wheeler, J. Wren, F. Yuan,
S. A. Yost, Looking into the Fireball: ROTSE-III and Swift observations of
early gamma-ray burst afterglows. Astrophys. J. 702, 489–505 (2009).
doi:10.1088/0004-637X/702/1/489
15. P. Meszaros, M. Rees, Relativistic fireballs and their impact on external
matter—Models for cosmological gamma-ray bursts. Astrophys. J. 405, 278
(1993). doi:10.1086/172360
16. P. Meszaros, M. Rees, Optical and long wavelength afterglow from gammaray bursts. Astrophys. J. 476, 232–237 (1997). doi:10.1086/303625
17. R. Sari, T. Piran, Predictions for the very early afterglow and the optical flash.
Astrophys. J. 520, 641–649 (1999). doi:10.1086/307508
18. T. Laskar, E. Berger, B. A. Zauderer, R. Margutti, A. M. Soderberg, S.
Chakraborti, R. Lunnan, R. Chornock, P. Chandra, A. Ray, A reverse shock in
GRB 130427A. available at http://arxiv.org/abs/1305.2453 (2013).
19. Z. L. Uhm, B. Zhang, R. Hascoët, F. Daigne, R. Mochkovitch, I. H. Park,
Dynamics and afterglow light curves of gamma-ray burst blast waves with a
long-lived reverse shock. Astrophys. J. 761, 147 (2012). doi:10.1088/0004637X/761/2/147
20. P. Wozniak, W. T. Vestrand, A. D. Panaitescu, J. A. Wren, H. R. Davis, R. R.
White, Gamma-Ray burst at the extreme: The naked-eye burst GRB 080319B.
Astrophys. J. 691, 495–502 (2009). doi:10.1088/0004-637X/691/1/495
21. J. S. Bloom, D. A. Perley, W. Li, N. R. Butler, A. A. Miller, D. Kocevski, D.
A. Kann, R. J. Foley, H.-W. Chen, A. V. Filippenko, D. L. Starr, B.
Macomber, J. X. Prochaska, R. Chornock, D. Poznanski, S. Klose, M. F.
Skrutskie, S. Lopez, P. Hall, K. Glazebrook, C. H. Blake, Observations of the
naked-eye GRB 080319B: implications of nature’s brightest explosion.
Astrophys. J. 691, 723–737 (2009). doi:10.1088/0004-637X/691/1/723
22. T. W. Giblin, J. van Paradijs, C. Kouveliotou, V. Connaughton, R. A. M. J.
Wijers, M. S. Briggs, R. D. Preece, G. J. Fishman, Evidence for an early highenergy afterglow observed with BATSE from GRB 980923. Astrophys. J.
524, L47–L50 (1999). doi:10.1086/312285
23. A. Panaitescu, W. T. Vestrand, Taxonomy of gamma-ray burst optical light
curves: Identification of a salient class of early afterglows. Mon. Not. R.
Astron. Soc. 387, 497–504 (2008). doi:10.1111/j.1365-2966.2008.13231.x
24. The RAPTOR optical measurements are available in table S1 of the
supplementary materials on Science Online.
25. R. Blandford, C. McKee, Fluid dynamics of relativistic blast waves. Phys.
Fluids 19, 1130 (1976). doi:10.1063/1.861619
26. E. Bertin, S. Arnouts, SExtractor: Software for source extraction. Astron.
Astrophys. Suppl. Ser. 117, 393–404 (1996). doi:10.1051/aas:1996164
27. E. Hog et al., The Tycho-2 catalogue of the 2.5 million brightest stars. Astron.
Astrophys. 355, L27 (2000).
28. E. Pickles, E. Depagne, All sky spectrally matched UBVRI-ZY and u′g′r′i′z′
magnitudes for stars in the Tycho2 catalog. Publ. Astron. Soc. Pac. 122,
1437–1464 (2010). doi:10.1086/657947
29. C. Ahn, R. Alexandroff, C. Allende Prieto, S. F. Anderson, T. Anderton, B. H.
Andrews, É. Aubourg, S. Bailey, E. Balbinot, R. Barnes, J. Bautista, T. C.
Beers, A. Beifiori, A. A. Berlind, V. Bhardwaj, D. Bizyaev, C. H. Blake, M.
R. Blanton, M. Blomqvist, J. J. Bochanski, A. S. Bolton, A. Borde, J. Bovy,
W. N. Brandt, J. Brinkmann, P. J. Brown, J. R. Brownstein, K. Bundy, N. G.
Busca, W. Carithers, A. R. Carnero, M. A. Carr, D. I. Casetti-Dinescu, Y.
Chen, C. Chiappini, J. Comparat, N. Connolly, J. R. Crepp, S. Cristiani, R. A.
C. Croft, A. J. Cuesta, L. N. da Costa, J. R. A. Davenport, K. S. Dawson, R.
de Putter, N. De Lee, T. Delubac, S. Dhital, A. Ealet, G. L. Ebelke, E. M.
Edmondson, D. J. Eisenstein, S. Escoffier, M. Esposito, M. L. Evans, X. Fan,
B. Femenía Castellá, E. Fernández Alvar, L. D. Ferreira, N. Filiz Ak, H.
Finley, S. W. Fleming, A. Font-Ribera, P. M. Frinchaboy, D. A. GarcíaHernández, A. E. G. Pérez, J. Ge, R. Génova-Santos, B. A. Gillespie, L.
Girardi, J. I. González Hernández, E. K. Grebel, J. E. Gunn, H. Guo, D.
Haggard, J.-C. Hamilton, D. W. Harris, S. L. Hawley, F. R. Hearty, S. Ho, D.
W. Hogg, J. A. Holtzman, K. Honscheid, J. Huehnerhoff, I. I. Ivans, Ž. Ivezić,
H. R. Jacobson, L. Jiang, J. Johansson, J. A. Johnson, G. Kauffmann, D.
Kirkby, J. A. Kirkpatrick, M. A. Klaene, G. R. Knapp, J.-P. Kneib, J.-M. Le
Goff, A. Leauthaud, K.-G. Lee, Y. S. Lee, D. C. Long, C. P. Loomis, S.
Lucatello, B. Lundgren, R. H. Lupton, B. Ma, Z. Ma, N. MacDonald, C. E.
Mack, S. Mahadevan, M. A. G. Maia, S. R. Majewski, M. Makler, E.
Malanushenko, V. Malanushenko, A. Manchado, R. Mandelbaum, M.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 3 / 10.1126/science.1242316
Manera, C. Maraston, D. Margala, S. L. Martell, C. K. McBride, I. D.
McGreer, R. G. McMahon, B. Ménard, S. Meszaros, J. Miralda-Escudé, A. D.
Montero-Dorta, F. Montesano, H. L. Morrison, D. Muna, J. A. Munn, H.
Murayama, A. D. Myers, A. F. Neto, D. C. Nguyen, R. C. Nichol, D. L.
Nidever, P. Noterdaeme, S. E. Nuza, R. L. C. Ogando, M. D. Olmstead, D. J.
Oravetz, R. Owen, N. Padmanabhan, N. Palanque-Delabrouille, K. Pan, J. K.
Parejko, P. Parihar, I. Pâris, P. Pattarakijwanich, J. Pepper, W. J. Percival, I.
Pérez-Fournon, I. Pérez-Ràfols, P. Petitjean, J. Pforr, M. M. Pieri, M. H.
Pinsonneault, G. F. Porto de Mello, F. Prada, A. M. Price-Whelan, M. J.
Raddick, R. Rebolo, J. Rich, G. T. Richards, A. C. Robin, H. J. Rocha-Pinto,
C. M. Rockosi, N. A. Roe, A. J. Ross, N. P. Ross, G. Rossi, J. A. RubiñoMartin, L. Samushia, J. Sanchez Almeida, A. G. Sánchez, B. Santiago, C.
Sayres, D. J. Schlegel, K. J. Schlesinger, S. J. Schmidt, D. P. Schneider, M.
Schultheis, A. D. Schwope, C. G. Scóccola, U. Seljak, E. Sheldon, Y. Shen,
Y. Shu, J. Simmerer, A. E. Simmons, R. A. Skibba, M. F. Skrutskie, A.
Slosar, F. Sobreira, J. S. Sobeck, K. G. Stassun, O. Steele, M. Steinmetz, M.
A. Strauss, A. Streblyanska, N. Suzuki, M. E. C. Swanson, T. Tal, A. R.
Thakar, D. Thomas, B. A. Thompson, J. L. Tinker, R. Tojeiro, C. A.
Tremonti, M. Vargas Magaña, L. Verde, M. Viel, S. K. Vikas, N. P. Vogt, D.
A. Wake, J. Wang, B. A. Weaver, D. H. Weinberg, B. J. Weiner, A. A. West,
M. White, J. C. Wilson, J. P. Wisniewski, W. M. Wood-Vasey, B. Yanny, C.
Yèche, D. G. York, O. Zamora, G. Zasowski, I. Zehavi, G.-B. Zhao, Z.
Zheng, G. Zhu, J. C. Zinn, The ninth data release of the Sloan Digital Sky
Survey: First spectroscopic data from the SDSS-III Baryon Oscillation
Spectroscopic Survey. Astrophys. J. Suppl. Ser. 203, 21 (2012).
doi:10.1088/0067-0049/203/2/21
30. Y. C. Pei, Interstellar dust from the Milky Way to the Magellanic Clouds.
Astrophys. J. 395, 130 (1992). doi:10.1086/171637
31. D. J. Schlegel, D. P. Finkbeiner, M. Davis, Maps of dust infrared emission for
use in estimation of reddening and cosmic microwave background radiation
foregrounds. Astrophys. J. 500, 525–553 (1998). doi:10.1086/305772
Acknowledgments: This gamma-ray burst research was supported by NASA and
the Laboratory Directed Research and Development program at Los Alamos
National Laboratory. The optical measurements reported in this paper are
available online in the supplementary materials.
Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1242316/DC1
Supplementary Text
Table S1
References (25–31)
24 June 2013; accepted 21 October 2013
Published online 21 November 2013
10.1126/science.1242316

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 4 / 10.1126/science.1242316
Fig. 1. A comparison of the relative flux variations measured for GRB 130427A by the Fermi LAT, RAPTOR, and the
Swift BAT during the first 90 s after the gamma-ray burst trigger. The >100 MeV emission and the 50-150 keV emission
have been integrated over the same time intervals as the optical exposures and multiplied by a scaling factor to allow
comparison with the optical light curve. Both the optical and >100 MeV light curves rise to a peak in the second interval, 50-150
keV emission peaks in the first interval.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 5 / 10.1126/science.1242316
Fig. 2. The spectral energy distributions measured for GRB 130427A during the early phases of the burst
development. The points and solid lines represent actual measurements. The dotted straight lines indicate the extrapolation
the keV-MeV measurements for comparison to the optical measurements. The dashed lines indicate the connection between
energy bands and are not actual measurements. The measurements were obtained by RAPTOR, the Fermi GBM, and the
Fermi LAT. The errors bars on the GBM measurements have been increased by 25% to allow for systematics, such as pulse
pile-up (PPU), background subtraction during and following the repointing of Fermi, and the rapid spectral evolution during the
exposure intervals.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 6 / 10.1126/science.1242316
Fig. 3. Simultaneous multi-color measurements of the
early optical afterglow from GRB 130427A. The top panel
shows the light-curves obtained using standard Sloan g’, r’,
i’, z’ filters (24). The light-curves show more structure than is
captured by power law fits. But the r’ band light-curve can be
characterized as a power-law decay with index ~0.7 before
270 s, ~1.1 between 270 and 3000 s, and 0.88 between
3000 and 7500 s. Also plotted for comparison, in blue, is the
photon flux light curve for >100 MeV emission measured by
the Fermi LAT (4). The bottom panel shows the g’-r’ color
evolution of GRB 130427A. The red line indicates the mean
g’-r’ value (0.286 ± 0.018) measured before T0 + 1000 s.
After about T0 + 3000 s a bluer component emerges as the
flux decay slows.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 7 / 10.1126/science.1242316
Fig. 4. Best-fit with a reverse-forward shock model to the optical light-curve of GRB afterglow 130427A. Three
episodes of ejecta and energy injection are needed to explain the optical flash, the early optical emission (up to few ks), and
the late optical emission (after a few ks). Here each “injection episode” represents a change in the dynamical and microphysical parameters of the reverse shock in an otherwise continuous ejecta injection into the reverse-shock. For the first two
52
episodes, the optical emission arises from the reverse shock, and the kinetic energy of the incoming ejecta (6.10 erg/sr and
53
54
4.10 erg/sr, respectively) is less than that of the leading shock (10 erg/sr). During the last injection episode, the optical
54
afterglow emission arises from the forward-shock, with the incoming ejecta carrying 3.10 erg/sr, which is more than that
already existing in the forward-shock (thus its deceleration is mitigated by the energy injection). Other parameters are: 1) first
injection episode, flash reverse-shock (fRS)–onset at 4 s, end at 15 s, incoming ejecta Lorentz factor 730, magnetic field
parameter 0.008, electron energy parameter 0.006, index of electron power-law distribution with energy 1.9 2) second injection
episode, reverse-shock (RS, parameters in same order as above)–15 s, 3 ks, 1800, 0.0010, 0.012, 2.0. 3) third injection
−4
0.3
episode, forward-shock (FS)–3 ks, > 2 Ms, > 100, 3.10 , 0.14, 2.3, energy injection law E ~ t . The micro-physical
parameters for the forward shock are kept constant throughout the entire course of the event. We also require that the ambient
–2
medium have a wind-like density stratification (n ~ r ) corresponding to a GRB progenitor with a mass-loss rate–to–wind
−11
speed ratio of 4.10 (M_sun/yr)/(km/s). Dot-dash lines show the model fits for the flash phase emission, the solid lines show
the reverse shock contributions during the early afterglow phase, and the dashed lines shows the contributions of the forward
shock emission to the late optical afterglow and all phases of the x-ray afterglow. The reverse-shock emission during the third
injection episode is not shown and would be dimmer than that of the forward-shock, if the reverse-shock has the same microphysical parameters as the forward-shock.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 8 / 10.1126/science.1242316
Fig. 5. A comparison of the light-curve from GRB
130427A (in green) with those measured for other
prominent GRBs with peaked optical afterglows. All of
the light-curves have been transformed to show how they
would appear if they had occurred at redshift z = 2.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 9 / 10.1126/science.1242316

More Related Content

What's hot

Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...
Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...
Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...Carlos Bella
 
AY121 Lab4 (Jonathan Kao) Final
AY121 Lab4 (Jonathan Kao) FinalAY121 Lab4 (Jonathan Kao) Final
AY121 Lab4 (Jonathan Kao) FinalJonathan Kao
 
Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Daniel Riley
 
Astro9995 report
Astro9995 reportAstro9995 report
Astro9995 report
Poon Panichpibool
 
636896main gilland presentation
636896main gilland presentation636896main gilland presentation
636896main gilland presentationClifford Stone
 
NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019
Joseph Fernandez
 
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustarFlaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
Sérgio Sacani
 
Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...
Sérgio Sacani
 
Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...
Sérgio Sacani
 
C2 Doyeon Kim
C2 Doyeon KimC2 Doyeon Kim
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
Sérgio Sacani
 
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Sérgio Sacani
 
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxy
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxyDissecting x ray_emitting_gas_around_the_center_of_our_galaxy
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxySérgio Sacani
 
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...Sérgio Sacani
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxgrssieee
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Sérgio Sacani
 
Spectroscopic analysis of quasar by iraf
Spectroscopic analysis of quasar by irafSpectroscopic analysis of quasar by iraf
Spectroscopic analysis of quasar by iraf
Kamran Ansari
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterSérgio Sacani
 
Ehgamberdiev 07082017
Ehgamberdiev 07082017Ehgamberdiev 07082017
Ehgamberdiev 07082017
Baurzhan Alzhanov
 
Zero-Point Energy Harvesters
Zero-Point Energy HarvestersZero-Point Energy Harvesters
Zero-Point Energy Harvesters
Vapula
 

What's hot (20)

Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...
Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...
Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of He...
 
AY121 Lab4 (Jonathan Kao) Final
AY121 Lab4 (Jonathan Kao) FinalAY121 Lab4 (Jonathan Kao) Final
AY121 Lab4 (Jonathan Kao) Final
 
Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112
 
Astro9995 report
Astro9995 reportAstro9995 report
Astro9995 report
 
636896main gilland presentation
636896main gilland presentation636896main gilland presentation
636896main gilland presentation
 
NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019
 
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustarFlaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
Flaring from the_supermassive_black_hole_in_mrk335_studied_with_swift_and_nustar
 
Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...
 
Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...Multimessenger observations of a flaring blazar coincident with high-energy n...
Multimessenger observations of a flaring blazar coincident with high-energy n...
 
C2 Doyeon Kim
C2 Doyeon KimC2 Doyeon Kim
C2 Doyeon Kim
 
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
 
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
 
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxy
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxyDissecting x ray_emitting_gas_around_the_center_of_our_galaxy
Dissecting x ray_emitting_gas_around_the_center_of_our_galaxy
 
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...
Effect of a_high_opacity_on_the_light_curves_of_radioactively_powered_transie...
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptx
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
 
Spectroscopic analysis of quasar by iraf
Spectroscopic analysis of quasar by irafSpectroscopic analysis of quasar by iraf
Spectroscopic analysis of quasar by iraf
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monster
 
Ehgamberdiev 07082017
Ehgamberdiev 07082017Ehgamberdiev 07082017
Ehgamberdiev 07082017
 
Zero-Point Energy Harvesters
Zero-Point Energy HarvestersZero-Point Energy Harvesters
Zero-Point Energy Harvesters
 

Similar to The bright optical_flash_and_afterglow_from_the_gamma_ray_burst_grb_130427a

Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaSérgio Sacani
 
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Sérgio Sacani
 
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
Sérgio Sacani
 
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Sérgio Sacani
 
A possible relativistic jetted outburst from a massive black hole fed by a t...
 A possible relativistic jetted outburst from a massive black hole fed by a t... A possible relativistic jetted outburst from a massive black hole fed by a t...
A possible relativistic jetted outburst from a massive black hole fed by a t...Sérgio Sacani
 
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
Sérgio Sacani
 
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
Sérgio Sacani
 
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemA close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemSérgio Sacani
 
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
Sérgio Sacani
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Sérgio Sacani
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Sérgio Sacani
 
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Sérgio Sacani
 
1997 a+a 325-714-rhocas
1997 a+a 325-714-rhocas1997 a+a 325-714-rhocas
1997 a+a 325-714-rhocasKees De Jager
 
Microwave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheetMicrowave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheet
Sérgio Sacani
 
GRIPS_first_flight_2016
GRIPS_first_flight_2016GRIPS_first_flight_2016
GRIPS_first_flight_2016Nicole Duncan
 
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365Sérgio Sacani
 
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARSPROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
Sérgio Sacani
 
Resolved imaging confirms a radiation belt around an ultracool dwarf
Resolved imaging confirms a radiation belt around an ultracool dwarfResolved imaging confirms a radiation belt around an ultracool dwarf
Resolved imaging confirms a radiation belt around an ultracool dwarf
Sérgio Sacani
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
Lake Como School of Advanced Studies
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black hole
Sérgio Sacani
 

Similar to The bright optical_flash_and_afterglow_from_the_gamma_ray_burst_grb_130427a (20)

Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
 
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
A very luminous_magnetar_powered_supernova_associated_with_an_ultra_long_gamm...
 
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
 
A possible relativistic jetted outburst from a massive black hole fed by a t...
 A possible relativistic jetted outburst from a massive black hole fed by a t... A possible relativistic jetted outburst from a massive black hole fed by a t...
A possible relativistic jetted outburst from a massive black hole fed by a t...
 
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
 
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
An over massive_black_hole_in_a_typical_star_forming_galaxy_2_billion_years_a...
 
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemA close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
 
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
 
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
 
1997 a+a 325-714-rhocas
1997 a+a 325-714-rhocas1997 a+a 325-714-rhocas
1997 a+a 325-714-rhocas
 
Microwave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheetMicrowave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheet
 
GRIPS_first_flight_2016
GRIPS_first_flight_2016GRIPS_first_flight_2016
GRIPS_first_flight_2016
 
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
 
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARSPROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
 
Resolved imaging confirms a radiation belt around an ultracool dwarf
Resolved imaging confirms a radiation belt around an ultracool dwarfResolved imaging confirms a radiation belt around an ultracool dwarf
Resolved imaging confirms a radiation belt around an ultracool dwarf
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black hole
 

More from Sérgio Sacani

Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Sérgio Sacani
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Sérgio Sacani
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
Sérgio Sacani
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on Earth
Sérgio Sacani
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...
Sérgio Sacani
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Sérgio Sacani
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
Sérgio Sacani
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
Sérgio Sacani
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
Sérgio Sacani
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Sérgio Sacani
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Sérgio Sacani
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Sérgio Sacani
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
Sérgio Sacani
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
Sérgio Sacani
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Sérgio Sacani
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
Sérgio Sacani
 

More from Sérgio Sacani (20)

Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on Earth
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 

Recently uploaded

The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 

Recently uploaded (20)

The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 

The bright optical_flash_and_afterglow_from_the_gamma_ray_burst_grb_130427a

  • 1. Research Articles than the typical GRB localized by Swift. However, even accounting for its proximity, the intense gamma-ray fluxes observed imply an apparent isotropic energy release of nearly 1054 ergs and rank it among the more powerful GRBs ever detected (3). Subsequent optical monitoring discovered the emergence of a broad-line supernova at the GRB 1 1 1 1 1 W. T. Vestrand, * J. A. Wren, A. Panaitescu, P. R. Wozniak, H. Davis, D. M. location (8). 1 2 2 3 3 4 Palmer, G. Vianello, N. Omodei, S. Xiong, M. S. Briggs, M. Elphick, W. This powerful GRB also generated Paciesas,5 W. Rosing4 an extremely bright flash of optical 1 emission and a long-lived, bright, optiLos Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA. 2W.W. Hansen cal afterglow. Three independent Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA. RAPTOR (RAPid Telescopes for Opti3 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman cal Response) full sky monitoring teleDr., Huntsville, AL 35899, USA. 4Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona scopes (9), at locations in New Mexico 5 Drive, Suite 102, Santa Barbara, CA 93117, USA. Universities Space Research Association, 320 and Hawaii, detected the emergence of Sparkman Dr., Huntsville, AL 35899, USA. a bright flash, temporally coincident *Corresponding author. E-mail: vestrand@lanl.gov with the onset of gamma-ray emission, at the location of GRB 130427A. The The optical light generated simultaneously with x-rays and gamma-rays during a optical flash rapidly peaked at a magnitude 7.03 ± 0.03 (unfiltered observagamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading tions calibrated to Sloan r’ band) in an exposure that covered the time interval afterglow from powerful burst GRB 130427A. The optical and >100 MeV gamma-ray flux show a close correlation during the first 7000 s, best explained by reverse To + 9.31 to To + 19.31 s. After the shock emission co-generated in the relativistic burst ejecta as it collides with peak, the flash faded with a power-law surrounding material. At later times, optical observations show the emergence of flux decay with index α = –1.67 ± 0.07 emission generated by a forward shock traversing the circumburst environment. (χ2 = 0.68/5 dof) and was detected for The link between optical afterglow and >100 MeV emission suggests that nearby about 80 s until it faded below the early peaked afterglows will be the best candidates for studying particle ~10th magnitude sensitivity limit of the acceleration at GeV/TeV energies. RAPTOR full sky monitors. The taxonomy for optical emission detected during the prompt gamma-ray Long-duration gamma-ray bursts are associated with the collapse of emitting interval identifies two broad classes: prompt optical emission massive stars to form black holes (1) or rapidly-spinning, highly- correlated with prompt gamma-ray emission (10–12) and early optical magnetized, neutron stars (2). This collapse is believed to eject collimat- afterglow emission uncorrelated with the prompt gamma-ray emission ed relativistic jets that, through internal dissipation processes and colli- (11, 13, 14). In context of the standard fireball model (15, 16), the sions with the surroundings, generate luminous outbursts of prompt optical emission is attributed to internal shocks in an ultraelectromagnetic radiation that have been detected at radio frequencies to relativistic jet outflow generated by the central engine and the afterglow very high (GeV) gamma-ray energies. Most of the outburst energy is emission to external shocks generated by interaction with the surroundemitted in the gamma-rays. But, starting with the first observations that ing medium. The prompt optical emission therefore reflects the impulestablished that GRBs occur at cosmological distances (3), correlative sive energy injection into the jet and the early afterglow emission optical observations, in particular, have proven themselves as important measures the response of the jet/environment system to the energy injectools for unraveling the nature of GRB explosions. Here we present ob- tion. Bright optical flashes from reverse shocks were predicted on theoservations of the optical flash and early afterglow for a nearby burst that retical grounds (16, 17) before observational evidence was seen in GRB is bright enough in very high energy gamma-rays to allow a detailed 990123 (13). The optical flash light-curve for GRB 130427A shows a comparison of the >100 MeV gamma-ray and optical light curves. These single peak delayed with respect to the keV-MeV prompt gamma-ray optical observations cover the critical early phases of the explosion from peak (Fig. 1) and a steep power-law flux that is consistent with the prethe time interval before the event onset, through the bright optical and dictions of models for optical flashes from reverse shocks (17). Based on prompt gamma-ray emitting period, and well into the early afterglow the above taxonomy, the brightness of the flash, and the rapid power law phase. flux decay, it makes sense to associate the optical flash with reverse Starting at 27 April 2013 at 07:47:06.42 UTC (hereafter To), the shock emission. Gamma Ray Burst Monitor (GBM) on the Fermi Satellite, the Burst To explore the evolution of the broad band GRB spectrum during the Alert Telescope (BAT) on the Swift Satellite, and an armada of other optical flash, we constructed spectral energy distributions (SED) using space-based gamma-ray detectors detected the onset of a powerful gam- simultaneous measurements taken with the Fermi GBM and the Fermi ma-ray burst (GRB) (4, 5). This GRB, called GRB 130427A, had the Large Area Telescope (LAT). Each snapshot of the time evolving SED largest gamma-ray fluence (~2.7 × 10–3 erg/cm2 in the 20 keV-1200 keV was formed by integrating the GRB flux over the same time interval as band) measured in more than 18 years of operation by Konus-Wind (6) the optical exposure. We found that the broad-band SEDs (Fig. 2) varied and set a record for duration of the >100 MeV gamma-ray emitting in- rapidly during the first 40 s and the optical measurements fell far from terval (5). Spectroscopy of the optical counterpart (7), coarsely localized the values expected from extrapolation of the keV-MeV SED. However by the Swift BAT and later refined by follow-up with optical telescopes, as the intensity of the outburst declined during the next 40 s interval, the places the GRB at a redshift z = 0.34—a distance about five times closer SED shape stabilized and the optical measurements started to converge / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 1 / 10.1126/science.1242316 Downloaded from www.sciencemag.org on December 1, 2013 The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A
  • 2. on the values predicted by a straightforward linear extrapolation of the keV-MeV SED. By the end of the optical flash, the optical to 10 MeV spectrum is consistent with a single power law with index β = –0.64. In response to the Swift BAT localization alert at 127.8 s after the GBM trigger, our RAPTOR response telescopes began unfiltered and simultaneous multicolor (g’, r’, i’, z’) optical observations at To + 132.9 s that continued until To + 7585.9 s. This photometry begins near the peak of a prominent flare in keV-MeV x-ray/gamma-rays that lasts until ~To +400 s. The optical light curves show a smooth monotonic decline but no indication of the steep decline nor the break to a slower powerlaw decay at ~400 s measured at x-ray energies (4). Instead, the structure of the optical light-curve shows a steepening at about To + 270 s. This steepening is essentially achromatic and the color of the optical emission is consistent with a ν–0.70 ± 0.05 spectrum and constant until it starts to become bluer (ν–0.59 ± 0.05) at ~3000 s after the GBM trigger (see bottom panel of Fig. 3). In marked contrast with the keV-MeV emission, the optical light curves after To + 100 s show a striking similarity with the >100 MeV photon flux light curve measured by the Fermi LAT (5). The LAT light curve has a break at about 300 s, just like the optical afterglow. Straightforward scaling of the RAPTOR optical light curve by a factor of ~10−6 provides a reasonable description of the LAT observations out to ~To + 7000 s. This close correspondence argues for a common origin of both components in external shocks. The optical light curve until ~To + 3000 s is best modeled by synchrotron emission from a reverse shock in a wind density profile. Most optical afterglows have been modeled with forward shocks in a homogeneous medium. But the peak brightness (~6 Jy) and steep decay of the optical flash suggest origin in a reverse shock. The relative faintness of the radio afterglow peak (~1 mJy) also argues for generation by a reverse shock in a wind-like medium (18). To explain the optical flash by reverse shock emission in a wind (R–2) requires either a long-lived electron energy injection up to ~40 s or a shorter (~20 s) followed by adiabatic cooling. Figure 4 shows the best fit to the optical flash with the short interval of injection (on at To + 4 s and off at To + 20 s) and, for selfconsistency, the same dynamical parameters that we infer from fits to the later afterglow forward shock emission discussed below. This model employs an electron distribution with power-law energy index p = 1.88 and corresponds to an injected energy of 8.0 × 1053 ergs. The slower optical fading after the flash interval requires a second episode of energy injection to sustain the optical afterglow or a continuous outflow with a variable Lorentz factor (19). This sustained reverse shock model reproduces the closely tracking variability observed by the RAPTOR telescopes and the Fermi LAT and suggests that the optical and most of the >100 MeV emission is generated by synchrotron emitting electrons that are accelerated by the reverse shocks. This reverse shock model cannot, by itself, explain the properties of the prompt keV-MeV emission nor some of the properties of the late time afterglows. The evolution to a bluer color after ~3000 s observed by RAPTOR and the slowing of the optical brightness decay suggests the emergence of a forward shock component. This transition to forward shock dominance at late times would also naturally explain the late time x-ray light-curve and the sustained >100 MeV emission after 10,000 s. Emergence of a bluer optical component at late time is similar to the afterglow evolution of GRB 080319B—another burst with a bright optical flash. For GRB 080319B, the color change was also interpreted as marking the transition from reverse shock emission dominance to forward shock dominance (12, 20, 21). During most of the interval before To + 400 s, the keV-MeV xray/gamma-ray emission is consistent with the standard assumption that the prompt emission is generated by internal shocks in the relativistic jet ejecta. Our predicted >100 MeV flux from the reverse shock that generates the optical flash is slightly less (~ factor of 2) than the peak meas- ured by the Fermi LAT (Fig. 4). But the keV-MeV flux is significantly underpredicted by at least a factor of 10. So the reverse shock in a wind model requires prompt emission to explain the keV-MeV emission and might require additional >100 MeV emission to explain the LAT lightcurve peak. In this picture, the keV-MeV light-curve is a proxy that traces the injection of internal jet energy by the central engine. The keVMeV emission therefore indicates two periods of significant energy injection into the jet: the initial 20 s and a period from ~120 to 300 s. The interesting potential exception to prompt emission dominance in the keV-MeV range is the period just before onset of the flare at To + 120 s. During the interval To + 79 s to To + 89 s, the optical afterglow flux measured by RAPTOR falls right on the extrapolation of the power-law (index = ~–0.6) measured in the 10 keV-20 MeV energy band by the GBM. This gamma-ray spectral slope is also similar to spectral slope that we measure for optical afterglow emission at later times. The “notch” in the keV-MeV light curve before the flare at To + 120 may be providing a rare glimpse, similar to that seen in GRB 980923 (22), of afterglow emission at MeV energies between prompt emission intervals. The exceptional optical properties observed for the optical flash and afterglow from GRB 130427A are mostly a result of burst proximity. The flash peak luminosity for GRB 130427A is among the most powerful events, but its value is consistent with the anti-correlation between peak time and peak luminosity (Fig. 5) found for optical afterglows (23). If optical afterglows and >100 MeV gamma-ray afterglows have a common origin, then the peaked optical afterglows that peak early should be the best candidates for detection at GeV/TeV gamma-ray energies. References and Notes 1. S. E. Woosley, J. S. Bloom, The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006). doi:10.1146/annurev.astro.43.072103.150558 2. B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini, E. Quataert, The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011). doi:10.1111/j.1365-2966.2011.18280.x 3. M. R. Metzger, S. G. Djorgovski, S. R. Kulkarni, C. C. Steidel, K. L. Adelberger, D. A. Frail, E. Costa, F. Frontera, Spectral constraints on the redshift of the optical counterpart to the gamma-ray burst of 8 May 1997. Nature 387, 878 (1997). doi:10.1038/43132 4. A. Maselli, A. Melandri, L. Nava, C. G. Mundell, N. Kawai, S. Campana, S. Covino, J. R. Cummings, G. Cusumano, P. A. Evans, G. Ghirlanda, G. Ghisellini, C. Guidorzi, S. Kobayashi, P. Kuin, V. La Parola, V. Mangano, S. Oates, T. Sakamoto, M. Serino, F. Virgili, B.-B. Zhang, S. Barthelmy, A. Beardmore, M. G. Bernardini, D. Bersier, D. Burrows, G. Calderone, M. Capalbi, J. Chiang, P. D’Avanzo, V. D’Elia, M. De Pasquale, D. Fugazza, N. Gehrels, A. Gomboc, R. Harrison, H. Hanayama, J. Japelj, J. Kennea, D. Kopac, C. Kouveliotou, D. Kuroda, A. Levan, D. Malesani, F. Marshall, J. Nousek, P. O’Brien, J. P. Osborne, C. Pagani, K. L. Page, M. Page, M. Perri, T. Pritchard, P. Romano, Y. Saito, B. Sbarufatti, R. Salvaterra, I. Steele, N. Tanvir, G. Vianello, B. Weigand, K. Wiersema, Y. Yatsu, T. Yoshii, G. Tagliaferri, GRB 130427A: A nearby ordinary monster. Science 10.1126/science.1242279 (2013). 5. M. Ackermann, M. Ajello, K. Asano, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M. G. Baring, D. Bastieri, K. Bechtol, R. Bellazzini, E. Bissaldi, E. Bonamente, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, J. Michael Burgess, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, C. Cecchi, V. Chaplin, E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, W. Cleveland, J. Cohen-Tanugi, A. Collazzi, L. R. Cominsky, V. Connaughton, J. Conrad, S. Cutini, F. D’Ammando, A. de Angelis, M. DeKlotz, F. de Palma, C. D. Dermer, R. Desiante, A. Diekmann, L. Di Venere, P. S. Drell, A. Drlica-Wagner, C. Favuzzi, S. J. Fegan, E. C. Ferrara, J. Finke, G. Fitzpatrick, W. B. Focke, A. Franckowiak, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, N. Gehrels, S. Germani, M. Gibby, N. Giglietto, M. Giles, F. Giordano, M. Giroletti, G. Godfrey, J. Granot, I. A. Grenier, J. E. Grove, D. Gruber, S. Guiriec, D. Hadasch, Y. Hanabata, A. K. Harding, M. Hayashida, E. Hays, D. Horan, R. E. Hughes, Y. Inoue, T. Jogler, G. Jóhannesson, W. N. Johnson, T. Kawano, J. Knödlseder, / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 2 / 10.1126/science.1242316
  • 3. D. Kocevski, M. Kuss, J. Lande, S. Larsson, L. Latronico, F. Longo, F. Loparco, M. N. Lovellette, P. Lubrano, M. Mayer, M. N. Mazziotta, J. E. McEnery, P. F. Michelson, T. Mizuno, A. A. Moiseev, M. E. Monzani, E. Moretti, A. Morselli, I. V. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, M. Ohno, T. Ohsugi, A. Okumura, N. Omodei, M. Orienti, D. Paneque, V. Pelassa, J. S. Perkins, M. Pesce-Rollins, V. Petrosian, F. Piron, G. Pivato, T. A. Porter, J. L. Racusin, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, S. Ritz, M. Roth, F. Ryde, A. Sartori, P. M. Saz Parkinson, J. D. Scargle, A. Schulz, C. Sgrò, E. J. Siskind, E. Sonbas, G. Spandre, P. Spinelli, H. Tajima, H. Takahashi, J. G. Thayer, J. B. Thayer, D. J. Thompson, L. Tibaldo, M. Tinivella, D. F. Torres, G. Tosti, E. Troja, T. L. Usher, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, B. L. Winer, K. S. Wood, R. Yamazaki, G. Younes, H.-F. Yu, S. J. Zhu, P. N. Bhat, M. S. Briggs, D. Byrne, S. Foley, A. Goldstein, P. Jenke, R. M. Kippen, C. Kouveliotou, S. McBreen, C. Meegan, W. S. Paciesas, R. Preece, A. Rau, D. Tierney, A. J. van der Horst, A. von Kienlin, C. Wilson-Hodge, S. Xiong, G. Cusumano, V. La Parola, J. R. Cummings, Fermi-LAT observations of the gamma-ray burst GRB 130427A. Science 10.1126/science.1242353 (2013). 6. S. Golenetskii et al., “Konus-wind observation of GRB 130427A,” GCN Circular #14486 (2013). 7. A. J. Levan et al., “GRB 130427A: Gemini-north redshift,” GCN circular #14455 (2013). 8. D. Xu, A. de Ugarte Postigo, G. Leloudas, T. Krühler, Z. Cano, J. Hjorth, D. Malesani, J. P. U. Fynbo, C. C. Thöne, R. Sánchez-Ramírez, S. Schulze, P. Jakobsson, L. Kaper, J. Sollerman, D. J. Watson, A. Cabrera-Lavers, C. Cao, S. Covino, H. Flores, S. Geier, J. Gorosabel, S. M. Hu, B. Milvang-Jensen, M. Sparre, L. P. Xin, T. M. Zhang, W. K. Zheng, Y. C. Zou, Discovery of the broad-lined Type Ic SN 2013cq associated with the very energetic GRB 130427A. Astrophys. J. 776, 98 (2013). doi:10.1088/0004-637X/776/2/98 9. J. Wren, W. T. Vestrand, P. Wozniak, H. Davis, A portable observatory for persistent monitoring of the night sky. Proc. SPIE 7737, 773723 (2010). doi:10.1117/12.859039 10. W. T. Vestrand, P. R. Wozniak, J. A. Wren, E. E. Fenimore, T. Sakamoto, R. R. White, D. Casperson, H. Davis, S. Evans, M. Galassi, K. E. McGowan, J. A. Schier, J. W. Asa, S. D. Barthelmy, J. R. Cummings, N. Gehrels, D. Hullinger, H. A. Krimm, C. B. Markwardt, K. McLean, D. Palmer, A. Parsons, J. Tueller, A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts. Nature 435, 178–180 (2005). Medline doi:10.1038/nature03515 11. W. T. Vestrand, J. A. Wren, P. R. Wozniak, R. Aptekar, S. Golentskii, V. Pal’shin, T. Sakamoto, R. R. White, S. Evans, D. Casperson, E. Fenimore, Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts. Nature 442, 172–175 (2006). Medline doi:10.1038/nature04913 12. J. L. Racusin, S. V. Karpov, M. Sokolowski, J. Granot, X. F. Wu, V. Pal’shin, S. Covino, A. J. van der Horst, S. R. Oates, P. Schady, R. J. Smith, J. Cummings, R. L. Starling, L. W. Piotrowski, B. Zhang, P. A. Evans, S. T. Holland, K. Malek, M. T. Page, L. Vetere, R. Margutti, C. Guidorzi, A. P. Kamble, P. A. Curran, A. Beardmore, C. Kouveliotou, L. Mankiewicz, A. Melandri, P. T. O’Brien, K. L. Page, T. Piran, N. R. Tanvir, G. Wrochna, R. L. Aptekar, S. Barthelmy, C. Bartolini, G. M. Beskin, S. Bondar, M. Bremer, S. Campana, A. Castro-Tirado, A. Cucchiara, M. Cwiok, P. D’Avanzo, V. D’Elia, M. D. Valle, A. de Ugarte Postigo, W. Dominik, A. Falcone, F. Fiore, D. B. Fox, D. D. Frederiks, A. S. Fruchter, D. Fugazza, M. A. Garrett, N. Gehrels, S. Golenetskii, A. Gomboc, J. Gorosabel, G. Greco, A. Guarnieri, S. Immler, M. Jelinek, G. Kasprowicz, V. La Parola, A. J. Levan, V. Mangano, E. P. Mazets, E. Molinari, A. Moretti, K. Nawrocki, P. P. Oleynik, J. P. Osborne, C. Pagani, S. B. Pandey, Z. Paragi, M. Perri, A. Piccioni, E. Ramirez-Ruiz, P. W. Roming, I. A. Steele, R. G. Strom, V. Testa, G. Tosti, M. V. Ulanov, K. Wiersema, R. A. Wijers, J. M. Winters, A. F. Zarnecki, F. Zerbi, P. Mészáros, G. Chincarini, D. N. Burrows, Broadband observations of the naked-eye gamma-ray burst GRB 080319B. Nature 455, 183–188 (2008). Medline doi:10.1038/nature07270 13. C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, R. Kehoe, B. Lee, S. Marshall, T. McKay, R. Miller, L. Piro, W. Priedhorsky, J. Szymanski, J. Wren, Observations of contemporaneous optical radiation from a gamma-ray burst. Nature 398, 400–402 (1999). doi:10.1038/18837 14. E. Rykoff, F. Aharonian, C. W. Akerlof, M. C. B. Ashley, S. D. Barthelmy, H. A. Flewelling, N. Gehrels, E. Göǧüş, T. Güver, Ü. Kiziloǧlu, H. A. Krimm, T. A. McKay, M. Özel, A. Phillips, R. M. Quimby, G. Rowell, W. Rujopakarn, B. E. Schaefer, D. A. Smith, W. T. Vestrand, J. C. Wheeler, J. Wren, F. Yuan, S. A. Yost, Looking into the Fireball: ROTSE-III and Swift observations of early gamma-ray burst afterglows. Astrophys. J. 702, 489–505 (2009). doi:10.1088/0004-637X/702/1/489 15. P. Meszaros, M. Rees, Relativistic fireballs and their impact on external matter—Models for cosmological gamma-ray bursts. Astrophys. J. 405, 278 (1993). doi:10.1086/172360 16. P. Meszaros, M. Rees, Optical and long wavelength afterglow from gammaray bursts. Astrophys. J. 476, 232–237 (1997). doi:10.1086/303625 17. R. Sari, T. Piran, Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999). doi:10.1086/307508 18. T. Laskar, E. Berger, B. A. Zauderer, R. Margutti, A. M. Soderberg, S. Chakraborti, R. Lunnan, R. Chornock, P. Chandra, A. Ray, A reverse shock in GRB 130427A. available at http://arxiv.org/abs/1305.2453 (2013). 19. Z. L. Uhm, B. Zhang, R. Hascoët, F. Daigne, R. Mochkovitch, I. H. Park, Dynamics and afterglow light curves of gamma-ray burst blast waves with a long-lived reverse shock. Astrophys. J. 761, 147 (2012). doi:10.1088/0004637X/761/2/147 20. P. Wozniak, W. T. Vestrand, A. D. Panaitescu, J. A. Wren, H. R. Davis, R. R. White, Gamma-Ray burst at the extreme: The naked-eye burst GRB 080319B. Astrophys. J. 691, 495–502 (2009). doi:10.1088/0004-637X/691/1/495 21. J. S. Bloom, D. A. Perley, W. Li, N. R. Butler, A. A. Miller, D. Kocevski, D. A. Kann, R. J. Foley, H.-W. Chen, A. V. Filippenko, D. L. Starr, B. Macomber, J. X. Prochaska, R. Chornock, D. Poznanski, S. Klose, M. F. Skrutskie, S. Lopez, P. Hall, K. Glazebrook, C. H. Blake, Observations of the naked-eye GRB 080319B: implications of nature’s brightest explosion. Astrophys. J. 691, 723–737 (2009). doi:10.1088/0004-637X/691/1/723 22. T. W. Giblin, J. van Paradijs, C. Kouveliotou, V. Connaughton, R. A. M. J. Wijers, M. S. Briggs, R. D. Preece, G. J. Fishman, Evidence for an early highenergy afterglow observed with BATSE from GRB 980923. Astrophys. J. 524, L47–L50 (1999). doi:10.1086/312285 23. A. Panaitescu, W. T. Vestrand, Taxonomy of gamma-ray burst optical light curves: Identification of a salient class of early afterglows. Mon. Not. R. Astron. Soc. 387, 497–504 (2008). doi:10.1111/j.1365-2966.2008.13231.x 24. The RAPTOR optical measurements are available in table S1 of the supplementary materials on Science Online. 25. R. Blandford, C. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130 (1976). doi:10.1063/1.861619 26. E. Bertin, S. Arnouts, SExtractor: Software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996). doi:10.1051/aas:1996164 27. E. Hog et al., The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 355, L27 (2000). 28. E. Pickles, E. Depagne, All sky spectrally matched UBVRI-ZY and u′g′r′i′z′ magnitudes for stars in the Tycho2 catalog. Publ. Astron. Soc. Pac. 122, 1437–1464 (2010). doi:10.1086/657947 29. C. Ahn, R. Alexandroff, C. Allende Prieto, S. F. Anderson, T. Anderton, B. H. Andrews, É. Aubourg, S. Bailey, E. Balbinot, R. Barnes, J. Bautista, T. C. Beers, A. Beifiori, A. A. Berlind, V. Bhardwaj, D. Bizyaev, C. H. Blake, M. R. Blanton, M. Blomqvist, J. J. Bochanski, A. S. Bolton, A. Borde, J. Bovy, W. N. Brandt, J. Brinkmann, P. J. Brown, J. R. Brownstein, K. Bundy, N. G. Busca, W. Carithers, A. R. Carnero, M. A. Carr, D. I. Casetti-Dinescu, Y. Chen, C. Chiappini, J. Comparat, N. Connolly, J. R. Crepp, S. Cristiani, R. A. C. Croft, A. J. Cuesta, L. N. da Costa, J. R. A. Davenport, K. S. Dawson, R. de Putter, N. De Lee, T. Delubac, S. Dhital, A. Ealet, G. L. Ebelke, E. M. Edmondson, D. J. Eisenstein, S. Escoffier, M. Esposito, M. L. Evans, X. Fan, B. Femenía Castellá, E. Fernández Alvar, L. D. Ferreira, N. Filiz Ak, H. Finley, S. W. Fleming, A. Font-Ribera, P. M. Frinchaboy, D. A. GarcíaHernández, A. E. G. Pérez, J. Ge, R. Génova-Santos, B. A. Gillespie, L. Girardi, J. I. González Hernández, E. K. Grebel, J. E. Gunn, H. Guo, D. Haggard, J.-C. Hamilton, D. W. Harris, S. L. Hawley, F. R. Hearty, S. Ho, D. W. Hogg, J. A. Holtzman, K. Honscheid, J. Huehnerhoff, I. I. Ivans, Ž. Ivezić, H. R. Jacobson, L. Jiang, J. Johansson, J. A. Johnson, G. Kauffmann, D. Kirkby, J. A. Kirkpatrick, M. A. Klaene, G. R. Knapp, J.-P. Kneib, J.-M. Le Goff, A. Leauthaud, K.-G. Lee, Y. S. Lee, D. C. Long, C. P. Loomis, S. Lucatello, B. Lundgren, R. H. Lupton, B. Ma, Z. Ma, N. MacDonald, C. E. Mack, S. Mahadevan, M. A. G. Maia, S. R. Majewski, M. Makler, E. Malanushenko, V. Malanushenko, A. Manchado, R. Mandelbaum, M. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 3 / 10.1126/science.1242316
  • 4. Manera, C. Maraston, D. Margala, S. L. Martell, C. K. McBride, I. D. McGreer, R. G. McMahon, B. Ménard, S. Meszaros, J. Miralda-Escudé, A. D. Montero-Dorta, F. Montesano, H. L. Morrison, D. Muna, J. A. Munn, H. Murayama, A. D. Myers, A. F. Neto, D. C. Nguyen, R. C. Nichol, D. L. Nidever, P. Noterdaeme, S. E. Nuza, R. L. C. Ogando, M. D. Olmstead, D. J. Oravetz, R. Owen, N. Padmanabhan, N. Palanque-Delabrouille, K. Pan, J. K. Parejko, P. Parihar, I. Pâris, P. Pattarakijwanich, J. Pepper, W. J. Percival, I. Pérez-Fournon, I. Pérez-Ràfols, P. Petitjean, J. Pforr, M. M. Pieri, M. H. Pinsonneault, G. F. Porto de Mello, F. Prada, A. M. Price-Whelan, M. J. Raddick, R. Rebolo, J. Rich, G. T. Richards, A. C. Robin, H. J. Rocha-Pinto, C. M. Rockosi, N. A. Roe, A. J. Ross, N. P. Ross, G. Rossi, J. A. RubiñoMartin, L. Samushia, J. Sanchez Almeida, A. G. Sánchez, B. Santiago, C. Sayres, D. J. Schlegel, K. J. Schlesinger, S. J. Schmidt, D. P. Schneider, M. Schultheis, A. D. Schwope, C. G. Scóccola, U. Seljak, E. Sheldon, Y. Shen, Y. Shu, J. Simmerer, A. E. Simmons, R. A. Skibba, M. F. Skrutskie, A. Slosar, F. Sobreira, J. S. Sobeck, K. G. Stassun, O. Steele, M. Steinmetz, M. A. Strauss, A. Streblyanska, N. Suzuki, M. E. C. Swanson, T. Tal, A. R. Thakar, D. Thomas, B. A. Thompson, J. L. Tinker, R. Tojeiro, C. A. Tremonti, M. Vargas Magaña, L. Verde, M. Viel, S. K. Vikas, N. P. Vogt, D. A. Wake, J. Wang, B. A. Weaver, D. H. Weinberg, B. J. Weiner, A. A. West, M. White, J. C. Wilson, J. P. Wisniewski, W. M. Wood-Vasey, B. Yanny, C. Yèche, D. G. York, O. Zamora, G. Zasowski, I. Zehavi, G.-B. Zhao, Z. Zheng, G. Zhu, J. C. Zinn, The ninth data release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 203, 21 (2012). doi:10.1088/0067-0049/203/2/21 30. Y. C. Pei, Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130 (1992). doi:10.1086/171637 31. D. J. Schlegel, D. P. Finkbeiner, M. Davis, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998). doi:10.1086/305772 Acknowledgments: This gamma-ray burst research was supported by NASA and the Laboratory Directed Research and Development program at Los Alamos National Laboratory. The optical measurements reported in this paper are available online in the supplementary materials. Supplementary Materials www.sciencemag.org/cgi/content/full/science.1242316/DC1 Supplementary Text Table S1 References (25–31) 24 June 2013; accepted 21 October 2013 Published online 21 November 2013 10.1126/science.1242316 / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 4 / 10.1126/science.1242316
  • 5. Fig. 1. A comparison of the relative flux variations measured for GRB 130427A by the Fermi LAT, RAPTOR, and the Swift BAT during the first 90 s after the gamma-ray burst trigger. The >100 MeV emission and the 50-150 keV emission have been integrated over the same time intervals as the optical exposures and multiplied by a scaling factor to allow comparison with the optical light curve. Both the optical and >100 MeV light curves rise to a peak in the second interval, 50-150 keV emission peaks in the first interval. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 5 / 10.1126/science.1242316
  • 6. Fig. 2. The spectral energy distributions measured for GRB 130427A during the early phases of the burst development. The points and solid lines represent actual measurements. The dotted straight lines indicate the extrapolation the keV-MeV measurements for comparison to the optical measurements. The dashed lines indicate the connection between energy bands and are not actual measurements. The measurements were obtained by RAPTOR, the Fermi GBM, and the Fermi LAT. The errors bars on the GBM measurements have been increased by 25% to allow for systematics, such as pulse pile-up (PPU), background subtraction during and following the repointing of Fermi, and the rapid spectral evolution during the exposure intervals. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 6 / 10.1126/science.1242316
  • 7. Fig. 3. Simultaneous multi-color measurements of the early optical afterglow from GRB 130427A. The top panel shows the light-curves obtained using standard Sloan g’, r’, i’, z’ filters (24). The light-curves show more structure than is captured by power law fits. But the r’ band light-curve can be characterized as a power-law decay with index ~0.7 before 270 s, ~1.1 between 270 and 3000 s, and 0.88 between 3000 and 7500 s. Also plotted for comparison, in blue, is the photon flux light curve for >100 MeV emission measured by the Fermi LAT (4). The bottom panel shows the g’-r’ color evolution of GRB 130427A. The red line indicates the mean g’-r’ value (0.286 ± 0.018) measured before T0 + 1000 s. After about T0 + 3000 s a bluer component emerges as the flux decay slows. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 7 / 10.1126/science.1242316
  • 8. Fig. 4. Best-fit with a reverse-forward shock model to the optical light-curve of GRB afterglow 130427A. Three episodes of ejecta and energy injection are needed to explain the optical flash, the early optical emission (up to few ks), and the late optical emission (after a few ks). Here each “injection episode” represents a change in the dynamical and microphysical parameters of the reverse shock in an otherwise continuous ejecta injection into the reverse-shock. For the first two 52 episodes, the optical emission arises from the reverse shock, and the kinetic energy of the incoming ejecta (6.10 erg/sr and 53 54 4.10 erg/sr, respectively) is less than that of the leading shock (10 erg/sr). During the last injection episode, the optical 54 afterglow emission arises from the forward-shock, with the incoming ejecta carrying 3.10 erg/sr, which is more than that already existing in the forward-shock (thus its deceleration is mitigated by the energy injection). Other parameters are: 1) first injection episode, flash reverse-shock (fRS)–onset at 4 s, end at 15 s, incoming ejecta Lorentz factor 730, magnetic field parameter 0.008, electron energy parameter 0.006, index of electron power-law distribution with energy 1.9 2) second injection episode, reverse-shock (RS, parameters in same order as above)–15 s, 3 ks, 1800, 0.0010, 0.012, 2.0. 3) third injection −4 0.3 episode, forward-shock (FS)–3 ks, > 2 Ms, > 100, 3.10 , 0.14, 2.3, energy injection law E ~ t . The micro-physical parameters for the forward shock are kept constant throughout the entire course of the event. We also require that the ambient –2 medium have a wind-like density stratification (n ~ r ) corresponding to a GRB progenitor with a mass-loss rate–to–wind −11 speed ratio of 4.10 (M_sun/yr)/(km/s). Dot-dash lines show the model fits for the flash phase emission, the solid lines show the reverse shock contributions during the early afterglow phase, and the dashed lines shows the contributions of the forward shock emission to the late optical afterglow and all phases of the x-ray afterglow. The reverse-shock emission during the third injection episode is not shown and would be dimmer than that of the forward-shock, if the reverse-shock has the same microphysical parameters as the forward-shock. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 8 / 10.1126/science.1242316
  • 9. Fig. 5. A comparison of the light-curve from GRB 130427A (in green) with those measured for other prominent GRBs with peaked optical afterglows. All of the light-curves have been transformed to show how they would appear if they had occurred at redshift z = 2. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 9 / 10.1126/science.1242316