The document provides examples of how to solve simultaneous equations that appear on the SPM Mathematics paper 2 exam. It includes 4 examples from past years of the exam with the step-by-step workings shown. The key steps are to identify the linear equation, isolate one variable, substitute into the other equation to obtain a quadratic equation, then solve the quadratic equation to find the solutions to the simultaneous equations. Additional examples are provided for sketching graphs to determine the number of solutions to related equations. The document aims to help students with the techniques required to answer simultaneous equation and graph sketching questions on the SPM Mathematics paper 2 exam.
Introduction to mathematics answering techniques presented by Aidil-Nur Bin Zainal.
Overview of Paper 2 topics including simultaneous equations, linear laws, trigonometry, etc. Total marks range: 67-71.
Worked example on solving simultaneous equations from SPM 2012, emphasizing linear versus non-linear equations, substitution, and solving for unknowns.
Another example from SPM 2011 focusing on similar techniques for solving simultaneous equations, including correctness to decimal places.
Detailed solving of simultaneous equations from SPM 2010, including substitution and arriving at quadratic equations.
SPM 2009 example, reinforcing the methods of solving simultaneous equations with connections to quadratic equations.
Another SPM 2008 example on solving simultaneous equations with detailed substitutions and methods, culminating in quadratic results.
SPM 2007 example with focus on similar solving techniques and handling quadratic equations.
Proving equations and graphing trigonometric functions from SPM 2012, discussing solutions based on intersections of graphs.
Continuation of trigonometric graph analysis showing solutions and approximating intersections.
Further exploration of trigonometric functions in graphing contexts and finding solutions to related equations.
SPM 2012 statistical problem focusing on standard deviation and adjustments for monthly income changes.
SPM 2011 statistical problem involving mean and variance calculations of a set that include transformations.
Focus on frequency distributions, histograms, and standard deviation calculations for a group of students' marks.
Describing relationships between variables in experiments, plotting data, and finding graphical interpretations.
Graphing and application of statistical analysis involving regression and interpretation of experimental data.
Further examination of experimental data and calculating parameters based on statistical graphing.
Working through various statistical problems, including composite index calculations based on price indices.
Statistics problems related to distribution, application of normal distribution concepts on data.
Application of probability in educational settings, calculating chances based on successes and failures.
Assessment of normal distributions related to exam performances and percentile calculations.
Examining binomial distributions related to students' responses in a test scenario.
Probabilities explored through distributions involving fruit sizes, focusing on statistical cutoffs.
Further studies on distributions with a focus on the diameter of fruit and its implications.
Linear programming challenges, emphasizing production constraints and graphical representations.
Challenges in production optimization, focusing on constraints and profitability maximization.
Resource allocation problems, emphasizing constraints in usage and cost optimizations.
Vector analysis and applications to find directional components in geometrical configurations.
Triangles and angles problems utilizing sine and cosine rules in a systematic approach.
Applications of triangle area formulas using known angles and sides for various geometric shapes.
Exploration of price indices and changes in expenditure using formulas and historical comparisons.
Analysis of expenditures and indices using formulas for weighted averages and price adjustments.
PAPER 2 PREFERREDTOPIC
Simultaneous equation (5 marks)
Linear Law (10 marks)
Solution of Triangle (10 marks)
Index Number (10 marks)
Trigonometry Functions (6 – 8 marks)
Statistics (6 – 8 marks)
Probability Distribution (10 marks)
Vector (10 marks)
Linear Programming (10marks)
Total 67 – 71 marks
3.
SPM 2012 PAPER2 NO. 1
Solve the simultaneous equations and13 yx
0545 22
xyyx
1. Choose linear equation
Non – linear is equation with
yx
xyyx
1
,
1
,,, 22
1
2
13 yx
0545 22
xyyx
4.
If possible chooseunknown with no
coefficient as the subject
xy 31
Reason is to avoid fraction
P1
13 yx
SPM 2011 PAPER2 NO. 1
Solve the simultaneous equations and
Give the answer correct to three
decimal places.
012 xy
7234 22
xyyx
1. Choose linear equation
Non – linear is equation with
yx
xyyx
1
,
1
,,, 22
1
2
012 xy
7234 22
xyyx
10.
If possible chooseunknown with no
coefficient as the subject
12 xy
Reason is to avoid fraction
P1
012 xy
Work through untilQUADRATIC
EQUATION is obtain
0256 2
xx
a = b = c = 25-6
a
acbb
x
2
4)( 2
13.
)6(2
)2)(6(4)5()5( 2
x
Use yourcalculator
a = b = c = 25-6
295.0
129.1
x
x K1
N1
OW -1
If the method of solving
QE is not shown
1-SSalso
0)295.0)(129.1(
if
xx
SPM 2010 PAPER2 NO. 1
Solve the simultaneous equations and .
Give your answer correct to two
decimal places.
72 yx
yxxy 9
1. Choose linear equation
Non – linear is equation with
yx
xyyx
1
,
1
,,, 22
1
2
72 yx
yxxy 9
16.
If possible chooseunknown with no
coefficient as the subject
72 yx
Reason is to avoid fraction
P1
72 yx
Work through untilQUADRATIC
EQUATION is obtain
0742 2
yy
a = b = c = 74-2
a
acbb
y
2
4)( 2
19.
)2(2
)7)(2(4)4()4( 2
y
Use yourcalculator
a = b = c = 74-2
12.1
12.3
y
y K1
N1
OW -1
If the method of solving
QE is not shown
1-SSalso
0)12.1)(12.3(
if
yy
SPM 2009 PAPER2 NO. 1
Solve the simultaneous equations and .
Give your answer correct to three
decimal places.
13 pk
02 kpkp
1. Choose linear equation
13 pk
Non – linear is equation with
yx
xyyx
1
,
1
,,, 22
1
02 kpkp 2
22.
13 pk
Ifpossible choose unknown with no
coefficient as the subject
13 pk
Reason is to avoid fraction
P1
Work through untilQUADRATIC
EQUATION is obtain
0263 2
pp
a = b = c = 26-3
a
acbb
p
2
4)( 2
25.
)3(2
)2)(3(4)6()6( 2
p
Use yourcalculator
a = b = c = 26-3
423.0
577.1
p
p K1
N1
OW -1
If the method of solving
QE is not shown
1-SSalso
0)423.0)(577.1(
if
pp
SPM 2012 PAPER2 NO. 6
(a) Prove that [2 marks]
(b) Sketch the graph of for 0 x 2.
[3 marks]
(c) Hence, using the same axes, sketch a suitable
straight line to find the number of solutions for the
equation for 0 x 2.
State the number of solutions.
[3 marks]
12cos xy
x
x
2
sec
12cos
2
1
4sec
2
2
x
x
40.
Choose LHS orRHS to start (Start with long
equation)
12cos
2
x
LHS
1)1cos2(
2
2
x
x2
cos2
2
x2
cos
1
x2
sec
1cos22cos
formulaUse
2
xx
K1
N1
41.
Draw the shapeof cos x
y
1
-1
1
2 3
4 5
6 7
8
Look for the number located outside of
trigonometry
0
y =cos 2x+1
K1
2 3 4
1
2
1
0
Graph is shifted N1
x
Look for the number
inside trigonometry
N1
The graph is at least in one
cycle
(0 x 2)
2
2
3 2
2
42.
Hence, using thesame axes, sketch a suitable straight line to find the
number of solutions for the equation
1
4sec
2
2
x
x
y =cos 2x+1
Let the trigonometry function
be the subject 3
1
cos
y
x
Substitute cos x into
xx 34cos6
xx 34cos6
x
y
34
3
1
6
2
3
3
x
y
x
y
0
3 5.1
N1
K1
Number of solutions = 2 N1
43.
SPM 2011 PAPER2 NO. 6
(a) Sketch the graph of for 0 x 2 .
[4 marks]
(b) Hence, using the same axes, sketch a suitable straight line to find the
number of solutions for the equation for 0 x 2 .
State the number of solutions.
[3 marks]
xy
2
3
sin3
0
2
3
sin3 x
x
44.
Draw the shapeof sin x
y
1
-1
1 2
3
4
5 6
7 8
Look for the number located outside of
trigonometry
0
P1
2 3 4
3
x
Amplitude =max 3
and min -3
P1
P1The graph is at least in one
and a half cycle
xy
2
3
sin3
3
3
Look for the number located inside of
trigonometry
3
2
3
8
Since the is a negative sign, invert the
graph
3
4
3
6
x
2
Reflection of sin graph P1
45.
Hence, using thesame axes, sketch a suitable straight line to find the
number of solutions for the equation 0
2
3
sin3 x
x
y =-3sin 3/2x
Let the trigonometry function
be the subject
32
3
sin
y
x
Substitute sin3/2 x into 0
2
3
sin3 x
x
0
2
3
sin3 x
x
0
3
3
y
x
x
y
x
y
0
matherror 1
N1
2
5.0
SPM 2010 PAPER2 NO.
(a) Sketch the graph of y = 1 + 3 cos x for 0 x 2.
[4 marks]
(b) Hence, using the same axes, sketch a suitable
straight line to find the number of solutions for the
equation for 0 x 2.
State the number of solutions.
[3 marks]
xx 34cos6
48.
Draw the shapeof cos x
y
1
-1
1
2 3
4 5
6 7
8
Look for the number located outside of
trigonometry
0
y =1 + 3 cos x
K1
2 3 4
13
4
1
-2
0
Graph is shifted N1
x
Amplitude = 2 N1
N1
The graph is at least in one
cycle
(0 x 2)
49.
Hence, using thesame axes, sketch a suitable straight line to find the
number of solutions for the equation xx 34cos6
2
y
x
4
0
-2
y =1 + 3 cos x
Let the trigonometry function
be the subject
3
1
cos
y
x
Substitute cos x into xx 34cos6
xx 34cos6
x
y
34
3
1
6
2
3
3
x
y
x
y
0
3 5.1
N1
K1
Number of solutions = 2 N1
50.
SPM 2009 PAPER2 NO.
(a) Sketch the graph of for 0 x 3/2 .
[3 marks]
(b) Hence, using the same axes, sketch a suitable straight line to find the
number of solutions for the equation for 0 x 3/2 .
State the number of solutions.
[3 marks]
xy 2cos
2
3
2
3
2cos
3
4
xx
51.
2
Draw the shapeof cos x
y
1
-1
1
2 3
4 5
6 7
8
Look for the number located outside of
trigonometry
0
K1
2 3 4
2
3
x
Amplitude = 3/2 N1
N1The graph is at least in one
cycle
xy 2cos
2
3
2
3
2
3
Look for the number located inside of
trigonometry
2 2 2 2
2
x
52.
Hence, using thesame axes, sketch a suitable straight line to find the
number of solutions for the equation
2
3
2cos
3
4
xx
y =3/2 cos 2x
Let the trigonometry function
be the subject
3
2
2cos
y
x
Substitute cos2 x into
2
3
2cos
3
4
xx
2
3
2cos
3
4
xx
2
3
3
2
3
4
y
x
4
92
x
y
x
y
0
25.2 25.0
N1
Table shows thesum and the sum of squares of x, where x is the
monthly income, in RM, of Mr. Ahmad for the first 6 months of the year
2012
(a) Find the standard deviation of his monthly income [3 marks]
(b) If Mr. Ahmad’s son gives him RM500 every month during that
period, find the new mean and standard deviation of his monthly
income [3 marks]
SPM 2012 NO. 4: STATISTICS
∑x 12240
24975000 2
x
55.
(a) the standarddeviation
N
xx 2
)( 2_2
x
N
x
f
xxf 2
)( 2
2
x
f
fx
3 = =
4 = =
2
2
2
2
2
x
N
x
x
N
x
2
6
12240
6
24975000
30RM
K1
N1
K1
The mean ofa set of numbers 2, y, 5, 2y+1, 10 and
12 is 7.
a) Find
i) the value of y
SPM 2011 NO. 4: STATISTICS
7
6
12101252
yy
42303 y
4y
K1
N1
58.
(ii) the variance
N
xx 2
)( 2_2
x
N
x
f
xxf 2
)( 2
2
x
f
fx
3 = =
4 = =
2
2
2
2
2
x
N
x
x
N
x
2
222222
2
7
6*
121014*254*2
3
38
//67.12//
3
2
122
K1
N1
59.
(b) Each numberin the set is multiplied by 3 and then
2 is added to it.
For this set of numbers, find
(i) the mean,
Mean, mode and median : multiply/divide, add/minus
will take effect
Variance, Standard Deviation, Range, inter quartile
range : only multiply/divide will take effect
237 newx
23newx
K1
N1
60.
(i) the standarddeviation,
Mean, mode and median : multiply/divide, add/minus
will take effect
Variance, Standard Deviation, Range, inter quartile
range : only multiply/divide will take effect
67.12*2
67.12*
559.3*
3559.3 new
68.10new
K1
N1
61.
SPM 2010: STATISTICS
Tablebelow shows the frequency distribution of the marks of a group of
students.
(a) Use graph paper to answer this part of the question.
Using a scale of 2 cm to 10 marks on the horizontal axis and 2 cm to 2
students on the vertical axis, draw a histogram to represent the frequency
distribution of the marks in above table.
Hence, find the mode mark.
[4 marks]
(b) Calculate the standard deviation of the marks.
[4 marks]
Marks Number of students
1 – 10 5
11 – 20 8
21 – 30 20
31 – 40 10
41 – 50 7
62.
Marks Mid Point
x
Numberof students
(f)
1 – 10 5.5 5
11 – 20 15.5 8
21 – 30 25.5 20
31 – 40 35.5 10
41 – 50 45.5 7
b) Standard deviation
N
xx 2
)( 2_2
x
N
x
f
xxf 2
)( 2
2
x
f
fx
3 = =
4 = =
Marks Mid Point
x
Number of students
(f)
Fx fx2
1 – 10 5.5 5
11 – 20 15.5 8
21 – 30 25.5 20
31 – 40 35.5 10
41 – 50 45.5 7
Total 50
151.25
1922
13005
12602.5
14491.75
f
fx
x
27.5
124
510
355
318.5
1335 42172.5
SPM 2012 PAPER2 NO. 7
Use graph paper to answer this question.
Table 7 shows the values of two variables, x and y, obtained from an
experiment. The variables x and y are related by the equation ,
where n and p are constants.
2
1
kxkx
h
y
x 1 2 3 4 5 6
y 2.601 0.551 0.194 0.089 0.040 0.017
67.
Construct Table isA MUST
yx2
x 1 2 3 4 5 6
60.2 2.2 75.1 42.1 1 61.0 N1
Take 2 decimal places, no more no less
x 1 2 3 4 5 6
y 2.601 0.551 0.194 0.089 0.040 0.017
(a) Based on table 7, construct a table for the values of x2y
68.
yx2
x
0
1 2 34 5 6
5.0
1
5.1
2
5.2
3
K1Correct axes and uniform scales
N16 points are correctly plotted
N1
Line of best fit (at least 3 points must
be on the line)
c =3
Find the y-intercept
(b) Plot x2y against x, using a scale of 2 cm to 1 unit on
the x-axis and 2 cm to 0.5 unit on the x2y – axis.
Hence draw the line of best fit [3 marks]
(c) Use the graph in (b) to find the value of
(i) y when x = 2.5
2yx2
Calculate the gradientof the graph
12
12
xx
yy
m
Choose 2 points
1,5and3,0
50
13
m
4.0m
71.
Adjust the equationso that is the subjectyx2
2
1
kxkx
h
y
cxmy
Compare with
P1
k
x
k
h
yx
12
2
2 1
kxkx
h
yx
2
22
2 1
kx
x
kx
hx
yx
SPM 2011 PAPER2 NO. 7
Use graph paper to answer this question.
Table 7 shows the values of two variables, x and y, obtained from an
experiment. The variables x and y are related by the equation ,
where n and p are constants.1 px
y
n
x 0.1 0.2 0.3 0.4 0.5 0.6
y 0.303 0.364 0.465 0.588 0.909 1.818
74.
Construct Table isA MUST
y
1
x 1.0 2.0 3.0 4.0 5.0 6.0
3.3 75.2 15.2 70.1 1.1 55.0
N1
Take 2 decimal places, no more no less
x 0.1 0.2 0.3 0.4 0.5 0.6
y 0.303 0.364 0.465 0.588 0.909 1.818
(a) Based on table 7, construct a table for the values of y
1
75.
y
1
x
0
1.0 2.0 3.04.0 5.0 6.0
5.0
1
5.1
2
5.2
3
5.3
K1Correct axes and uniform scales
N16 points are correctly plotted
N1
Line of best fit (at least 3 points must
be on the line)
c =3.85
Find the y-intercept
(b) Plot 1/y against x, using a scale of 2 cm to 0.1 unit on
the x-axis and 2 cm to 0.5 unit on the 1/y – axis.
Hence draw the line of best fit [3 marks]
(c) Use the graph in (b) to find the value of
(i) y when x = 0.38
75.1
y
1
SPM 2010 PAPER2 NO. 7
Use graph paper to answer this question.
Table 7 shows the values of two variables, x and y, obtained from an
experiment. The variables x and y are related by the equation ,
where h and k are constants.
k
h
y
x
x 3 4 5 6 7 8
y 2.57 3.31 4.07 4.90 6.31 7.94
81.
Construct Table isA MUST
y10log
x 3 4 5 6 7 8
41.0 52.0 61.0 69.0 8.0 9.0 N1
Take 2 decimal places, no more no less
x 3 4 5 6 7 8
y 2.57 3.31 4.07 4.90 6.31 7.94
Construct a table for the values of log10y
82.
y10log
x
0
1 2 34 5 6 7
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
K1Correct axes and uniform scales
N16 points are correctly plotted
N1
Line of best fit (at least 3 points must
be on the line)
c =0.11 Find the y-intercept
8
9.0
(a) Plot log10y against x, using a scale of 2 cm to 1 unit on
the x-axis and 2 cm to 0.1 unit on the log10y – axis.
Hence draw the line of best fit [3 marks]
(b) Use the graph in (a) to find the value of
(iii) y when x = 2.7
38.0y10log
Calculate the gradientof the graph
12
12
xx
yy
m
Choose 2 points
9.0,8and11.0,0
08
11.09.0
m
09875.0m
85.
Adjust the equationso that is the subjecty10log
k
h
y
x
khy x
101010 logloglog
cxmy Compare with
P1
khxy 101010 logloglog
k
h
y
x
1010 loglog
SPM 2009 PAPER2 NO. 8
Use graph paper to answer this question.
Table 8 shows the values of two variables, x and y, obtained from an
experiment. The variables x and y are related by the equation ,
where k and p are constants.1
x
p
y
k
x 1.5 2.0 3.0 4.0 5.0 6.0
y 2.502 0.770 0.465 0.385 0.351 0.328
88.
Construct Table isA MUST
y
1
x
1
67.0 50.0 33.0 25.0 20.0 17.0
40.0 30.1 15.2 60.2 85.2 05.3
N1
N1
Take 2 decimal places, no more no less
89.
y
1
x
1
0
1.0 2.0 3.04.0 5.0 6.0 7.0
5.0
0.1
5.1
0.2
5.2
0.3
5.3
0.4
K1Correct axes and uniform scales
N16 points are correctly plotted
N1Line of best fit (at least 3 points must
be on the line)
c =3.9
Find the y-intercept
90.
Calculate the gradientof the graph
12
12
xx
yy
m
Choose 2 points
40.0,67.0and9.3,0
067.0
9.340.0
m
223.5m
91.
Adjust the equationso that is the subjecty
1
1
x
p
y
k
kxk
p
y
11
cxmy Compare with
P1
SPM 2008 PAPER2 NO. 8
Use graph paper to answer this question.
Table 8 shows the values of two variables, x and y, obtained from an
experiment. The variables x and y are related by the equation ,
where h and k are constants.x
hky 2
x 1.5 3.0 4.5 6.0 7.5 9.0
y 2.51 3.24 4.37 5.75 7.76 10.00
94.
Construct Table isA MUST
y10log
x 5.1 0.3 5.4 0.6 5.7 0.9
40.0 51.0 64.0 76.0 89.0 1
N1
N1
Take 2 decimal places, no more no less
95.
x
0
1 2 34 5 6 7
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
K1Correct axes and uniform scales
N16 points are correctly plotted
N1
Line of best fit (at least 3 points must
be on the line)
c =0.28 Find the y-intercept
8 9
9.0
1
96.
Calculate the gradientof the graph
12
12
xx
yy
m
Choose 2 points
1,9and28.0,0
09
28.01
m
08.0m
97.
Adjust the equationso that is the subjecty10log
Compare with
P1
x
hky 2
x
hky 2
1010 loglog
x
khy 2
101010 logloglog
kxhy 101010 log2loglog
)log2(loglog 101010 kxhy
y x mc
SPM 2012 PAPER2 NO. 11
(a) In a survey carried out in a particular district, it is
found that three out of five families own a national
car. If 10 families are chosen at random from the
district, calculate the probability that at least 8 families
own a national car [4 marks]
b) Dalam sebuahsekolah, 300 orang murid menduduki
suatu ujian. Markah yang diperoleh adalah mengikut
taburan normal dengan min 56 dan sisihan piawai 8.
(i) Cari bilangan murid yang lulus ujian itu jika markah lulus
ialah 40
X
z
ZX
SPM 2011 PAPER2 NO. 11
(a) It is found that 80% of university graduates in a
state are employed. If 10 university graduates from
the states are selected at random, find the probability
that
(i) Exactly 9 of them are employed
Dalam satu acaramerentas desa yang disertai oleh 500 orang pelajar,
masa yang diambil untuk larian adalah mengikut taburan normal
dengan min 20 minit dan sisihan piawai 10 minit. Peserta tidak akan
diberi sebarang mata jika mereka mengambil masa lebih daripada 32
minit untuk menghabiskan larian itu
(i) Jika seorang peserta dipilih secara rawak, cari kebarangkalian
bahawa peserta itu tidak mendapat sebarang mata.
X
z
ZX
(ii) Pingat diberikankepada 80 orang peserta pertama yang
mengambil masa t minit untuk menghabiskan larian itu.
Cari nilai t
X
z
ZX
111.
X Z P
X
z
ZX
16.0
500
80
)( zzP
994.0z
994.0kirikepanahanak z
20)10(994.0 X
10X
112.
SPM 2010 PAPER2 NO. 10
(a) Pembolehubah rawak, X, mengikut suatu taburan
binomial dengan 10 cubaan dengan keadaan
kebarangkalian kejayaan dalam setiap cubaan ialah
p. Min kejayaan ialah 4. Hitung
(i) Nilai p
npMin,
p104Min,
4.0
10
4
p
Diameter bagi buahlimau dari sebuah kilang adalah
mengikut taburan normal dengan min 3.2 cm dan sisihan
piawai 1.5 cm. Hitungkan
(i) Kebarangkalian bahawa sebiji limau yang dipilih secara
rawak dari ladang ini mempunyai diameter lebih dari 3.9 cm
X Z P
X
z
ZX
115.
X Z P
X
z
ZX
X
z
5.1
2.39.3
z
467.0z
0.467)( zP
0.3203
0.3203)467.0( zP
116.
(ii) Nilai djika 33% daripada limau itu mempunyai diameter
kurang daripada d cm
X Z P
X
z
ZX
117.
X Z P
X
z
ZX
33.0)( zzP
44.0z
44.0kirikepanahanak z
2.3)5.1(44.0 X
54.2X
118.
SPM 2009 PAPER2 NO. 11
Suatu kertas ujian mengandungi 40 soalan. Setiap soalan diikuti
oleh empat pilihan jawapan dengan keadaan hanya satu
jawapan sahaja yang betul.
(a) Salma menjawab semua soalan dengan memilih secara
rawak satu jawapan untuk setiap soalan
(i) Anggarkan bilangan soalan yang dijawab dengan betul
40n
4
1
p
4
3
q
npmean ,
10
4
1
40
119.
(ii) Cari sisihanpiawai bagi bilangan soalan yang dijawab
dengan betul
npq
4
3
4
1
)40(
739.2
120.
p = q=
4
1
4
3
0
1
2
3
4
5
6
7
8
9
10
10
9
8
7
6
5
4
3
2
1
0
/
46
6
10
4
3
4
1
C
01622.0
K1
N1
(b) Basri menjawab 30 soalan dengan
betul dan memilih secara rawak satu
jawapan untuk setiap 10 soalan
selebihnya
(i) 36 soalan dijawab dengan betul
SPM2012 PAPER 2NO. 15
Seorang tukang kayu membuat dua jenis perabot, meja
dan kerusi. Dalam seminggu, dia membuat x buah meja
dan y buah kerusi. Dia mempunyai modal sebanyak
RM6000. Penghasilan perabot adalah berdasarkan
kepada kekangan berikut:
KerusiBil.
MejaBil.
y
x
I. Kos membuat sebuah meja ialah RM80 dan sebuah
kerusi ialah RM60
yx 6080 6000
30034 yx
123.
II. Jumlah minimummeja dan kerusi ialah 50 buah
yx 50
III. Bilangan kerusi mesti sekurang-kurangnya 80%
daripada bilangan meja
y x
100
80
xy
5
4
124.
(b) Menggunakan skala2 cm kepada 10 perabot
pada kedua-dua paksi, bina dan lorek rantau R yang
memenuhi semua kekangan di atas
30034I. yx
x
y
0
100
30
60
50II. yx
x
y
0
50
30
20
xy
5
4
III.
x
y
0
0
30
24
(c) Dengan menggunakangraf yang dibina di 15 (b), cari
(i) Bilangan minimum kerusi yang dihasilkan jika 24 buah
meja dihasilkan
Bilangan minimum kerusi ialah 26
(ii) Jumlah keuntungan maksimum yang diperoleh jika
keuntungan sebuah meja ialah RM40 dan keuntungan sebuah
kerusi ialah RM20
maksimumyx 2040
)22,28( 1560)22(20)28(40
)38,46( 2600)38(20)46(40
2600ialahmaksimumkutipanJumlah
127.
SPM2011 PAPER 2NO. 15
Sebuah syarikat memperoleh tender mengecat sebuah
bangunan kerajaan. Bangunan itu mesti dicat dengan cat
alas dan cat kilat. Bilangan tin cat alas ialah x dan
bilangan tin cat kilat ialah y. kerja-kerja mengecat adalah
berdasarkan kekangan berikut
kilatcattinBil.
alascattinBil.
y
x
I. Bilangan tin cat kilat adalah tidak melebihi 2 kali
bilangan tin cat alas
y x2
128.
II. Bil. Tincat kilat adalah sekurang-kurangnya ¼
daripada bilangan tin cat alas
y x
4
1
III. Jumlah masa yang diperuntukkan untuk kerja
mengecat adalah selebih-lebihnya 120 jam. Bagi satu tin
cat alas, masa mengecat ialah 3 jam manakala bagi satu
tin cat kilat, masa mengecat ialah 2 jam
yx 23 120
129.
(b) Menggunakan skala2 cm kepada 5 tin pada
kedua-dua paksi, bina dan lorek rantau R yang
memenuhi semua kekangan di atas
xy 2I.
x
y
0
0
20
40
xy
4
1
II.
x
y
0
0
40
10
12023III. yx
x
y
20
30
30
15
(c) Dengan menggunakangraf yang dibina di 15 (b),
cari
(i) Bilangan minimum tin cat kilat jika bilangan tin cat
alas ialah 30
Bilangan minimum cat kilat ialah 7.5
(ii) Perbalanjaan maksimum untuk cat jika harga cat alas ialah
RM50 setin dan harga cat kilat ialah RM70 setin
maksimumyx 7050
)34,17( 3230)34(70)17(50
)16,34( 2820)16(70)34(50
3230ialahmaksimumkutipanJumlah
132.
SPM2010 PAPER 2NO. 14
Sebuah pusat latihan menawarkan dua kursus, A dan B.
Bilangan peserta kursus A ialah x dan bilangan kursus B
ialah y. Pengambilan peserta adalah berdasarkan
kekangan berikut:
BkursuspesertaBil.
AkursuspesertaBil.
y
x
I. Bil maksimum peserta kursus ialah 80
yx 80
133.
II. Bil. Pesertakursus B adalah sekurang-kurangnya 10
y 10
III. Bil. Peserta kursus B selebih-lebihnya adalah 3/2
kali bil. Peserta kursus A
y x
2
3
134.
(b) Menggunakan skala2 cm kepada 10 orang
peserta pada kedua-dua paksi, bina dan lorek rantau
R yang memenuhi semua kekangan di atas
80I. yx
x
y
0
80
30
50
10II. y
xy
2
3
III.
x
y
0
0
30
45
(c) Dengan menggunakangraf yang dibina di 14 (b), cari
(i) Bilangan minimum peserta kursus A
Bilangan minimum peserta kursus A seramai 7 orang
(ii) Jumlah maksimum kutipan yuran sebulan jika kutipan yuran
sebulan bagi seorang peserta kursus A ialah RM300 dan bagi
seorang peserta kursus B ialah RM400
maksimumyx 400300
)10,7( 6100)10(400)7(300
)48,32( 28800)48(400)32(300
)10,70( 25000)10(400)70(300
28800ialahmaksimumkutipanJumlah
137.
SPM2009 PAPER 2NO. 14
Johan menggunakan x keping jubin kecil dan y keping
jubin besar untuk hiasan bilik mandinya. Perbelanjaan
hiasan tersebut adalah berdasarkan kekangan berikut
besarjubinBil.
keciljubinBil.
y
x
I. Jumlah bilangan jubin tidak boleh melebihi 100 keping
yx 100
138.
II. Bilangan jubinkecil tidak boleh melebihi tiga kali
bilangan jubin besar
x y3
III. Bilangan jubin besar tidak boleh melebihi 30
bilangan jubin kecil
y 30x
xy 3
139.
(b) Menggunakan skala2 cm kepada 10 keping jubin
pada kedua-dua paksi, bina dan lorek rantau R yang
memenuhi semua kekangan di atas
100I. yx
x
y
50
50
30
70
xy 3II.
x
y
0
0
30
10
30III. xy
x
y
0
30
30
60
(c) Dengan menggunakangraf yang dibina di 14 (b), cari
(i) Bilangan maksimum jubin kecil yang boleh digunakan
Bilangan maksimum jubin kecil ialah sebanyak 75
(ii) Jumlah kos maksimum untuk jubin-jubin itu jika kos bagi
sekeping jubin kecil itu ialah RM1.50 dan kos bagi sekeping
jubin besar itu ialah RM3.00
maksimumyx 31.5
)65,35( 5.247)65(3)35(1.5
)25,75( 5.187)25(3)75(1.5
247.5ialahmaksimumkosJumlah
142.
SPM 2012 PAPER2 NO. 5
Diberi bahawa dan
(a) Cari
(i)
jiAB 23 jiAC 57
BC
BC B CAA K1
jiji 5)7(23
ji 34 N1
(ii) Vektor unit dalam arah BC
BC ji 34 __________
22
34
K1
5
34 ji
N1
143.
(b) Diberi ,dengan keadaan p ialah pemalar
dan adalah selari dengan , cari nilai p.
jpiAD 15
AD BC
jpiAD 15
jiBC 34
3
15
4
p
20p
K1 K1
N1
144.
SPM 2011 NO10
Rajah 10 menunjukkan segiempat selari ABCD. Titik P
terletak pada garis lurus AB dan titik Q terletak pada garis
lurus DC. Garis lurus AQ dipanjangkan ke titik R dengan
keadaan AQ=2QR
A B
CQD
P
R
145.
Diberi bahawa AP:PB= 3:1, DQ:QC = 3:1, danuAP 6 vAD
A B
CQD
P
R
u6
v
3 1
4
3 1
4
u6
v
146.
(a) Ungkapkan dalamsebutan u dan v
(i) AQ A QDD K1
v u6
(ii) PC P CBB K1
1__
3
u6 v
vu 2
147.
(b) Diberi bahawadan
(i) Ungkapkan dalam sebutan i dan j
iu 3 jiv 52
PC
vuPC 2
)52()3(2 jiiPC
jiiPC 526
jiPC 58
(ii) Cari vektor unit dalam arah PC
PC ji 58 __________
22
58
89
58 ji
148.
SPM 2010 NO.9
Rajah 9 menunjukkan segtiga OAB. Titik C terletak pada OA
dan titik D terletak pada AB. Garis lurus OD bersilang dengan
garis lurus BC pada titik E
E
O
C
B
D
A
u6
(a) Ungkapkan dalamsebutan x dan y
(i) B COO K1
y x
3
2
OD(ii) O DBB K1
y BA
2
1
)(
2
1
OABOy
BC
)(
2
1
xyy
xy
2
1
2
1
151.
(b) Diberi bahawa
hdan k ialah pemalar. Ungkapkan
(i) Dalam sebutan h, x dan y
keadaandengan,dan BCkBEODhOE
OE
ODhOE
)
2
1
2
1
( xyhOE
hxhyOE
2
1
2
1
(ii) Dalam sebutan k, x dan y
Mesti guna BE O EBB OE
y BCk
y )
3
2
( xyk
kxkyy
3
2
kxyk
3
2
)1(
152.
(c) Seterusnya, carinilai h dan nilai k
hxhyOE
2
1
2
1
kxykOE
3
2
)1(
kh
3
4
kh 1
2
1
kk
1
3
4
2
1
kk 1
3
2
1
3
2
kk
1
3
5
k
5
3
k
5
3
3
4
h
5
4
h
153.
SPM 2010 PAPER2 NO.13
Diagram 13 shows triangle ABC and triangle
CDE where BCE and ACD are straight lines
A
B
C
D
E
6 cm
4 cm
2.5 cm
250
500
154.
Complete the perimeters
Decidewhich rule
to use
Find any pair
Angle and sides
A
B
C
D
E
6 cm
4 cm
2.5 cm
250
500
105o75o
105o
Sine Rule
Update your diagram
Decidewhich rule
to use
Find any pair
Angle and sides
A
B
C
D
E
6 cm
4 cm
2.5 cm
250
500
105o75o
105o
Cosine Rule
NO PAIR
2.207cm
157.
Abccba cos2222
o
DE 105cos)5.2)(6(25.26222
014.502
DE
014.50DE
072.7DE
Use this answer and update your
diagram
A
B
C
D
E
6 cm
4 cm
2.5 cm
250
500
105o75o
105o
2.207cm
158.
cm072.7
A
B
C
D
E
6 cm
4 cm
2.5cm
250
500
105o75o
105o
2.207cm
Update your diagram
Point C’ lies on BE such that
AC’ = AC
'C
4 cm
75o
159.
Area
Choose angle inthe middle of
two known sides
Cabarea sin2
1
oo
area 105sin)207.2)(4(30sin)4)(4( 2
1
2
1
264.8area
cm072.7
A
B
C
D
E
6 cm
4 cm
2.5 cm
250
500
105o75o
105o
2.207cm
'C
4 cm
75o
300
160.
SPM 2009 PAPER2 NO.12
Diagram 12 shows a trapezium KLMN. KN is
parallel to LM and is obtuseLMN
12.5 cm
5.6 cm
N
K
L
M
32o
80o
161.
Decide which ruleto use
Find any pair
Angle and sides
12.5 cm
5.6 cm
N
K
L
M
32o
80o
Sine rule
Abccba cos2222
12.5 cm
5.6cm
N
K
L
M
32o
80o
cm23.23
68o
68o
o
MN 68cos)6.5)(23.23(26.523.23 222
50.4732
MN
50.473MN
76.21MN
Use this answer and update your
diagram
SPM 2008 PAPER2 NO. 14
ABC is a triangle; ADFB, AEC and BGC are straight line.
The straight line FG is perpendicular to BC
80o
A
D
E
F
GB
C
45o
It is given BD = 19 cm, DA = 16 cm, AE = 14 cm, ando
DAE 80
o
FBG 45
Update your diagram
SPM 2012 PAPER2 NO. 13
Jadual 13 menunjukkan indeks harga bagi tiga jenis bahan api pada tahun
2008 berasaskan 2006. Rajah 13 menunjukkan sebuah carta pai yang
mewakili pembahagian bahan api itu yang digunakan dalam sebuah kilang
Bahan Api Indeks harga pada tahun
2008 berasaskan tahun
2006
Diesel 150
Petrol 120
Gas 110
Gas
72o
Petrol
Diesel
180o
173.
(a) Jika kilangitu membelanjakan RM9000 seminggu untuk diesel
dalam tahun 2008, cari perbelanjaan yang sepadan untuk diesel
dalam tahun 2006
[2 markah]
100
2006
2008
20082006
Q
Q
I
9000RM2008Q
100
9000
150
2006
Q
K1
100
150
9000
2006 Q
60002006 Q N1
174.
(b) Hitung indeksgubahan bagi perbelanjaan bahan api kilang itu dalam
tahun 2008 berasaskan 2006
[3 markah]
W
WI
I ii
360
)72(110)108(120)180(150
20082006
I K2
133 N1
175.
(c) Perbelanjaan bahanapi yang digunakan oleh kilang itu
pada tahun 2006 ialah RM30000 seminggu. Hitungkan
perbelanjaan bahan api yang sepadan dalam tahun 2008.
30000RM2006Q
100
2006
2008
20082006
Q
Q
I
100
30000
2008
Q
133 K1
100
30000
1332008 Q
399002008 Q N1
176.
(d) Harga dieselmeningkat sebanyak 30%, harga petrol
meningkat 20% sementara harga gas tidak berubah dari
tahun 2008 ke tahun 2010. Hitungkan indeks gubahan bagi
perbelanjaan bahan api kilang itu dalam tahun 2010
berasaskan tahun 2006
[3 markah]
201020082006I 150
100
130
195
201020082006I 120
100
120
144
360
)72(110)108(144)180(195 **
20102006
I K2
7.162 N1
177.
Bahan
Prices (RM) perkg Indeks
harga pada
tahun 2007
berasaskan
2005
Peratus
perbelanjaan
(%)
2005 2007
P 4.00 5.00 x 16
Q 3.00 y 150 12
R 8.00 10.00 125 48
S z 3.00 120 24
SPM 2011 Paper 2 No. 13
Jadual 13 menunjukkan harga, indeks harga dan peratus perbelanjaan bagi
empat bahan P, Q, R dan S yang digunakan untuk membuat sejenis makanan
178.
(a) Cari nilaix, y dan z
[4 markah]
100
2005
2007
20072005
Q
Q
I
100
4
5
x 125 P1
100
3
150
y
100
3
150y 5.4 P1
100
3
120
z
120
100
3z 5.2
P1
K1
179.
(b)Hitungkan indeks gubahanbagi kos membuat makanan
itu pada tahun 2007 berasaskan 2005
[2 markah]
W
WI
I ii
100
)24(120)48(125)12(150)16(125
20072005
I
K2
8.12620072005 I N1
180.
(c) Kos untukmembuat sepeket makanan itu dalam tahun
2005 ialah RM50. Hitungkan kos yang sepadan pada tahun
2007
[2markah]
50RM2005Q
100
2005
2007
20072005
Q
Q
I
100
50
2007
Q
8.126 K1
100
50
8.1262007 Q
4.632008 Q N1
181.
(d) Kos bagisemua bahan makanan itu meningkat
sebanyak 15% dari tahun 2007 ke tahun 2009. Cari indeks
gubahan bagi tahun 2009 berasaskan 2005
[2 markah]
8.12620072005 I
100
115
8.126200920072005 I K1
82.14520092005 I N1
182.
SPM 2010 PAPER2 NO. 15
Jadual 15 menunjukkan indeks harga bagi tiga bahan P, Q
dan R yang digunakan dalam pengeluaran satu jenis beg.
Bahan Indeks harga dalam
tahun 2006
berasaskan 2004
Indeks harga dalam
tahun 2008
berasaskan 2004
P 125 150
Q 116 x
R y 120
183.
(a) Cari indeksharga bahan P pada tahun 2008
berasaskan 2006
1250604 I
1500804 I
0806I 100
125
150
K1
120 N1
184.
(b) Harga bahanQ pada tahun 2004 ialah RM7.50 dan
harganya pada tahun 2008 ialah RM10.50. Cari
(i) Nilai x
50.704Q
50.1008Q
100
04
08
0804
Q
Q
I
100
5.7
5.10
x 140 N1
185.
(ii) Harga bahanQ pada tahun 2006
04Q 50.7
100
04
06
0604
Q
Q
I
100
5.7
116 06
Q
K1
100
5.7
11606 Q 7.8 N1
186.
(c) Indeks gubahanuntuk kos pengeluaran beg itu pada
tahun 2006 berasaskan 2004 ialah 118.5. Kos bahan-bahan
P, Q, dan R yang digunakan mengikut nisbah 2:1:3. Cari
nilai y
[3 markah]
W
WI
I ii
5.118
312
)3()1(116)2(125
0604
y
I K2
115y N1
187.
(d) Diberi hargabeg itu pada tahun 2006 ialah RM47.40.
Cari harga yang sepadan bagi beg itu pada tahun 2004
[2 markah]
40.4706Q
100
04
06
0604
Q
Q
I
100
40.47
5.118
04
Q
K1
100
5.118
40.47
04 Q 40 N1
188.
Stationary
Prices (RM) perunit
Price index in the
year 2008 based on
the year 2007
Weightage
Year 2007 Year 2008
P 2.80 2.10 x 4
Q 4.00 4.80 120 2
R 2.00 y 130 3
S z 5.80 116 m
SPM 2009 Paper 2 No. 13
Table 13 shows the prices, the price indices and weightages for four types of stationary P, Q, R
and S
a) Find the value of
i) x
ii) y
iii) z
b) The composite index for the price of the stationary in the year 2008 based on the
year 2007 is 108.4 Calculate m
c) The total expenditure for the stationary in the year 2007 is RM525. Calculate the
corresponding total expenditure in the year 2008
d) The total index for Q in the year 2009 based on the year 2007 is 132. Calculate the
price index for Q in the year 2009 based on the year 2008