SlideShare a Scribd company logo
1 of 21
Overview of
Supercomputers
  Presented by:
  Mehmet Demir
    20090694
     ENG-102
Table of Contents
   Introduction
   What are They Used For
   How Do They Differ From a Personal Computer?
   Where Are They Now
   Main Parts of Supercomputers
   Processor Types
   Conclusion
   References
Supercomputers
   The category of computers that includes the
    fastest and most powerful (most expensive)
    ones available at any given time.
   Designed to solve complex mathematical
    equations and computational problems very
    quickly.
What are They Used For

   Climate prediction & Weather forecasting
What are They Used For (cont.)


   Computational chemistry
   Crash analysis
   Cryptography
   Nuclear simulation
   Structural analysis
How Do They Differ From a
Personal Computer
   Cost
       range from $100,000s to $1,000,000s
   Environment
       most require environmentally controlled rooms
   Peripherals
       lack sound cards, graphic boards, keyboards, etc.
       accessed via workstation or PC
   Programming language
       FORTRAN
History

   Seymour Cray (1925-1996)
       Developed CDC 1604 – first fully transistorized
        supercomputer (1958)
       CDC 6600 (1965), 9 MFlops
       Founded Cray Research in 1972 (now Cray Inc.)
           CRAY-1 (1976), $8.8 million, 160 MFlops
           CRAY-2 (1985)
           CRAY-3 (1989)
Early Timeline of Supercomputers
 Period      Supercomputer                      Peak speed                       Location

1943-1944   Colossus             5000 characters per second    Bletchley Park, England
1945-1950   Manchester Mark I    500 instructions per second   University of Manchester, England
                                 20 KIPS (CRT memory)          Massachusetts Institute of Technology,
1950-1955   MIT Whirlwind
                                 40 KIPS (Core)                Cambridge, MA
                                 40 KIPS
1956-1958   IBM 704                                             
                                 12 kiloflops
                                 40 KIPS
1958-1959   IBM 709                                             
                                 12 kiloflops
1959-1960   IBM 7090             210 kiloflops                 U.S. Air Force BMEWS (RADC), Rome, NY
1960-1961   LARC                 500 kiloflops (2 CPUs)        Lawrence Livermore Laboratory, California
                                 1.2 MIPS
1961-1964   IBM 7030 "Stretch"                                 Los Alamos National Laboratory, New Mexico
                                 ~600 kiloflops
                                 10 MIPS
1965-1969   CDC 6600                                           Lawrence Livermore Laboratory, California
                                 3 megaflops
1969-1975   CDC 7600             36 megaflops                  Lawrence Livermore Laboratory, California
                                 100 megaflops (vector),
1974-1975   CDC Star-100                                       Lawrence Livermore Laboratory, California
                                 ~2 megaflops (scalar)
                                 80 megaflops (vector),        Los Alamos National Laboratory, New Mexico
1975-1983   Cray-1
                                 72 megaflops (scalar)         (1976)
Where Are They Now

   www.top500.org
   List released twice a year
   Scores based on Linpack benchmark
   Solve dense system of linear equations
   Speed measured in floating point operations
    per second (FLOPS)
Architectures - SMP
   Symmetric Shared-
    Memory
    Multiprocessing
    (SMP)
       Share memory
       Common OS
       Programs are divided
        into subtasks (threads)
        among all processors
        (multithreading)
Architectures – MPP
   Massively Parallel Processing (MPP)
       Individual memory for each processor
       Individual OS’s
       Messaging interface for communication
       200+ processors can work on same application




        1. A large retailer wants to know how many camcorders the company sold in
                                                                                            3. Each sub-query is assigned to a specific processor in the system. To
                1998, and sends that query to the MPP system.                               allow this to happen, the database was previously partitioned. For
        2. The query goes out to one of the processors which acts as the                    example, a sales tracking database might be broken down by month, and
                coordinator, it breaks up the query for optimum performance. For
                example, it could break the query up by month; this “sub-query”              each processor holds data for one month’s worth of sales information.
                                                                                    4. The responses to the queries are returned to a processor to be coordinated—for
                then goes to all the processors at the same time.
                                                                                             example, each month is added up
                                                                                    5. Final answer is returned to the user.
Architectures – Clustering

   Grid computing
   Many servers connected together
   Relies heavily on network speed
   Easily upgraded with addition of more servers
Processor Types

   Vector processing
       Expensive
       NEC Earth Simulator
   Scalar processing
   Grid computing
       Based on off the shelf parts (ordinary CPUs)
BlueGene/L

   IBM
   MPP (massively parallel processing)
   #1 on top500 as of November 2004
   32,768 processors (700Mhz)
   70.72 Teraflops (trillions of FLOPS)
   Runs linux
   DNA, climate simulation, financial risk
   Cost more than $100 million
BlueGene/L System Layout
   2 Processors
       Node communication
       Mathematical calculations
BlueGene/L Compute Card
BlueGene/L Node Board
BlueGene/L Cabinet
Some of the Others

   #2 - Columbia (NASA, USA) – 51.87 TFlops
   #3 - Earth Simulator (Japan) – 35.86 TFlops
   #4 - MareNostrum (Spain) – 20.53 TFlops
   #5 - Thunder (USA) – 19.94 TFlops
The Future
References
   http://www.top500.org/
   http://www.pcquest.com/content/Supercomputer/102051
    004.asp
   http://news.com.com/2100-1008_3-1000421.html?
    tag=fd_lede2_hed
   http://www.research.ibm.com/bluegene/index.html
   http://www.llnl.gov/asci/platforms/bluegene/papers/2hard
    ware_overview.pdf
   http://www.hpce.nec.com/451+M5f7cd421b8e.0.html
   http://www.cray.com/about_cray/history.html
   http://www.serc.iisc.ernet.in/~govind/243/L7-PA-Intro.pdf
   http://www.computerworld.com/hardwaretopic
    s/hardware/server/story/0,10801,43504,00.ht
    ml

More Related Content

What's hot (20)

Top 10 Supercomputer 2014
Top 10 Supercomputer 2014Top 10 Supercomputer 2014
Top 10 Supercomputer 2014
 
Super Computers
Super ComputersSuper Computers
Super Computers
 
Super computer
Super computerSuper computer
Super computer
 
Super computers
Super computersSuper computers
Super computers
 
World’s Fastest Supercomputer | Tianhe - 2
World’s Fastest Supercomputer |  Tianhe - 2World’s Fastest Supercomputer |  Tianhe - 2
World’s Fastest Supercomputer | Tianhe - 2
 
Super-Computer Architecture
Super-Computer Architecture Super-Computer Architecture
Super-Computer Architecture
 
Param yuva ii
Param yuva iiParam yuva ii
Param yuva ii
 
Super computers by rachna
Super computers by  rachnaSuper computers by  rachna
Super computers by rachna
 
Cray-1 The First Supercomputer
Cray-1 The First SupercomputerCray-1 The First Supercomputer
Cray-1 The First Supercomputer
 
Super computer
Super computerSuper computer
Super computer
 
Supercomputer @ manarat university by reza
Supercomputer  @ manarat university by rezaSupercomputer  @ manarat university by reza
Supercomputer @ manarat university by reza
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
 
Tesla personal super computer
Tesla personal super computerTesla personal super computer
Tesla personal super computer
 
Supercomputer
SupercomputerSupercomputer
Supercomputer
 
Super computer 2017
Super computer 2017Super computer 2017
Super computer 2017
 
Supercomputer ppt
Supercomputer pptSupercomputer ppt
Supercomputer ppt
 
Super Computer
Super ComputerSuper Computer
Super Computer
 
Super computer ppt
Super computer pptSuper computer ppt
Super computer ppt
 
Super computer
Super computerSuper computer
Super computer
 
SUPERCOMPUTER
SUPERCOMPUTERSUPERCOMPUTER
SUPERCOMPUTER
 

Viewers also liked

Introduction History Significance of mainframe computer
Introduction History Significance of mainframe computerIntroduction History Significance of mainframe computer
Introduction History Significance of mainframe computerSyed Zartaj ali
 
Mainframe
MainframeMainframe
Mainframeshivas
 
basics of computer system ppt
basics of computer system pptbasics of computer system ppt
basics of computer system pptSuaj
 
Supercomputador S.Dumont - Top500.org - 146º - 2015
Supercomputador S.Dumont - Top500.org - 146º - 2015Supercomputador S.Dumont - Top500.org - 146º - 2015
Supercomputador S.Dumont - Top500.org - 146º - 2015Robson da Costa
 
Os 12 top super computadores
Os 12 top super computadoresOs 12 top super computadores
Os 12 top super computadoresPedro Domacena
 
Titan o supercomputador
Titan o supercomputadorTitan o supercomputador
Titan o supercomputadortacianarangel
 
Building SuperComputers @ Home
Building SuperComputers @ HomeBuilding SuperComputers @ Home
Building SuperComputers @ HomeAbhishek Parolkar
 
Supercomputers and Supernetworks are Transforming Research
Supercomputers and Supernetworks are Transforming ResearchSupercomputers and Supernetworks are Transforming Research
Supercomputers and Supernetworks are Transforming ResearchLarry Smarr
 
Graph Data Processing With uRIKA Appliance
Graph Data Processing With uRIKA ApplianceGraph Data Processing With uRIKA Appliance
Graph Data Processing With uRIKA ApplianceDavid Prat
 
Does multi-tasking increase productivity?
Does multi-tasking increase productivity?Does multi-tasking increase productivity?
Does multi-tasking increase productivity?wfoneil
 
microprocessor architecture
microprocessor architecture microprocessor architecture
microprocessor architecture Nadeem Hilal Wani
 
Computer fundamentals brr
Computer fundamentals brrComputer fundamentals brr
Computer fundamentals brrRagini Bajpai
 

Viewers also liked (18)

Mainframe
MainframeMainframe
Mainframe
 
Introduction History Significance of mainframe computer
Introduction History Significance of mainframe computerIntroduction History Significance of mainframe computer
Introduction History Significance of mainframe computer
 
Mainframe
MainframeMainframe
Mainframe
 
Mainframe Computers
Mainframe ComputersMainframe Computers
Mainframe Computers
 
basics of computer system ppt
basics of computer system pptbasics of computer system ppt
basics of computer system ppt
 
Laser ppt
Laser pptLaser ppt
Laser ppt
 
Supercomputador S.Dumont - Top500.org - 146º - 2015
Supercomputador S.Dumont - Top500.org - 146º - 2015Supercomputador S.Dumont - Top500.org - 146º - 2015
Supercomputador S.Dumont - Top500.org - 146º - 2015
 
Top 10 dos supercomputadores
Top 10 dos supercomputadoresTop 10 dos supercomputadores
Top 10 dos supercomputadores
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
 
Os 12 top super computadores
Os 12 top super computadoresOs 12 top super computadores
Os 12 top super computadores
 
Titan o supercomputador
Titan o supercomputadorTitan o supercomputador
Titan o supercomputador
 
Building SuperComputers @ Home
Building SuperComputers @ HomeBuilding SuperComputers @ Home
Building SuperComputers @ Home
 
Chapter 9 v.0
Chapter 9 v.0Chapter 9 v.0
Chapter 9 v.0
 
Supercomputers and Supernetworks are Transforming Research
Supercomputers and Supernetworks are Transforming ResearchSupercomputers and Supernetworks are Transforming Research
Supercomputers and Supernetworks are Transforming Research
 
Graph Data Processing With uRIKA Appliance
Graph Data Processing With uRIKA ApplianceGraph Data Processing With uRIKA Appliance
Graph Data Processing With uRIKA Appliance
 
Does multi-tasking increase productivity?
Does multi-tasking increase productivity?Does multi-tasking increase productivity?
Does multi-tasking increase productivity?
 
microprocessor architecture
microprocessor architecture microprocessor architecture
microprocessor architecture
 
Computer fundamentals brr
Computer fundamentals brrComputer fundamentals brr
Computer fundamentals brr
 

Similar to Supercomputers

Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...BigDataEverywhere
 
The Parallel Computing Revolution Is Only Half Over
The Parallel Computing Revolution Is Only Half OverThe Parallel Computing Revolution Is Only Half Over
The Parallel Computing Revolution Is Only Half Overinside-BigData.com
 
Harnessing the Killer Micros
Harnessing the Killer MicrosHarnessing the Killer Micros
Harnessing the Killer MicrosJim Belak
 
Barcelona Supercomputing Center, Generador de Riqueza
Barcelona Supercomputing Center, Generador de RiquezaBarcelona Supercomputing Center, Generador de Riqueza
Barcelona Supercomputing Center, Generador de RiquezaFacultad de Informática UCM
 
Science and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraScience and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraLarry Smarr
 
Connection Machine
Connection MachineConnection Machine
Connection Machinebutest
 
An Overview of Intel TFLOPS Super Computer
An Overview of Intel TFLOPS Super ComputerAn Overview of Intel TFLOPS Super Computer
An Overview of Intel TFLOPS Super ComputerSerwer Alam
 
Future of microprocessor in applied physics
Future of microprocessor in applied physicsFuture of microprocessor in applied physics
Future of microprocessor in applied physicsRakeshPatil2528
 
HPC Cluster Computing from 64 to 156,000 Cores 
HPC Cluster Computing from 64 to 156,000 Cores HPC Cluster Computing from 64 to 156,000 Cores 
HPC Cluster Computing from 64 to 156,000 Cores inside-BigData.com
 
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR SCIENTIFIC COMPUTING
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR  SCIENTIFIC COMPUTINGCLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR  SCIENTIFIC COMPUTING
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR SCIENTIFIC COMPUTINGDavid Ramirez
 
AWS Customer Presentation - Cycle Computing - AWS Summit 2012 - NYC
AWS Customer  Presentation - Cycle Computing - AWS Summit 2012 - NYCAWS Customer  Presentation - Cycle Computing - AWS Summit 2012 - NYC
AWS Customer Presentation - Cycle Computing - AWS Summit 2012 - NYCAmazon Web Services
 
Reservoir engineering in a HPC (zettaflops) world: a ‘disruptive’ presentation
Reservoir engineering in a HPC (zettaflops) world:  a ‘disruptive’ presentationReservoir engineering in a HPC (zettaflops) world:  a ‘disruptive’ presentation
Reservoir engineering in a HPC (zettaflops) world: a ‘disruptive’ presentationHans Haringa
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceinside-BigData.com
 
Technology trends Moore’s law
Technology trends Moore’s lawTechnology trends Moore’s law
Technology trends Moore’s lawSyed Zaid Irshad
 
Valladolid final-septiembre-2010
Valladolid final-septiembre-2010Valladolid final-septiembre-2010
Valladolid final-septiembre-2010TELECOM I+D
 
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)Heiko Joerg Schick
 

Similar to Supercomputers (20)

Supercomputers
SupercomputersSupercomputers
Supercomputers
 
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
 
The Parallel Computing Revolution Is Only Half Over
The Parallel Computing Revolution Is Only Half OverThe Parallel Computing Revolution Is Only Half Over
The Parallel Computing Revolution Is Only Half Over
 
Harnessing the Killer Micros
Harnessing the Killer MicrosHarnessing the Killer Micros
Harnessing the Killer Micros
 
Barcelona Supercomputing Center, Generador de Riqueza
Barcelona Supercomputing Center, Generador de RiquezaBarcelona Supercomputing Center, Generador de Riqueza
Barcelona Supercomputing Center, Generador de Riqueza
 
Hpc 2
Hpc 2Hpc 2
Hpc 2
 
Science and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraScience and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated Era
 
Connection Machine
Connection MachineConnection Machine
Connection Machine
 
An Overview of Intel TFLOPS Super Computer
An Overview of Intel TFLOPS Super ComputerAn Overview of Intel TFLOPS Super Computer
An Overview of Intel TFLOPS Super Computer
 
Nae
NaeNae
Nae
 
Nae
NaeNae
Nae
 
Future of microprocessor in applied physics
Future of microprocessor in applied physicsFuture of microprocessor in applied physics
Future of microprocessor in applied physics
 
HPC Cluster Computing from 64 to 156,000 Cores 
HPC Cluster Computing from 64 to 156,000 Cores HPC Cluster Computing from 64 to 156,000 Cores 
HPC Cluster Computing from 64 to 156,000 Cores 
 
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR SCIENTIFIC COMPUTING
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR  SCIENTIFIC COMPUTINGCLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR  SCIENTIFIC COMPUTING
CLOUD COMPUTING: AN ALTERNATIVE PLATFORM FOR SCIENTIFIC COMPUTING
 
AWS Customer Presentation - Cycle Computing - AWS Summit 2012 - NYC
AWS Customer  Presentation - Cycle Computing - AWS Summit 2012 - NYCAWS Customer  Presentation - Cycle Computing - AWS Summit 2012 - NYC
AWS Customer Presentation - Cycle Computing - AWS Summit 2012 - NYC
 
Reservoir engineering in a HPC (zettaflops) world: a ‘disruptive’ presentation
Reservoir engineering in a HPC (zettaflops) world:  a ‘disruptive’ presentationReservoir engineering in a HPC (zettaflops) world:  a ‘disruptive’ presentation
Reservoir engineering in a HPC (zettaflops) world: a ‘disruptive’ presentation
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
 
Technology trends Moore’s law
Technology trends Moore’s lawTechnology trends Moore’s law
Technology trends Moore’s law
 
Valladolid final-septiembre-2010
Valladolid final-septiembre-2010Valladolid final-septiembre-2010
Valladolid final-septiembre-2010
 
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)
QPACE - QCD Parallel Computing on the Cell Broadband Engine™ (Cell/B.E.)
 

Recently uploaded

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsAndrey Dotsenko
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 

Recently uploaded (20)

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 

Supercomputers

  • 1. Overview of Supercomputers Presented by: Mehmet Demir 20090694 ENG-102
  • 2. Table of Contents  Introduction  What are They Used For  How Do They Differ From a Personal Computer?  Where Are They Now  Main Parts of Supercomputers  Processor Types  Conclusion  References
  • 3. Supercomputers  The category of computers that includes the fastest and most powerful (most expensive) ones available at any given time.  Designed to solve complex mathematical equations and computational problems very quickly.
  • 4. What are They Used For  Climate prediction & Weather forecasting
  • 5. What are They Used For (cont.)  Computational chemistry  Crash analysis  Cryptography  Nuclear simulation  Structural analysis
  • 6. How Do They Differ From a Personal Computer  Cost  range from $100,000s to $1,000,000s  Environment  most require environmentally controlled rooms  Peripherals  lack sound cards, graphic boards, keyboards, etc.  accessed via workstation or PC  Programming language  FORTRAN
  • 7. History  Seymour Cray (1925-1996)  Developed CDC 1604 – first fully transistorized supercomputer (1958)  CDC 6600 (1965), 9 MFlops  Founded Cray Research in 1972 (now Cray Inc.)  CRAY-1 (1976), $8.8 million, 160 MFlops  CRAY-2 (1985)  CRAY-3 (1989)
  • 8. Early Timeline of Supercomputers Period Supercomputer Peak speed Location 1943-1944 Colossus 5000 characters per second Bletchley Park, England 1945-1950 Manchester Mark I 500 instructions per second University of Manchester, England 20 KIPS (CRT memory) Massachusetts Institute of Technology, 1950-1955 MIT Whirlwind 40 KIPS (Core) Cambridge, MA 40 KIPS 1956-1958 IBM 704   12 kiloflops 40 KIPS 1958-1959 IBM 709   12 kiloflops 1959-1960 IBM 7090 210 kiloflops U.S. Air Force BMEWS (RADC), Rome, NY 1960-1961 LARC 500 kiloflops (2 CPUs) Lawrence Livermore Laboratory, California 1.2 MIPS 1961-1964 IBM 7030 "Stretch" Los Alamos National Laboratory, New Mexico ~600 kiloflops 10 MIPS 1965-1969 CDC 6600 Lawrence Livermore Laboratory, California 3 megaflops 1969-1975 CDC 7600 36 megaflops Lawrence Livermore Laboratory, California 100 megaflops (vector), 1974-1975 CDC Star-100 Lawrence Livermore Laboratory, California ~2 megaflops (scalar) 80 megaflops (vector), Los Alamos National Laboratory, New Mexico 1975-1983 Cray-1 72 megaflops (scalar) (1976)
  • 9. Where Are They Now  www.top500.org  List released twice a year  Scores based on Linpack benchmark  Solve dense system of linear equations  Speed measured in floating point operations per second (FLOPS)
  • 10. Architectures - SMP  Symmetric Shared- Memory Multiprocessing (SMP)  Share memory  Common OS  Programs are divided into subtasks (threads) among all processors (multithreading)
  • 11. Architectures – MPP  Massively Parallel Processing (MPP)  Individual memory for each processor  Individual OS’s  Messaging interface for communication  200+ processors can work on same application 1. A large retailer wants to know how many camcorders the company sold in 3. Each sub-query is assigned to a specific processor in the system. To 1998, and sends that query to the MPP system. allow this to happen, the database was previously partitioned. For 2. The query goes out to one of the processors which acts as the example, a sales tracking database might be broken down by month, and coordinator, it breaks up the query for optimum performance. For example, it could break the query up by month; this “sub-query” each processor holds data for one month’s worth of sales information. 4. The responses to the queries are returned to a processor to be coordinated—for then goes to all the processors at the same time. example, each month is added up 5. Final answer is returned to the user.
  • 12. Architectures – Clustering  Grid computing  Many servers connected together  Relies heavily on network speed  Easily upgraded with addition of more servers
  • 13. Processor Types  Vector processing  Expensive  NEC Earth Simulator  Scalar processing  Grid computing  Based on off the shelf parts (ordinary CPUs)
  • 14. BlueGene/L  IBM  MPP (massively parallel processing)  #1 on top500 as of November 2004  32,768 processors (700Mhz)  70.72 Teraflops (trillions of FLOPS)  Runs linux  DNA, climate simulation, financial risk  Cost more than $100 million
  • 15. BlueGene/L System Layout  2 Processors  Node communication  Mathematical calculations
  • 19. Some of the Others  #2 - Columbia (NASA, USA) – 51.87 TFlops  #3 - Earth Simulator (Japan) – 35.86 TFlops  #4 - MareNostrum (Spain) – 20.53 TFlops  #5 - Thunder (USA) – 19.94 TFlops
  • 21. References  http://www.top500.org/  http://www.pcquest.com/content/Supercomputer/102051 004.asp  http://news.com.com/2100-1008_3-1000421.html? tag=fd_lede2_hed  http://www.research.ibm.com/bluegene/index.html  http://www.llnl.gov/asci/platforms/bluegene/papers/2hard ware_overview.pdf  http://www.hpce.nec.com/451+M5f7cd421b8e.0.html  http://www.cray.com/about_cray/history.html  http://www.serc.iisc.ernet.in/~govind/243/L7-PA-Intro.pdf  http://www.computerworld.com/hardwaretopic s/hardware/server/story/0,10801,43504,00.ht ml