420 |||| CHAPTER 6 APPLICATIONS OF INTEGRATION
,
22. ,
23. , , ,
24. , ,
25.
26.
27. , , ,
28. , , ,
29–30 Use calculus to find the area of the triangle with the given
vertices.
, ,
30. , ,
31–32 Evaluate the integral and interpret it as the area of a
region. Sketch the region.
31.
32.
33–34 Use the Midpoint Rule with to approximate the
area of the region bounded by the given curves.
33. , ,
34. , ,
; 35–38 Use a graph to find approximate -coordinates of the points
of intersection of the given curves. Then find (approximately) the
area of the region bounded by the curves.
35. ,
36.
37. ,
38. , y ෇ x10
y ෇ x cos x
y ෇ x3
Ϫ 3x ϩ 4y ෇ 3x2
Ϫ 2x
y ෇ ex
, y ෇ 2 Ϫ x2
y ෇ x4
y ෇ x sin͑x2
͒
x
x ෇ 0y ෇ xy ෇ s3
16 Ϫ x3
0 ഛ x ഛ 1y ෇ cos2
͑␲x͞4͒y ෇ sin2
͑␲x͞4͒
n ෇ 4
y
4
0 Խsx ϩ 2 Ϫ x Խ dx
y
␲͞2
0 Խsin x Ϫ cos 2x Խdx
͑5, 1͒͑2, Ϫ2͒͑0, 5͒
͑Ϫ1, 6͒͑2, 1͒͑0, 0͒29.
x ജ 04x ϩ y ෇ 4y ෇ 8x2
y ෇ 3x2
x Ͼ 0y ෇
1
4 xy ෇ xy ෇ 1͞x
y ෇ ԽxԽ, y ෇ x2
Ϫ 2
y ෇ x2
, y ෇ 2͑͞x2
ϩ 1͒
0 ഛ x ഛ ␲y ෇ 1 Ϫ cos xy ෇ cos x
x ෇ ␲͞2x ෇ 0y ෇ sin 2xy ෇ cos x
y ෇ xy ෇ sin͑␲x͞2͒
x ෇ y2
Ϫ 1x ෇ 1 Ϫ y2
21.1–4 Find the area of the shaded region.
1. 2.
4.
5–28 Sketch the region enclosed by the given curves. Decide
whether to integrate with respect to x or y. Draw a typical approx-
imating rectangle and label its height and width. Then find the
area of the region.
5.
6.
7. ,
8.
10.
11. ,
12. ,
,
14. , ,
15. , ,
16.
17. , ,
18. , , ,
19. ,
20. , x ෇ y4x ϩ y2
෇ 12
x ෇ 4 ϩ y2
x ෇ 2y2
x ෇ 3x ෇ Ϫ3y ෇ x2
y ෇ 8 Ϫ x2
x ෇ 9y ෇
1
2 xy ෇ sx
y ෇ x3
Ϫ x, y ෇ 3x
Ϫ␲͞3 ഛ x ഛ ␲͞3y ෇ 2 sin xy ෇ tan x
0 ഛ x ഛ 2␲y ෇ 2 Ϫ cos xy ෇ cos x
y ෇ x2
Ϫ 6y ෇ 12 Ϫ x2
13.
y ෇ 4x Ϫ x2
y ෇ x2
y2
෇ xy ෇ x2
y ෇ 1 ϩ sx, y ෇ ͑3 ϩ x͒͞3
y ෇ 1͞x, y ෇ 1͞x2
, x ෇ 29.
y ෇ x2
Ϫ 2x, y ෇ x ϩ 4
y ෇ x2
y ෇ x
y ෇ sin x, y ෇ ex
, x ෇ 0, x ෇ ␲͞2
y ෇ x ϩ 1, y ෇ 9 Ϫ x2
, x ෇ Ϫ1, x ෇ 2
x
y
(_3,€3)
x=2y-¥
x=¥-4y
x
x=¥-2
x=ey
y=1
y=_1
y3.
x=2
y=œ„„„„x+2
y=
1
x+1
x
y
y=x
y=5x-≈
x
y
(4,€4)
EXERCISES6.1

Taller calculo 2 corte a

  • 1.
    420 |||| CHAPTER6 APPLICATIONS OF INTEGRATION , 22. , 23. , , , 24. , , 25. 26. 27. , , , 28. , , , 29–30 Use calculus to find the area of the triangle with the given vertices. , , 30. , , 31–32 Evaluate the integral and interpret it as the area of a region. Sketch the region. 31. 32. 33–34 Use the Midpoint Rule with to approximate the area of the region bounded by the given curves. 33. , , 34. , , ; 35–38 Use a graph to find approximate -coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves. 35. , 36. 37. , 38. , y ෇ x10 y ෇ x cos x y ෇ x3 Ϫ 3x ϩ 4y ෇ 3x2 Ϫ 2x y ෇ ex , y ෇ 2 Ϫ x2 y ෇ x4 y ෇ x sin͑x2 ͒ x x ෇ 0y ෇ xy ෇ s3 16 Ϫ x3 0 ഛ x ഛ 1y ෇ cos2 ͑␲x͞4͒y ෇ sin2 ͑␲x͞4͒ n ෇ 4 y 4 0 Խsx ϩ 2 Ϫ x Խ dx y ␲͞2 0 Խsin x Ϫ cos 2x Խdx ͑5, 1͒͑2, Ϫ2͒͑0, 5͒ ͑Ϫ1, 6͒͑2, 1͒͑0, 0͒29. x ജ 04x ϩ y ෇ 4y ෇ 8x2 y ෇ 3x2 x Ͼ 0y ෇ 1 4 xy ෇ xy ෇ 1͞x y ෇ ԽxԽ, y ෇ x2 Ϫ 2 y ෇ x2 , y ෇ 2͑͞x2 ϩ 1͒ 0 ഛ x ഛ ␲y ෇ 1 Ϫ cos xy ෇ cos x x ෇ ␲͞2x ෇ 0y ෇ sin 2xy ෇ cos x y ෇ xy ෇ sin͑␲x͞2͒ x ෇ y2 Ϫ 1x ෇ 1 Ϫ y2 21.1–4 Find the area of the shaded region. 1. 2. 4. 5–28 Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approx- imating rectangle and label its height and width. Then find the area of the region. 5. 6. 7. , 8. 10. 11. , 12. , , 14. , , 15. , , 16. 17. , , 18. , , , 19. , 20. , x ෇ y4x ϩ y2 ෇ 12 x ෇ 4 ϩ y2 x ෇ 2y2 x ෇ 3x ෇ Ϫ3y ෇ x2 y ෇ 8 Ϫ x2 x ෇ 9y ෇ 1 2 xy ෇ sx y ෇ x3 Ϫ x, y ෇ 3x Ϫ␲͞3 ഛ x ഛ ␲͞3y ෇ 2 sin xy ෇ tan x 0 ഛ x ഛ 2␲y ෇ 2 Ϫ cos xy ෇ cos x y ෇ x2 Ϫ 6y ෇ 12 Ϫ x2 13. y ෇ 4x Ϫ x2 y ෇ x2 y2 ෇ xy ෇ x2 y ෇ 1 ϩ sx, y ෇ ͑3 ϩ x͒͞3 y ෇ 1͞x, y ෇ 1͞x2 , x ෇ 29. y ෇ x2 Ϫ 2x, y ෇ x ϩ 4 y ෇ x2 y ෇ x y ෇ sin x, y ෇ ex , x ෇ 0, x ෇ ␲͞2 y ෇ x ϩ 1, y ෇ 9 Ϫ x2 , x ෇ Ϫ1, x ෇ 2 x y (_3,€3) x=2y-¥ x=¥-4y x x=¥-2 x=ey y=1 y=_1 y3. x=2 y=œ„„„„x+2 y= 1 x+1 x y y=x y=5x-≈ x y (4,€4) EXERCISES6.1