Numerical Evidence for Darmon Points
M`etodes Efectius en Geometria Algebraica
Xavier Guitart 1 Marc Masdeu 2
1Universitat Polit`ecnica de Catalunya
2Columbia University
June 4, 2013
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 28
The Problem
Problem
Given an algebraic curve C defined over Q, find points on
C, defined on prescribed algebraic extensions K of Q.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 28
Mordell-Weil
Louis Mordell Andr´e Weil
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 28
Basic Setup
E = elliptic curve defined over Q, and K = Q(
√
dK).
If dK > 0 then K is called real quadratic, and
If dK < 0 then K is called imaginary quadratic.
Theorem (Mordell–Weil)
E(K) = (torsion) ⊕ Zrkalg(E,K)
The algebraic rank rkalg(E, K) is hard to determine.
Attach to E and K an L-function L(E/K, s) as follows.
Let N = conductor(E).
If p is a rational prime, ap(E) = 1 + p − #E(Fp).
If v is a closed point of Spec OK, |v| = size of the residue field κ(v).
L(E/K, s) =
v|N
1 − a|v||v|−s −1
×
v N
1 − a|v||v|−s
+ |v|1−2s −1
Modularity (Wiles et al) =⇒ analytic continuation of L(E/K, s) to C.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 28
Birch and Swinnerton-Dyer
Brian Birch
Peter Swinnerton-Dyer
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 5 / 28
Birch and Swinnerton-Dyer
Conjecture (BSD, rough version)
ords=1 L(E/K, s) = rkalg(E, K).
The left-hand side is the analytic rank, rkan(E, K).
Consequence
rkan(E, K) ≥ 1 =⇒ ∃PK ∈ E(K) of infinite order.
Fact
Define S(K, N) = { | N : inert in K}.Then rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 6 / 28
Heegner vs Darmon (points)
Kurt Heegner Henri Darmon
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 7 / 28
Heegner vs Darmon (points)
Fact
The analytic rank rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
In case 1 , one can construct Heegner points on E(K).
Attached to elements τ ∈ K ∩ H.
Gross–Zagier formula =⇒ they have infinite order if rkan(E, K) = 1.
If S(K, N) = ∅, they can be obtained by C-analytic methods.
If S(K, N) = ∅, can use p-adic methods.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 8 / 28
Heegner vs Darmon (points)
Fact
The analytic rank rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
In case 2 , Heegner points are not available.
Note that in this case, K ∩ H = ∅!
In 2001, Darmon gave a construction (a.k.a “Stark-Heegner”).
p-adic analytic =⇒ a priori they lie in E(Kp).
Proof of their algebraicity completely open so far.
Darmon’s construction restricted to S(K, N) = {p}.
Greenberg extended to S(K, N) of arbitrary odd size.
We call them Darmon points.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 9 / 28
Goals
In this talk we will:
1 Explain what Darmon Points are,
2 Explain how to calculate them, and
“The fun of the subject seems to me to be in the examples.
B. Gross, in a letter to B. Birch, 1982
”3 See some fun examples!
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 10 / 28
Integration on the p-adic upper-half plane
Definition
The p-adic upper half plane is the rigid-analytic space
Hp = P1
(Cp)  P1
(Qp) ( = Cp  Qp ).
This is the p-adic analogue of H± = C  R.
Ω1
Hp
= space of rigid-analytic one-forms on Hp.
Coleman integral: allows to make sense of
τ2
τ1
ω, for τ1, τ2 ∈ Hp and ω ∈ Ω1
Hp
.
If the residues of ω are all integers, have a multiplicative refinement:
×
τ2
τ1
ω = lim
−→
U U∈U
tU − τ2
tU − τ1
µ(U)
where µ(U) = resA(U) ω.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 11 / 28
The p-adic upper half plane
×
τ2
τ1
ω = lim
−→
U U∈U
tU − τ2
tU − τ1
µ(U)
where µ(U) = resA(U) ω.
Bruhat-Tits tree of
GL2(Qp) with p = 2.
Hp having the
Bruhat-Tits as retract.
Annuli A(U) for U a
covering of size p−3.
tU is any point in
U ⊂ P1(Qp).
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 12 / 28
Darmon points `a la Greenberg
Henri Darmon
Matthew Greenberg
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 13 / 28
Darmon points `a la Greenberg
Assumption
1 K is real quadratic.
2 S(K, N) = { : | pD} has odd cardinality.
Write N = pDM, and B/Q = quaternion algebra of discriminant D.
Fix ιp : B → M2(Qp).
B×
→ GL2(Qp) acts on Hp by:
a b
c d τ =
aτ + b
cτ + d
.
R an Eichler order of level M (and such that ιp(R) is “nice”
ιp(R) ⊂ a b
c d ∈ M2(Zp) : vp(c) ≥ 1 .
).
Γ = R[1
p ]
×
1
(elements in R[1
p ] of reduced norm 1) → SL2(Qp).
If D = 1, then B = M2(Q) and Γ = a b
c d ∈ SL2(Z[1/p]) : M | c .
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 14 / 28
Cohomology
Let Ω1
Hp,Z = rigid-analytic differentials having integral residues.
Can attach to E a unique (up to sign) class [ΦE] ∈ H1 Γ, Ω1
Hp,Z .
Uses Hecke action and Jacquet–Langlands correspondence.
Theorem (M. Greenberg)
There exists a unique class [ΦE] ∈ H1(Γ, Ω1
Hp,Z) satisfying:
1 T [ΦE] = a [ΦE] for all primes pDM;
2 U [ΦE] = a [ΦE] for all | DM;
3 Wp[ΦE] = ap[ΦE] (Atkin-Lehner involution);
4 W∞[ΦE] = [ΦE] (Involution at ∞).
Hecke action can be made explicit
Suitable for computation.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 15 / 28
Homology
Start with an embedding ψ: K → B.
ψ induces an action of K× on Hp via ιp.
1 Let τψ ∈ Hp be the unique fixed point of K×
2 Set γψ = ψ( 2
), where O×
K = {±1} × .
ψ ; ˜Θψ = [γψ ⊗τψ] ∈ H1(Γ, Div Hp).
Key exact sequence:
H1(Γ, Div0
Hp) // H1(Γ, Div Hp)
deg
// H1(Γ, Z)
Θψ
 ? // ˜Θψ
 // torsion
Challenge: pull
a multiple of
˜Θψ back to Θψ ∈ H1(Γ, Div0
Hp).
Requires algorithms adapted to the nature of Γ.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 16 / 28
Conjecture
Recall our data
1 Θψ = [ γ γ ⊗Dγ] ∈ H1(Γ, Div0
Hp)
2 ΦE ∈ Z1(Γ, Ω1
Hp,Z)
Jψ =
γ
×
Dγ
(ΦE)γ ∈ K×
p .
Jψ is well defined modulo powers of the Tate parameter qE
Conjecture (Darmon (D = 1), Greenberg (D  1))
1 Pψ = ΨTate(Jψ) belongs to E(Kab)
2 If rkan(E, K) = 1, then Pψ has infinite order.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 17 / 28
Numerical Evidence
Conjecture (Darmon (D = 1), Greenberg (D  1))
1 Pψ = ΨTate(Jψ) belongs to E(Kab)
2 If rkan(E, K) = 1, then Pψ has infinite order.
Numerical Evidence
M = 1 M  1
D = 1 Darmon–Green (2002) Guitart–M. (2012)
(B = M2(Q)) Darmon–Pollack (2006)
D  1 Guitart–M. (2013)
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 18 / 28
Other directions
E defined over other number field F = Q.
1 F totally real: Greenberg (2009).
No numerical evidence.
2 F quadratic imaginary: Trifkovic (2006).
Numerical evidence when F is Euclidean.
3 F arbitrary: Guitart–Sengun–M. (in progress).
Lift to Jac(X0(N)): Rotger-Longo-Vigni (2012).
No numerical evidence.
Higher weight modular forms: Rotger-Seveso (2012).
No numerical evidence.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 19 / 28
Calculating the Cycle
Key Exact Sequence
H1(Γ, Div0
Hp) // H1(Γ, Div Hp)
deg
// H1(Γ, Z)
Θψ
 ? // ˜Θψ
 // torsion
M = 1 M  1
D = 1 Adjacent Cusps Elementary Matrix Decomposition
(B = M2(Q)) (Manin Trick) Go Go
D  1 Commutator Decomposition Go
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 20 / 28
Commutator decomposition example
G = R×
1 , R maximal order on B = B6.
F = X, Y G = x, y | x2
= y3
= 1 .
Goal: write g ⊗τ as gi ⊗Di, with Di of degree 0.
Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3.
We trivialize on Fab: g = yxyxy(x−2)(y−3).
To simplify g ⊗τ0 in H1(Γ, Div Hp), use:
1 γ1γ2 ⊗D = γ1 ⊗D + γ2 ⊗γ−1
1 D.
2 γ−1
⊗D = −γ ⊗γD.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 21 / 28
Implementation
We have written SAGE code to do all of the above.
Depend on:
1 Overconvergent method for D = 1 (R.Pollack).
2 Finding a presentation for units of orders in B (J.Voight).
Currently depends on MAGMA.
Overconvergent methods (adapted to D  1)
Efficient (polynomial time) integration algorithm.
Apart from checking the conjecture, can use the method to actually
finding the points.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 22 / 28
Examples
Please show them
the examples !
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 23 / 28
p = 5, Curve 15A1
E : y2
+ xy + y = x3
+ x2
− 10x − 10
dK h P+
13 1 −
√
13 + 1, 2
√
13 − 4
28 1 −15
√
7 + 43, 150
√
7 − 402
37 1 −5
9
√
37 + 5
9, 25
27
√
37 − 70
27
73 1 −17
32
√
73 + 77
32, 187
128
√
73 − 1199
128
88 1 −17
9 , 14
27
√
22 + 4
9
97 1 − 25
121
√
97 + 123
121, 375
2662
√
97 − 4749
2662
133 1 103
9 , 92
27
√
133 − 56
9
172 1 −1923
1681, 11781
68921
√
43 + 121
1681
193 1 1885
288
√
193 + 25885
288 , 292175
3456
√
193 + 4056815
3456
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 24 / 28
p = 3, Curve 21A1
E : y2
+ xy = x3
− 4x − 1
dK h P+
8 1 −9
√
2 + 11, 45
√
2 − 64
29 1 − 9
25
√
29 + 32
25, 63
125
√
29 − 449
125
44 1 − 9
49
√
11 − 52
49, 54
343
√
11 + 557
343
53 1 − 37
169
√
53 + 184
169, 555
2197
√
53 − 5633
2197
92 1 533
46 , 17325
2116
√
23 − 533
92
137 1 − 1959
11449
√
137 + 242
11449, 295809
2450086
√
137 − 162481
2450086
149 1 − 261
2809
√
149 + 2468
2809, 8091
148877
√
149 − 101789
148877
197 1 − 79135143
209961032
√
197 + 977125081
209961032, 1439547386313
1075630366936
√
197 − 9297639417941
537815183468
D h hD(x)
65 2 x2 + 61851
6241
√
65 − 491926
6241 x − 403782
6241
√
65 + 3256777
6241
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 25 / 28
p = 11, Curve 33A1
E : y2
+ xy = x3
+ x2
− 11x
dK h P +
13 1 − 1
2
√
13 + 3
2
, 1
2
√
13 − 7
2
28 1 22
7
, 55
49
√
7 − 11
7
61 1 − 1
2
√
61 + 5
2
,
√
61 − 11
73 1 − 53339
49928
√
73 + 324687
49928
, 31203315
7888624
√
73 − 290996167
7888624
76 1 −2,
√
19 + 1
109 1 − 143
2
√
109 + 1485
2
, 5577
2
√
109 − 58223
2
172 1 − 51842
21025
, 2065147
3048625
√
43 + 25921
21025
184 1 59488
21609
, 109252
3176523
√
46 − 29744
21609
193 1 94663533349261
678412148664608
√
193 + 1048806825770477
678412148664608
,
147778957920931299317
12494688311813553741184
√
193 + 30862934493092416035541
12494688311813553741184
D h hD(x)
40 2 x2
+ 2849
1681
√
10 − 6347
1681
x − 5082
1681
√
10 + 16819
1681
85 2 x2
+ 119
361
√
85 − 1022
361
x − 168
361
√
85 + 1549
361
145 4 x4
+ 169016003453
83168215321
√
145 − 1621540207320
83168215321
x3
+ − 1534717557538
83168215321
√
145 + 18972823294799
83168215321
x2
+ 5533405190489
83168215321
√
145 − 66553066916820
83168215321
x
+ − 6414913389456
83168215321
√
145 + 77248348177561
83168215321
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 26 / 28
p = 13, Curve 78A1
Exclusive for MEGA
First examples of Quaternionic Darmon Points.
78 = 2 · 3 · 13, we take p = 13 and D = 6.
E : y2
+ xy = x3
+ x2
− 19x + 685
dK h P+
5 1 10, 18
√
5 − 5
149 1 −10654790
1138489 , 1229396070
1214767763
√
149 + 5327395
1138489
197 1 964090
121 , −67449270
1331
√
197 − 482045
121
293 1 66626
7325 , −23188374
10731125
√
293 − 33313
7325
317 1 36974414
388325 , −226154303712
4308465875
√
317 − 18487207
388325
437 1 971110
339889 , −244302600
198155287
√
437 − 485555
339889
461 1 −146849210
23609881 , 132062657760
114720411779
√
461 + 73424605
23609881
509 1 86626030090
4613262241 , −1193915313019350
313337384670961
√
509 − 43313015045
4613262241
557 1 394312144429886
2528440578125 , 7858947314645355852384
94887001960802734375
√
557 − 197156072214943
2528440578125
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 27 / 28
Thank you !
Find the slides at: http://www.math.columbia.edu/∼masdeu/
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 28 / 28
Bibliography
Henri Darmon and Peter Green.
Elliptic curves and class fields of real quadratic fields: Algorithms and evidence.
Exp. Math., 11, No. 1, 37-55, 2002.
Henri Darmon and Robert Pollack.
Efficient calculation of Stark-Heegner points via overconvergent modular symbols.
Israel J. Math., 153:319–354, 2006.
Xavier Guitart and Marc Masdeu.
Elementary matrix Decomposition and the computation of Darmon points with higher conductor.
arXiv.org, 1209.4614, 2012.
Matthew Greenberg.
Stark-Heegner points and the cohomology of quaternionic Shimura varieties.
Duke Math. J., 147(3):541–575, 2009.
David Pollack and Robert Pollack.
A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z).
Canad. J. Math., 61(3):674–690, 2009.
trifkovic Mak Trifkovic,
Stark-Heegner points on elliptic curves defined over imaginary quadratic fields.
Duke Math. J., 135, No. 3, 415-453, 2006.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 4
Differential forms and measures
Theorem (Teitelbaum?)
The assignment
µ → ω =
P1(Qp)
dz
z − t
dµ(t)
induces an isomorphism Meas0(P1(Qp), Cp) ∼= Ω1
Hp
.
Theorem (Teitelbaum)
τ2
τ1
ω =
P1(Qp)
log
t − τ1
t − τ2
dµ(t).
Proof sketch.
τ2
τ1
ω =
τ2
τ1 P1(Qp)
dz
z − t
dµ(t) =
P1(Qp)
log
t − τ2
t − τ1
dµ(t).
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 4
Continued Fractions
Theorem (Manin)
The cusps ∞ and γ∞ can always be connected by a chain of adjacent
cusps ∞ = c0 ∼ c1 ∼ · · · ∼ cr = γ∞.
Effective version: continued fractions.
(γ∞ − ∞) ⊗τ =
i
(gi∞ − gi0) ⊗τ
=
i
(∞ − 0) ⊗τi
=
i
(∞ − 1) ⊗τi + (1 − 0) ⊗τi τi = g−1
i τ
=
i
(∞ − 0) ⊗t−1
τi + (0 − ∞) ⊗tsτi
=
i
(∞ − 0) ⊗(t−1
τi − tsτi)
Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 4
Elementary Matrices
Theorem (Vaserstein (1972), Guitart–M. (2012) (effective version))
Any matrix γ ∈ Γ1(M) can be decomposed as
γ = l1u1 · · · lrur, ui = 1 xi
0 1 , li = 1 0
yi 1 .
Obtain the following:
(ug∞ − ∞) ⊗τ = (g∞ − ∞) ⊗u−1
τ.
and (lg∞ − ∞) ⊗τ simplifies to:
= (lg∞ − 0) ⊗τ + (0 − ∞) ⊗τ
= (g∞ − 0) ⊗l−1
τ + (0 − ∞) ⊗τ
= (g∞ − ∞) ⊗l−1
τ + (∞ − 0) ⊗l−1
τ + (0 − ∞) ⊗τ
= (g∞ − ∞) ⊗l−1
τ + (∞ − 0) ⊗(l−1
τ − τ).
Iterating this process we reduce to a degree-0 divisor. Back
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 4

Numerical Evidence for Darmon Points

  • 1.
    Numerical Evidence forDarmon Points M`etodes Efectius en Geometria Algebraica Xavier Guitart 1 Marc Masdeu 2 1Universitat Polit`ecnica de Catalunya 2Columbia University June 4, 2013 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 28
  • 2.
    The Problem Problem Given analgebraic curve C defined over Q, find points on C, defined on prescribed algebraic extensions K of Q. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 28
  • 3.
    Mordell-Weil Louis Mordell Andr´eWeil Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 28
  • 4.
    Basic Setup E =elliptic curve defined over Q, and K = Q( √ dK). If dK > 0 then K is called real quadratic, and If dK < 0 then K is called imaginary quadratic. Theorem (Mordell–Weil) E(K) = (torsion) ⊕ Zrkalg(E,K) The algebraic rank rkalg(E, K) is hard to determine. Attach to E and K an L-function L(E/K, s) as follows. Let N = conductor(E). If p is a rational prime, ap(E) = 1 + p − #E(Fp). If v is a closed point of Spec OK, |v| = size of the residue field κ(v). L(E/K, s) = v|N 1 − a|v||v|−s −1 × v N 1 − a|v||v|−s + |v|1−2s −1 Modularity (Wiles et al) =⇒ analytic continuation of L(E/K, s) to C. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 28
  • 5.
    Birch and Swinnerton-Dyer BrianBirch Peter Swinnerton-Dyer Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 5 / 28
  • 6.
    Birch and Swinnerton-Dyer Conjecture(BSD, rough version) ords=1 L(E/K, s) = rkalg(E, K). The left-hand side is the analytic rank, rkan(E, K). Consequence rkan(E, K) ≥ 1 =⇒ ∃PK ∈ E(K) of infinite order. Fact Define S(K, N) = { | N : inert in K}.Then rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 6 / 28
  • 7.
    Heegner vs Darmon(points) Kurt Heegner Henri Darmon Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 7 / 28
  • 8.
    Heegner vs Darmon(points) Fact The analytic rank rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. In case 1 , one can construct Heegner points on E(K). Attached to elements τ ∈ K ∩ H. Gross–Zagier formula =⇒ they have infinite order if rkan(E, K) = 1. If S(K, N) = ∅, they can be obtained by C-analytic methods. If S(K, N) = ∅, can use p-adic methods. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 8 / 28
  • 9.
    Heegner vs Darmon(points) Fact The analytic rank rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. In case 2 , Heegner points are not available. Note that in this case, K ∩ H = ∅! In 2001, Darmon gave a construction (a.k.a “Stark-Heegner”). p-adic analytic =⇒ a priori they lie in E(Kp). Proof of their algebraicity completely open so far. Darmon’s construction restricted to S(K, N) = {p}. Greenberg extended to S(K, N) of arbitrary odd size. We call them Darmon points. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 9 / 28
  • 10.
    Goals In this talkwe will: 1 Explain what Darmon Points are, 2 Explain how to calculate them, and “The fun of the subject seems to me to be in the examples. B. Gross, in a letter to B. Birch, 1982 ”3 See some fun examples! Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 10 / 28
  • 11.
    Integration on thep-adic upper-half plane Definition The p-adic upper half plane is the rigid-analytic space Hp = P1 (Cp) P1 (Qp) ( = Cp Qp ). This is the p-adic analogue of H± = C R. Ω1 Hp = space of rigid-analytic one-forms on Hp. Coleman integral: allows to make sense of τ2 τ1 ω, for τ1, τ2 ∈ Hp and ω ∈ Ω1 Hp . If the residues of ω are all integers, have a multiplicative refinement: × τ2 τ1 ω = lim −→ U U∈U tU − τ2 tU − τ1 µ(U) where µ(U) = resA(U) ω. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 11 / 28
  • 12.
    The p-adic upperhalf plane × τ2 τ1 ω = lim −→ U U∈U tU − τ2 tU − τ1 µ(U) where µ(U) = resA(U) ω. Bruhat-Tits tree of GL2(Qp) with p = 2. Hp having the Bruhat-Tits as retract. Annuli A(U) for U a covering of size p−3. tU is any point in U ⊂ P1(Qp). Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 12 / 28
  • 13.
    Darmon points `ala Greenberg Henri Darmon Matthew Greenberg Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 13 / 28
  • 14.
    Darmon points `ala Greenberg Assumption 1 K is real quadratic. 2 S(K, N) = { : | pD} has odd cardinality. Write N = pDM, and B/Q = quaternion algebra of discriminant D. Fix ιp : B → M2(Qp). B× → GL2(Qp) acts on Hp by: a b c d τ = aτ + b cτ + d . R an Eichler order of level M (and such that ιp(R) is “nice” ιp(R) ⊂ a b c d ∈ M2(Zp) : vp(c) ≥ 1 . ). Γ = R[1 p ] × 1 (elements in R[1 p ] of reduced norm 1) → SL2(Qp). If D = 1, then B = M2(Q) and Γ = a b c d ∈ SL2(Z[1/p]) : M | c . Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 14 / 28
  • 15.
    Cohomology Let Ω1 Hp,Z =rigid-analytic differentials having integral residues. Can attach to E a unique (up to sign) class [ΦE] ∈ H1 Γ, Ω1 Hp,Z . Uses Hecke action and Jacquet–Langlands correspondence. Theorem (M. Greenberg) There exists a unique class [ΦE] ∈ H1(Γ, Ω1 Hp,Z) satisfying: 1 T [ΦE] = a [ΦE] for all primes pDM; 2 U [ΦE] = a [ΦE] for all | DM; 3 Wp[ΦE] = ap[ΦE] (Atkin-Lehner involution); 4 W∞[ΦE] = [ΦE] (Involution at ∞). Hecke action can be made explicit Suitable for computation. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 15 / 28
  • 16.
    Homology Start with anembedding ψ: K → B. ψ induces an action of K× on Hp via ιp. 1 Let τψ ∈ Hp be the unique fixed point of K× 2 Set γψ = ψ( 2 ), where O× K = {±1} × . ψ ; ˜Θψ = [γψ ⊗τψ] ∈ H1(Γ, Div Hp). Key exact sequence: H1(Γ, Div0 Hp) // H1(Γ, Div Hp) deg // H1(Γ, Z) Θψ ? // ˜Θψ // torsion Challenge: pull a multiple of ˜Θψ back to Θψ ∈ H1(Γ, Div0 Hp). Requires algorithms adapted to the nature of Γ. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 16 / 28
  • 17.
    Conjecture Recall our data 1Θψ = [ γ γ ⊗Dγ] ∈ H1(Γ, Div0 Hp) 2 ΦE ∈ Z1(Γ, Ω1 Hp,Z) Jψ = γ × Dγ (ΦE)γ ∈ K× p . Jψ is well defined modulo powers of the Tate parameter qE Conjecture (Darmon (D = 1), Greenberg (D 1)) 1 Pψ = ΨTate(Jψ) belongs to E(Kab) 2 If rkan(E, K) = 1, then Pψ has infinite order. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 17 / 28
  • 18.
    Numerical Evidence Conjecture (Darmon(D = 1), Greenberg (D 1)) 1 Pψ = ΨTate(Jψ) belongs to E(Kab) 2 If rkan(E, K) = 1, then Pψ has infinite order. Numerical Evidence M = 1 M 1 D = 1 Darmon–Green (2002) Guitart–M. (2012) (B = M2(Q)) Darmon–Pollack (2006) D 1 Guitart–M. (2013) Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 18 / 28
  • 19.
    Other directions E definedover other number field F = Q. 1 F totally real: Greenberg (2009). No numerical evidence. 2 F quadratic imaginary: Trifkovic (2006). Numerical evidence when F is Euclidean. 3 F arbitrary: Guitart–Sengun–M. (in progress). Lift to Jac(X0(N)): Rotger-Longo-Vigni (2012). No numerical evidence. Higher weight modular forms: Rotger-Seveso (2012). No numerical evidence. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 19 / 28
  • 20.
    Calculating the Cycle KeyExact Sequence H1(Γ, Div0 Hp) // H1(Γ, Div Hp) deg // H1(Γ, Z) Θψ ? // ˜Θψ // torsion M = 1 M 1 D = 1 Adjacent Cusps Elementary Matrix Decomposition (B = M2(Q)) (Manin Trick) Go Go D 1 Commutator Decomposition Go Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 20 / 28
  • 21.
    Commutator decomposition example G= R× 1 , R maximal order on B = B6. F = X, Y G = x, y | x2 = y3 = 1 . Goal: write g ⊗τ as gi ⊗Di, with Di of degree 0. Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3. We trivialize on Fab: g = yxyxy(x−2)(y−3). To simplify g ⊗τ0 in H1(Γ, Div Hp), use: 1 γ1γ2 ⊗D = γ1 ⊗D + γ2 ⊗γ−1 1 D. 2 γ−1 ⊗D = −γ ⊗γD. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 21 / 28
  • 22.
    Implementation We have writtenSAGE code to do all of the above. Depend on: 1 Overconvergent method for D = 1 (R.Pollack). 2 Finding a presentation for units of orders in B (J.Voight). Currently depends on MAGMA. Overconvergent methods (adapted to D 1) Efficient (polynomial time) integration algorithm. Apart from checking the conjecture, can use the method to actually finding the points. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 22 / 28
  • 23.
    Examples Please show them theexamples ! Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 23 / 28
  • 24.
    p = 5,Curve 15A1 E : y2 + xy + y = x3 + x2 − 10x − 10 dK h P+ 13 1 − √ 13 + 1, 2 √ 13 − 4 28 1 −15 √ 7 + 43, 150 √ 7 − 402 37 1 −5 9 √ 37 + 5 9, 25 27 √ 37 − 70 27 73 1 −17 32 √ 73 + 77 32, 187 128 √ 73 − 1199 128 88 1 −17 9 , 14 27 √ 22 + 4 9 97 1 − 25 121 √ 97 + 123 121, 375 2662 √ 97 − 4749 2662 133 1 103 9 , 92 27 √ 133 − 56 9 172 1 −1923 1681, 11781 68921 √ 43 + 121 1681 193 1 1885 288 √ 193 + 25885 288 , 292175 3456 √ 193 + 4056815 3456 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 24 / 28
  • 25.
    p = 3,Curve 21A1 E : y2 + xy = x3 − 4x − 1 dK h P+ 8 1 −9 √ 2 + 11, 45 √ 2 − 64 29 1 − 9 25 √ 29 + 32 25, 63 125 √ 29 − 449 125 44 1 − 9 49 √ 11 − 52 49, 54 343 √ 11 + 557 343 53 1 − 37 169 √ 53 + 184 169, 555 2197 √ 53 − 5633 2197 92 1 533 46 , 17325 2116 √ 23 − 533 92 137 1 − 1959 11449 √ 137 + 242 11449, 295809 2450086 √ 137 − 162481 2450086 149 1 − 261 2809 √ 149 + 2468 2809, 8091 148877 √ 149 − 101789 148877 197 1 − 79135143 209961032 √ 197 + 977125081 209961032, 1439547386313 1075630366936 √ 197 − 9297639417941 537815183468 D h hD(x) 65 2 x2 + 61851 6241 √ 65 − 491926 6241 x − 403782 6241 √ 65 + 3256777 6241 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 25 / 28
  • 26.
    p = 11,Curve 33A1 E : y2 + xy = x3 + x2 − 11x dK h P + 13 1 − 1 2 √ 13 + 3 2 , 1 2 √ 13 − 7 2 28 1 22 7 , 55 49 √ 7 − 11 7 61 1 − 1 2 √ 61 + 5 2 , √ 61 − 11 73 1 − 53339 49928 √ 73 + 324687 49928 , 31203315 7888624 √ 73 − 290996167 7888624 76 1 −2, √ 19 + 1 109 1 − 143 2 √ 109 + 1485 2 , 5577 2 √ 109 − 58223 2 172 1 − 51842 21025 , 2065147 3048625 √ 43 + 25921 21025 184 1 59488 21609 , 109252 3176523 √ 46 − 29744 21609 193 1 94663533349261 678412148664608 √ 193 + 1048806825770477 678412148664608 , 147778957920931299317 12494688311813553741184 √ 193 + 30862934493092416035541 12494688311813553741184 D h hD(x) 40 2 x2 + 2849 1681 √ 10 − 6347 1681 x − 5082 1681 √ 10 + 16819 1681 85 2 x2 + 119 361 √ 85 − 1022 361 x − 168 361 √ 85 + 1549 361 145 4 x4 + 169016003453 83168215321 √ 145 − 1621540207320 83168215321 x3 + − 1534717557538 83168215321 √ 145 + 18972823294799 83168215321 x2 + 5533405190489 83168215321 √ 145 − 66553066916820 83168215321 x + − 6414913389456 83168215321 √ 145 + 77248348177561 83168215321 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 26 / 28
  • 27.
    p = 13,Curve 78A1 Exclusive for MEGA First examples of Quaternionic Darmon Points. 78 = 2 · 3 · 13, we take p = 13 and D = 6. E : y2 + xy = x3 + x2 − 19x + 685 dK h P+ 5 1 10, 18 √ 5 − 5 149 1 −10654790 1138489 , 1229396070 1214767763 √ 149 + 5327395 1138489 197 1 964090 121 , −67449270 1331 √ 197 − 482045 121 293 1 66626 7325 , −23188374 10731125 √ 293 − 33313 7325 317 1 36974414 388325 , −226154303712 4308465875 √ 317 − 18487207 388325 437 1 971110 339889 , −244302600 198155287 √ 437 − 485555 339889 461 1 −146849210 23609881 , 132062657760 114720411779 √ 461 + 73424605 23609881 509 1 86626030090 4613262241 , −1193915313019350 313337384670961 √ 509 − 43313015045 4613262241 557 1 394312144429886 2528440578125 , 7858947314645355852384 94887001960802734375 √ 557 − 197156072214943 2528440578125 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 27 / 28
  • 28.
    Thank you ! Findthe slides at: http://www.math.columbia.edu/∼masdeu/ Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 28 / 28
  • 29.
    Bibliography Henri Darmon andPeter Green. Elliptic curves and class fields of real quadratic fields: Algorithms and evidence. Exp. Math., 11, No. 1, 37-55, 2002. Henri Darmon and Robert Pollack. Efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel J. Math., 153:319–354, 2006. Xavier Guitart and Marc Masdeu. Elementary matrix Decomposition and the computation of Darmon points with higher conductor. arXiv.org, 1209.4614, 2012. Matthew Greenberg. Stark-Heegner points and the cohomology of quaternionic Shimura varieties. Duke Math. J., 147(3):541–575, 2009. David Pollack and Robert Pollack. A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z). Canad. J. Math., 61(3):674–690, 2009. trifkovic Mak Trifkovic, Stark-Heegner points on elliptic curves defined over imaginary quadratic fields. Duke Math. J., 135, No. 3, 415-453, 2006. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 4
  • 30.
    Differential forms andmeasures Theorem (Teitelbaum?) The assignment µ → ω = P1(Qp) dz z − t dµ(t) induces an isomorphism Meas0(P1(Qp), Cp) ∼= Ω1 Hp . Theorem (Teitelbaum) τ2 τ1 ω = P1(Qp) log t − τ1 t − τ2 dµ(t). Proof sketch. τ2 τ1 ω = τ2 τ1 P1(Qp) dz z − t dµ(t) = P1(Qp) log t − τ2 t − τ1 dµ(t). Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 4
  • 31.
    Continued Fractions Theorem (Manin) Thecusps ∞ and γ∞ can always be connected by a chain of adjacent cusps ∞ = c0 ∼ c1 ∼ · · · ∼ cr = γ∞. Effective version: continued fractions. (γ∞ − ∞) ⊗τ = i (gi∞ − gi0) ⊗τ = i (∞ − 0) ⊗τi = i (∞ − 1) ⊗τi + (1 − 0) ⊗τi τi = g−1 i τ = i (∞ − 0) ⊗t−1 τi + (0 − ∞) ⊗tsτi = i (∞ − 0) ⊗(t−1 τi − tsτi) Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 4
  • 32.
    Elementary Matrices Theorem (Vaserstein(1972), Guitart–M. (2012) (effective version)) Any matrix γ ∈ Γ1(M) can be decomposed as γ = l1u1 · · · lrur, ui = 1 xi 0 1 , li = 1 0 yi 1 . Obtain the following: (ug∞ − ∞) ⊗τ = (g∞ − ∞) ⊗u−1 τ. and (lg∞ − ∞) ⊗τ simplifies to: = (lg∞ − 0) ⊗τ + (0 − ∞) ⊗τ = (g∞ − 0) ⊗l−1 τ + (0 − ∞) ⊗τ = (g∞ − ∞) ⊗l−1 τ + (∞ − 0) ⊗l−1 τ + (0 − ∞) ⊗τ = (g∞ − ∞) ⊗l−1 τ + (∞ − 0) ⊗(l−1 τ − τ). Iterating this process we reduce to a degree-0 divisor. Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 4