SlideShare a Scribd company logo
1
Dongyezhan Liu 1421941
Faculty of Technology and Built Environment
DEPARTMENT OF CIVIL ENGINEERING
ENGINEERING DEVELOPMENT PROJECT (ENGG
MG7001/MG7101)
Structural design of a four storey
office building
Dongyezhan Liu
Disclaimer: Dongyezhan Liu
This document is a report on << Proposal for Structural design of a four storey office
building>> that was carried out as part of a student learning exercise. It has been marked and
awarded a grade. However, regardless of the grade awarded, there is no guarantee that the
contents of this document will be free from errors, inconsistencies, or discrepancies. While this
document may contain findings and recommendations that could be of use to the client, or indeed
anyone else reading this report, neither Unitec, the author of this report, nor any of the persons
mentioned under the Acknowledgements section of this document, shall bear any responsibility or
liability; should the client or anyone else, upon implementing the design or utilising any of the
findings and recommendations contained within this document, incur any harm, damage, liability,
injury, or any other kind of loss whatsoever.
October 2016
2
Dongyezhan Liu 1421941
Permission Statement
I hereby, give ------- OR don’t give -------- permission for my research/design project report
entitled:
_____________Structural design of a four storey office building
to be held in the Unitec Library.
Course: ___________Bachelor of Engineering Technology (Civil) ________
Year of completion: _____2016___
Department/School of _________Engineering_________________
I agree to this research being consulted for research or study purposes only provided that due
acknowledgement of its use is made where appropriate and any copying is made in
accordance with the Copyright Act 1994.
I agree to this research being available for interlibrary loan.
I have made all efforts to ensure that the information contained in the report is accurate. I
will not be held responsible for any inaccuracies. Also, I agree to this work being copied for
archive, external moderation, monitoring, promotional and future learning purposes.
Name: ________Dongyezhan Liu______
Signed: _______Dongyezhan Liu_______ Date: _____10/10/2016______
✓
3
Dongyezhan Liu 1421941
Declaration for Ethical Approval of Research/Design Project
I ________Dongyezhan Liu_________ declare that this research or design project:
(Student’s full name)
Either
 Does not involve humans as participants?
Or
 Has ethical approval from UREC (as included in this project report)?
Signed: ________Dongyezhan Liu_______ Date: _____10/10/2016______
(Signature)
4
Dongyezhan Liu 1421941
Executive Summary
The design of this project is about a 24×30 mm2
four storey reinforced concrete building
located on Auckland centre region. This project is focusing on structural frame analyses and
critical beams and columns design based on calculating the permanent, imposed and
Earthquake actions through utilizing Multi-frame program. While this project is in process, to
get start with the design ideas, the New Zealand standards, design concept, structural factors
and possible procedures relating to this project have been studied and learned to get
methodology and literature view done. The basic theory of this project is to design the
actions based on concrete frame. Meanwhile, the maximum bending moment, shear force
and axial load diagram are analysed through the different situations from combinations of
actions. The critical columns and beams design are undertaken from the BM, SF and AL
diagram. The capacity of beams and columns will be counted. All of these are compliant with
NZS 1170 series -Structural design actions and NZS 3101:2006, Concrete Structures Standard.
The detailed drawings are included.
Acknowledgement
I would like to express my heartfelt thanks to my tutor Dr. Sherif Beskhyroun. This project
cannot be successfully completed without his great guidance and patience. In the process I
deal with this project, I have received many constructive suggestions and effective feedbacks
from him.
Finally, I would like to thank my parents and family for all the supports throughout this
project.
5
Dongyezhan Liu 1421941
Table of Contents
1. Introduction........................................................................................................................8
1.1. Description of the building..........................................................................................8
1.2. Literature views.........................................................................................................10
1.3. Objectives..................................................................................................................11
1.4. Reinforced concrete..................................................................................................11
1.5. Structural considerations and assumptions..............................................................12
1.5.1. Gravity load........................................................................................................12
1.5.2. Material properties............................................................................................13
1.6. Durability...................................................................................................................14
1.7. Fire resistance ...........................................................................................................14
2. Methodology.....................................................................................................................14
2.1. New Zealand standards.............................................................................................14
2.2. Multi-frame ...............................................................................................................15
3. Frame building ..................................................................................................................15
3.1. Frame building...........................................................................................................15
3.2. Preliminary member sizes.........................................................................................16
4. Actions ..............................................................................................................................17
4.1. Longitudinal actions ..................................................................................................17
4.1.1. Permanent actions G .........................................................................................17
4.1.2. Imposed action Q...............................................................................................18
4.2. Transversal action .....................................................................................................19
4.2.1. Permanent actions G .........................................................................................19
4.2.2. Imposed action Q...............................................................................................20
4.3. Earthquake action .....................................................................................................21
5. Structure analysis .............................................................................................................25
5.1. Longitudinal section ..................................................................................................26
5.2. Transversal section....................................................................................................29
6. Beams Design....................................................................................................................31
6.1. Design Beams for longitudinal section......................................................................31
6.1.1. Roof level (Reinforcement bars)........................................................................32
6
Dongyezhan Liu 1421941
6.1.2. Roof level (Stirrups) ...........................................................................................37
6.1.3. Level 1-3 (Reinforcement bars)..........................................................................39
6.1.4. Level 1-3 (Stirrups).............................................................................................44
6.2. Design Beams for transversal section .......................................................................46
6.2.1. Roof level (Reinforcement bars)........................................................................46
6.2.2. Roof level (Stirrups) ...........................................................................................52
6.2.3. Level 1-3 (Reinforcement bars)..........................................................................54
6.2.4. Level 1-3 (Stirrups).............................................................................................59
7. Column Design..................................................................................................................61
7.1. Marginal columns (Longitudinal section)..................................................................61
7.1.1. Roof level ...........................................................................................................61
7.1.2. Level 3 ................................................................................................................63
7.1.3. Level 2 ................................................................................................................65
7.1.4. Level 1 ................................................................................................................67
7.2. Marginal columns (Transversal section) ...................................................................69
7.2.1. Roof level ...........................................................................................................69
7.2.2. Level 3 ................................................................................................................71
7.2.3. Level 2 ................................................................................................................73
7.2.4. Level 1.....................................................................................................................76
7.3. Internal columns .......................................................................................................78
7.3.1. Roof level ...........................................................................................................78
7.3.2. Level 3 ................................................................................................................79
7.3.3. Level 2 ................................................................................................................81
7.3.4. Level 1 ................................................................................................................82
8. Conclusions.......................................................................................................................83
9. References........................................................................................................................84
10. Appendices....................................................................................................................84
10.1. Longitudinal section combinations........................................................................84
10.1.1. 1.35G ..............................................................................................................84
10.1.2. 1.2G+1.5Q1 .....................................................................................................86
10.1.3. 1.2G+1.5Q2 ....................................................................................................87
10.1.4. 1.2G+1.5Q1+1.5Q2.........................................................................................89
10.1.5. G+Eu+𝜑𝑐𝑄......................................................................................................90
7
Dongyezhan Liu 1421941
10.2. Transversal section................................................................................................92
10.2.1. 1.35G ..............................................................................................................92
10.2.2. 1.2G+1.5Q1 ....................................................................................................93
10.2.3. 1.2G+1.5Q2 ....................................................................................................95
10.2.4. 1.2G+1.5Q1+1.5Q2.........................................................................................96
10.2.5. G+Eu+𝜑𝑐𝑄......................................................................................................98
Figure 1 longitudinal section ......................................................................................................9
Figure 2 Transversal section.......................................................................................................9
Figure 3 Plan view ....................................................................................................................10
Figure 4 Table 3.2 from the NZS1170.1 structural design action.............................................12
Figure 5 Table 3.1 from NZS1170.0 general principles.............................................................13
Figure 6 Table3.6 from NZS3101:2006 Part1 ...........................................................................14
Figure 7 Floor plan....................................................................................................................16
Figure 8 Clause 9.4.1.2 Beams with rectangular cross sections NZS 3101.......................16
Figure 9 Permanent actions G of longitudinal section .............................................................18
Figure 10 Imposed actions Q of longitudinal section ...............................................................19
Figure 11 Permanent actions G of transversal section.............................................................20
Figure 12 Imposed actions Q of transversal section.................................................................21
Figure 13 Earthquake actions (Longitudinal section) ...............................................................24
. Figure 14 Deflection due to Earthquake actions (Longitudinal section).................................24
Figure 15 Earthquake actions (Transversal section).................................................................25
Figure 16 Deflection due to Earthquake actions (Transversal section)....................................25
Figure 17 Maximum bending moment diagram for longitudinal section.................................26
Figure 18 Maximum shear force diagram for longitudinal section ..........................................27
Figure 19 Maximum axial load diagram for longitudinal section .............................................28
Figure 20 Maximum bending moment diagram for transversal section ..................................29
Figure 21 Maximum shear force diagram for transversal section............................................30
Figure 22 Maximum axial load diagram for transversal section...............................................31
Figure 23 Maximum bending moment diagram for roof..........................................................32
Figure 24 Maximum negative bending moment......................................................................33
Figure 25 Maximum positive bending moment .......................................................................34
Figure 26 Maximum negative bending moment......................................................................35
Figure 27 Maximum positive bending moment .......................................................................36
Figure 28 Maximum bending moment diagram for level1-3 ...................................................39
Figure 29 Maximum negative bending moment......................................................................40
Figure 30 Maximum positive bending moment .......................................................................41
Figure 31 Maximum negative bending moment......................................................................42
Figure 32 Maximum positive bending moment .......................................................................43
Figure 33 Maximum bending moment diagram for roof transversal section ..................46
Figure 34 Maximum negative bending moment for transversal sction ...................................47
8
Dongyezhan Liu 1421941
Figure 35 Maximum positive bending moment for transversal section...................................48
Figure 36 Maximum negative bending moment for transversal section .................................49
Figure 37 Maximum positive bending moment for transversal section...................................50
Figure 38 Maximum bending moment diagram for level 1-3 (transversal section) .................54
Figure 39 Maximum negative bending moment for transversal section .................................54
Figure 40 Maximum positive bending moment .......................................................................56
Figure 41 Maximum negative bending moment for transversal section .................................57
Figure 42 Maximum positive bending moment for transversal section...................................58
Figure 43 Maximum shear force diagram for level 1-3 (transversal section)...........................59
Figure 44 Columns design for the whole building....................................................................61
1.Introduction
1.1. Description of the building
In recent years, Auckland city has been growing rapidly. And, more and more people decide
to work in the CBD. Therefore, there is a need to construct more office building regarding
market demand. My project is to design a four storey reinforced concrete building in central
Auckland.
In my design, the structural design will be divided mainly into two parts: manual structural
analyses and finite program (Multi-frame 2D). In other words, this design will focus on slabs,
columns, and beams. This building is 24*30m. And, the story height is 4.5m. The strand
height will be 3.5m for each level. The short edge will have 3 bays. Therefore, for each bay
9
Dongyezhan Liu 1421941
will be 8*10m in a rectangular shape. This building could be demonstrated in Multi-frame 2D.
Figure 1 longitudinal section
Figure 2 Transversal section
10
Dongyezhan Liu 1421941
Figure 3 Plan view
In the design part, the earthquake and wind actions will be considered in order to design the
resistance of reinforced concrete frame.
For more details, the capacity of the maximum load will be required to calculate to analyse
bending moment, shear force and axial force at critical sections under the ultimate strength
design. Due to safety consideration, there are two vital elements related to against failures.
This consideration includes serviceability limit state and ultimate limit state. The serviceability
limit state is to remain the elastic ensuring that the durability of the structures is on the
allowed range of normal working conditions. The ultimate limit state is providing ductility
prevented collapsed.
All the elements will be concerned with New Zealand concrete standards and structural
design action standards.
1.2. Literature views
The design of structures included the related elements are required to meet the standard for
stability, stiffness, strength, ductility, durability, robustness and fire resistance. (NZS3101:
2006)
11
Dongyezhan Liu 1421941
Reinforced concrete is one of the most widely used composite materials in modern building
constructions. It utilizes the concrete in resisting compression forces, and steel bars or wires,
to resist reasonable tension forces. (Noel, 1993)
For the earthquake actions, it is defined in the equivalent static forces. To analyse the
equivalent static forces, each level of the structure needs to be acted simultaneously. In this
part, the horizontal seismic shear will be considered for calculating the combination of
horizontal design action coefficient and total seismic weight of the building. (NZS170. 5:2002)
To satisfy the static equilibrium of the horizontal forces for each level of the building, the
shear force, V, is required to be equal in magnitude and opposite in direction to the full set of
equivalent static lateral forces acting at various heights above ground level (Lusa, 2016)
The destruction of the building of reinforced concrete elements in flexure could exist in 3
ways, tension, compression and balanced failure. They have been dictated by the volume of
longitudinal reinforcement in tension. (Lusa, 2016) (p=As/(b×d)) In this equation, the ratio of
reinforcement equals to the area of tension steel divided by effective section area of
concrete. (NZS3101: 2006)
The shear walls can be very efficient in resisting lateral loads originating from wind or
earthquakes. Well-designed shear walls in seismic areas can provide adequate structural
safety and give a great measure of protection against costly non-structural damage during
moderate seismic disturbances. (Park & Pauley, 1975)
1.3. Objectives
In my project, the design will be undertaken by the following approach:
Design the permanent and imposed actions
Design the earthquake and wind actions
Analyse the maximum axial force, shear force and bending moment using the multi-frame 2D
Design the specified columns
Design the specified beams
1.4. Reinforced concrete
It is most widely used materials in the world especially in construction (economic building
materials)
The maintenance cost of reinforced concrete is very low. And, in structure like footings,
dams, piers etc. reinforced concrete is the most economical construction material. Compared
to the use of steel in structure, reinforced concrete requires less skilled labour for the
erection of structure. Furthermore, Reinforced concrete, as a fluid material in the beginning,
can be economically moulded into a nearly limitless range of shapes.
It has great fire and weather resistance than other normal materials. (Such as: steel and
timber)
12
Dongyezhan Liu 1421941
Reinforced concrete has a high compressive strength and adequate tensile strength
compared to other building materials. Due to the provided reinforcement, reinforced
concrete can also withstand a good amount tensile stress.
1.5. Structural considerations and assumptions
1.5.1. Gravity load
 Permanent load
Double Tee Floors – 3.79 Kpa
Ceiling and services – 0.3 Kpa
Partition wall – 0.4 Kpa
 Imposed load
The purpose of this building is used for office building only. The heavy loading duty cannot be
applied on the level of building.
The roof level is assumed as other floors.
Figure 4 Table 3.2 from the NZS1170.1 structural design action
 Earthquake load
Important level =3 as the office building is high consequence for loss of human life.
13
Dongyezhan Liu 1421941
Figure 5 Table 3.1 from NZS1170.0 general principles
Z = 0.13 (Auckland region)
Site subsoil class C (shallow soil)
Design working life = 50 years, according to NZS3101:2006 Part1, The provisions of this
section shall apply to the detailing and specifying for durability of reinforced and pre-stressed
concrete structures and members with a specified intended life of 50 or 100 years.
Compliance with this section will ensure that the structure is sufficiently durable to satisfy the
requirements of the NZ Building Code throughout the life of the structure, with only normal
maintenance and without requiring reconstruction or major renovation. The 50 years
corresponds to the minimum structural performance life of a member to comply with that
code.
Limited ductile frame for the structure design
 Wind load
Due to the non-critical case compared with the earthquake load, the wind load is not took
into account in this project.
1.5.2. Material properties
-
Concrete density 𝜌𝑐 =24 kn/m3
- Concrete compressive strength f 𝑐
′
=30 Mpa (not less than 25MPa and not greater
than 100MPa)
- Modulus of elasticity for concrete Ec = (fc’)1/2 * 3200 + 6900 (25084MPa)
- Modulus of Elasticity for steel Es = 200000 MPa
- Main bending& shear reinforcement bar steel Grade 500E
- Main stirrups steel Grade 500
14
Dongyezhan Liu 1421941
1.6. Durability
According to NZS3101:2006 Part1, this project building is located at non-aggressive soil with
A2 exposure classification and is situated at protected environment.
Due to the standard, for fc’ = 30Mpa, the minimum required concrete cover is set up as
30mm for beams and columns.
Figure 6 Table3.6 from NZS3101:2006 Part1
1.7. Fire resistance
The fire resistance is assumed as 60 minutes throughout the office building.
2.Methodology
All the procedures of this project are analysed, calculated and considered through the New
Zealand Standards. For the details, auto CAD will be use to demonstrate specified drawings.
And, the analyses of the maximum of axial forces, shear forces and bending moments will be
utilized in Multi-frame 2D.
2.1. New Zealand standards
NZS1170: 2002 part 0: General principles
It provides general procedures and criteria for the structural design of a building or structure
in the limit states format. It covers limit states design, actions, and combinations of actions,
methods of analysis, robustness and confirmation of design. The objective of this standard is
to provide designers with general procedures and criteria for the structural design of
structures. It outlines a design methodology applied in accordance with established
engineering principles.
15
Dongyezhan Liu 1421941
NZS1170: 2002 part 1: Permanent, imposed and other actions
It specifies the varied situations in terms of the limit state design of structures used by
permanent, imposed, liquid pressure, ground water, rainwater pounding and earth pressure
actions.
NZS1170: 2002 part 2: Wind actions
It provides that the procedures to determine the winds speed resulting in any directions of
the building. Also, it shows that the criteria of wind actions undertaken in reasonable
structural design between different wind zone. (Except tornadoes)
NZS1170: 2002 part 5: Earthquake actions- New Zealand
It establishes the requirements of structural design for period of vibration, horizontal seismic
shear and equivalent static horizontal force.
NZS3101: 2006 Concrete structures standard (Part1- The design of concrete structures)
It outlines the verified methodology and compliant criteria of designing reinforced and pre-
stressed concrete structures with New Zealand Building Code. Additionally, it also has
summary tables to guide engineers design from aspects of beams, columns and connections.
2.2. Multi-frame
The Multi-frame program is the basic software which has been taught in the Unitec structure
class to design the structural frame. It includes the majority of materials about beams and
columns section. In this software, the permanent, imposed and earthquake action could be
inputted onto the different level of building. Also, there is possible to put all the basic static
actions into combination static actions to prepare the various situations. Also, the maximum
bending moment, shear force and axial load could be analysed for calculating the capacity for
critical beams and columns.
3. Frame building
3.1. Frame building
The frame is illustrated as below.
16
Dongyezhan Liu 1421941
Figure 7 Floor plan
3.2. Preliminary member sizes
In the AS/NZS 3101: part 1:2006 concrete standard, the table 2.1 & the clause 9.4.1. Design
of reinforced concrete beams will be used as main design principles for my project.
According to this:
Figure 8 Clause 9.4.1.2 Beams with rectangular cross sections NZS 3101
The depth, width and clear length between the faces of supports of members with
rectangular cross sections, to which moments are applied at both ends by adjacent beams,
columns or both, shall be such that:
17
Dongyezhan Liu 1421941
𝐿𝑛
𝑏𝑀
≀ 25
𝐿𝑛ℎ
𝑏 𝑀
2
≀ 100
Therefore, the beam sizes will be undertaken as:
From Table 2.1, fy= 500Mpa one end continuous
h ≥
𝐿
20
=
10000
20
= 500𝑚𝑚
fy=500Mpaboth end continuous h=600. 700, 800mm
h ≥
𝐿
25
=
10000
25
= 400𝑚𝑚
Design beams: 350×800 mm
mm
h
bw 400
2

mmbbb wce 5005050 
mm
bb
LLn ce
950050010000
22

Check: 2575.23
400
9500n

wb
L
OK
Check: 10078.20
nh
2

wb
L
OK
Check: 3
350
800
232 
b
h
OK
For the column sizes, from clause 10.4. Dimensions of columns and piers.
mmbbb wce 5005050 
Therefore, columns will be: 500×500mm
4.Actions
4.1. Longitudinal actions
4.1.1. Permanent actions G
Slabs
18
Dongyezhan Liu 1421941
Double Tee Floors = 3.79Kpa
Ceiling & services = 0.3Kpa
Partition wall= 0.4Kpa
mknGfloors /92.35879.34.03.0  
Beams
6.72kn/m240.80.351beams G
Columns
mG /kn6245.05.01columns  Numbers of columns: 4×4=16
Weight:
Roof: 6 ×
3.5
2
= 10.5𝑘𝑛 total: 10.5×16= 168kn
Level3: 6 × 
3.5
2
+
3.5
2
 = 21𝑘𝑛 total: 21×16= 336kn
Level2: 6 × 
3.5
2
+
3.5
2
 = 21𝑘𝑛 total: 21×16= 336kn
Level1: 6 × 
3.5
2
+
4.5
2
= 24𝑘𝑛 total: 24×16= 384kn
Glazing& Certain wall
Gglazing=0.5Kpa
Figure 9 Permanent actions G of longitudinal section
4.1.2. Imposed action Q
For roof level:
19
Dongyezhan Liu 1421941
𝜑 𝑒 =
1.8
𝐎
= 0.12 = 0.122 ⟹ 𝜑 𝑒 = 0.25𝑘𝑝𝑎 (𝜑 𝑒 ≀ 0.25)
A=10×8=80m2
For level3, 2, & 1:
𝑄 𝑢 = 1 × 3 = 3𝑘𝑝𝑎
𝜑 𝑎 = 0.3 +
3
√𝐎
= 0.41 ⟹ 𝜑 𝑎 = 0.635𝑘𝑝𝑎 (0.5 ≀ 𝜑 𝑎 ≀ 1)
Figure 10 Imposed actions Q of longitudinal section
4.2. Transversal action
4.2.1. Permanent actions G
Slabs
Double Tee Floors = 3.79Kpa
Ceiling & services = 0.3Kpa
Partition wall= 0.4Kpa
mknGfloors /9.441079.34.03.0  
Beams
6.72kn/m240.80.351beams G
Columns
mG /kn6245.05.01columns  Numbers of columns: 4×4=16
Weight:
Roof: 6 ×
3.5
2
= 10.5𝑘𝑛 total: 10.5×16= 168kn
20
Dongyezhan Liu 1421941
Level3: 6 × 
3.5
2
+
3.5
2
 = 21𝑘𝑛 total: 21×16= 336kn
Level2: 6 × 
3.5
2
+
3.5
2
 = 21𝑘𝑛 total: 21×16= 336kn
Level1: 6 × 
3.5
2
+
4.5
2
= 24𝑘𝑛 total: 24×16= 384kn
Glazing& Certain wall
Gglazing=0.5Kpa
Figure 11 Permanent actions G of transversal section
4.2.2. Imposed action Q
For roof level:
𝜑 𝑒 =
1.8
𝐎
= 0.12 = 0.122 ⟹ 𝜑 𝑒 = 0.25𝑘𝑝𝑎 (𝜑 𝑒 ≀ 0.25)
A=10×8=80m2
For level3, 2, & 1:
𝑄 𝑢 = 1 × 3 = 3𝑘𝑝𝑎
𝜑 𝑎 = 0.3 +
3
√𝐎
= 0.41 ⟹ 𝜑 𝑎 = 0.635𝑘𝑝𝑎 (0.5 ≀ 𝜑 𝑎 ≀ 1)
21
Dongyezhan Liu 1421941
Figure 12 Imposed actions Q of transversal section
4.3. Earthquake action
Seismic weight:
Beams:
0.8 × 0.35 × 24 × (10 − 0.5) × (8 − 0.5) × 9 = 4309.2kn
Columns:
𝑊𝑟𝑜𝑜𝑓: (0.5 × 0.5 × 24) ×
3.5
2
× (4 × 4) = 168kn
6 × 
3.5
2
+
3.5
2
 = 21kn 𝑊3: 21×16= 336kn
6 × 
3.5
2
+
3.5
2
 = 21𝑘𝑛 𝑊2: 21×16= 336kn
6 × 
3.5
2
+
4.5
2
= 24𝑘𝑛 𝑊1: 24×16= 384kn
Glazing& Certain wall:
𝑊𝑟𝑜𝑜𝑓: 8 × 0.5 ×
3.5
2
= 7𝑘𝑛 ↓
𝑊3: 8 × 0.5 × (
3.5
2
+
3.5
2
) = 14𝑘𝑛 ↓
𝑊2: 8 × 0.5 × (
3.5
2
+
3.5
2
) = 14𝑘𝑛 ↓
22
Dongyezhan Liu 1421941
𝑊1: 8 × 0.5 × (
3.5
2
+
4.5
2
) = 16𝑘𝑛 ↓
𝜑 𝑒 𝑄:
φe = 0.3 From (NZS1170.5)
Wroof=0.3 × (0.25 × 8) × 10 × 3 = 18kn
W3=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn
W2=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn
W1=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn
𝑟𝒊 = 𝑮 𝒃𝒆𝒂𝒎𝒔 + 𝑮 𝒄𝒐𝒍𝒖𝒎𝒏𝒔 + 𝑮 𝒔𝒍𝒂𝒃𝒔 + 𝑮 𝒈𝒍𝒂𝒛𝒊𝒏𝒈 + 𝝋 𝒆 𝑞
𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 168 + 14 + 18 =7503.58kn
𝑊3 = 4309.2 + 2994.38 + 336 + 28 + 45.72 =7713.3kn
𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 336 + 28 + 45.72 =7713.3kn
𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 384 + 32 + 45.72 =7765.3kn
𝑊𝑖 = 𝐺 𝑏𝑒𝑎𝑚𝑠 + 𝐺𝑐𝑜𝑙𝑢𝑚𝑛𝑠 + 𝐺𝑠𝑙𝑎𝑏𝑠 + 𝐺 𝑔𝑙𝑎𝑧𝑖𝑛𝑔 + 𝜑 𝑒 𝑄
𝑟 𝒕 = 𝑟 𝒓𝒐𝒐𝒇 + 𝑟 𝟑 + 𝑟 𝟐 + 𝑟 𝟏 = 𝟑𝟎𝟔𝟗𝟓. 𝟒𝟖𝒌𝒏
V = 𝐶(𝑇) 𝑊𝑡 = 30695.08𝑘𝑛 (Assume𝐶(𝑇) = 1)
Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v +
𝑊𝑖ℎ𝑖
∑ 𝑊𝑖ℎ𝑖
+ 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛]
Roof 7503.58 15 112553.7 13125.075
3 7713.3 11.5 88702.95 8408.524
2 7713.3 8 61706.4 5849.408
1 7765.3 4.5 34943.85 3312.474
∑ 297906.9 ∑ 30695.48 √ OK
For internal frame: [Fi/5]
Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v +
𝑊𝑖ℎ𝑖
∑ 𝑊𝑖ℎ𝑖
+ 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛]
Roof 1500.716 15 22510.74 2625.015
3 1542.66 11.5 17740.59 1681.7
2 1542.66 8 12341.28 1169.882
23
Dongyezhan Liu 1421941
1 1553.06 4.5 6988.77 662.495
∑ 59581.38 ∑ 6139.092 √ OK
d4= 334.031 mm d3= 290.139 mm d2= 219.529 mm d1= 127.898 mm
Level Wi[kn] Fi[kn] di[m] 𝑊𝑖 𝑑𝑖
2 Fidi
Roof 1500.716 2625.015 0.334 167.414 876.755
3 1542.66 1681.7 0.29 129.738 487.693
2 1542.66 1169.882 0.22 74.665 257.374
1 1553.06 662.495 0.128 25.445 84.8
∑ 6139.092 √
OK
∑ 397.262 ∑ 1706.6
T = 2π√
∑(𝑊 𝑖 𝑑 𝑖
2)
𝑔 ∑(𝐹𝑖𝑑𝑖)
= 0.968𝑠
From NZS1170.5 Earthquake standard,
Thus, 𝐶ℎ(𝑇) = 1.222 when T=0.968s
Z= 0.13(Auckland)
Important level= 3
Design working life 50 years
Annual probability of exceedance 1/1000 →RS=Ru= 1.3
N(T, D)= 1
Annual probability of exceedance 1/250
Thus, 𝐶(𝑇) = 𝐶ℎ(𝑇) 𝑍𝑅𝑁(𝑇, 𝐷) → 𝐶(𝑇) =1.222×0.13×1=0.207
𝐶 𝑑(𝑇) =
𝐶(𝑇1) 𝑆 𝑝
𝐟 𝜇
≥ (
𝑍
20
+ 0.02) 𝑅 𝑢 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 0.03𝑅 𝑢
𝑆 𝑝 = 0.7 (𝜇 = 3) 𝐟𝜇 = 𝜇 = 3 (𝑆ℎ𝑎𝑙𝑙𝑜𝑀 𝑠𝑜𝑖𝑙, 𝑇 ≥ 0.7𝑠)
Check: 𝐶 𝑑(𝑇) =
0.207×0.7
3
= 0.048 ≥ 0.034  𝑂𝐟(≥ 0.039 𝑂𝐟)
Therefore, V = Cd(T)Wt = 0.048 × 6139.096 = 294.677kn
Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v +
𝑊𝑖ℎ𝑖
∑ 𝑊𝑖ℎ𝑖
+ 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛]
Roof 1500.716 15 22510.74 126
T Shallow soil
0.9 1.29
1 1.19
24
Dongyezhan Liu 1421941
3 1542.66 11.5 17740.59 80.722
2 1542.66 8 12341.28 56.154
1 1553.06 4.5 6988.77 31.8
∑ 59581.38 ∑ 294.677 √ OK
d4= 16.033 mm d3= 13.927 mm d2= 10.537 mm d1= 6.139 mm
Figure 13 Earthquake actions (Longitudinal section)
. Figure 14 Deflection due to Earthquake actions (Longitudinal section)
25
Dongyezhan Liu 1421941
Figure 15 Earthquake actions (Transversal section)
Figure 16 Deflection due to Earthquake actions (Transversal section)
5.Structure analysis
According to section 4 combinations of static actions from NZS1170.0 General Principles, to
use the combinations of actions for ultimate limit states in checking strength:
26
Dongyezhan Liu 1421941
Ed= 1.35G permanent action only (does not apply to pre-stressing forces)
Ed= 1.2G+1.5Q permanent and imposed action
Ed= G+Eu+𝜑𝑐 𝑄 where 𝜑𝑐 = 0.4 (for office building, from Table 4.1 in NZS1170.0 General
Principles)
All the above combinations of static actions are analysed in Multi-frame.
5.1. Longitudinal section
Figure 17 Maximum bending moment diagram for longitudinal section
27
Dongyezhan Liu 1421941
Figure 18 Maximum shear force diagram for longitudinal section
28
Dongyezhan Liu 1421941
Figure 19 Maximum axial load diagram for longitudinal section
29
Dongyezhan Liu 1421941
5.2. Transversal section
Figure 20 Maximum bending moment diagram for transversal section
30
Dongyezhan Liu 1421941
Figure 21 Maximum shear force diagram for transversal section
31
Dongyezhan Liu 1421941
Figure 22 Maximum axial load diagram for transversal section
6.Beams Design
6.1. Design Beams for longitudinal section
From NZS 3101 Part1: clause 9.3.8.4 Maximum diameter of longitudinal beam bar in internal
beam column joint zones. It says:
For nominally ductile structures the maximum diameter of longitudinal beam bars passing
through beam column joint zones shall not exceed the appropriate requirement given below
for internal beam column joints:
For the earthquake does not govern:
𝑑 𝑏
ℎ𝑐
≀ 6𝛌 𝑡 ×
√𝑓𝑐
′
𝑓𝑊(1+
𝑓 𝑠
𝑓 𝑊
)
where 𝛌 𝑡 = 1 (𝑜𝑛𝑒 𝑀𝑎𝑊𝑓𝑟𝑎𝑚𝑒) 𝑓𝑠 = 0.5𝑓𝑊
32
Dongyezhan Liu 1421941
Therefore, 𝑑 𝑏 = (6 +
√30
500×1.5
) × 500 = 21.9𝑚𝑚 → Choose HD20
6.1.1. Roof level (Reinforcement bars)
Figure 23 Maximum bending moment diagram for roof
33
Dongyezhan Liu 1421941
6.1.1.1. Point○a of maximum negative moment case 1.35G:
Figure 24 Maximum negative bending moment
As the picture above shows, the maximum positive bending moment is 315.765knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
315.765
0.85
= 371.488𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
371488000
0.85 × 350 × 684 × 30
= 60.85𝑚𝑚
jd=d −
𝑎
2
= 760 − 60.85 ÷ 2 = 729.575𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
371488000
500 × 729.575
= 1018.36𝑚𝑚2
AD20=314.16mm2
As/AD20=3.24 says 4 bars
→4HD20 is required (Asreq=1256.64mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
34
Dongyezhan Liu 1421941
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256 × 729.575 × 500 = 458.171𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.1.2. Point of ○b maximum positive moment case 1.35G:
Figure 25 Maximum positive bending moment
As the picture above shows, the maximum positive bending moment is 285.748knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
285.748
0.85
= 336.744𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
336744000
0.85 × 350 × 684 × 30
= 55.068𝑚𝑚
jd=d −
𝑎
2
= 760 − 55.068 ÷ 2 = 732.446𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
336744000
500 × 732.446
= 917.92𝑚𝑚2
AD20=314.16mm2
As/AD20=2.9 says 3 bars
35
Dongyezhan Liu 1421941
→3HD20 is required (Asreq=942.478mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 732.466 × 500 = 345.166𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.1.3. . Point ○c of maximum negative moment case 1.35G:
Figure 26 Maximum negative bending moment
As the picture above shows, the maximum positive bending moment is 530.063knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
530.063
0.85
= 623.604𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
623604000
0.85 × 350 × 684 × 30
= 102.151𝑚𝑚
36
Dongyezhan Liu 1421941
jd=d −
𝑎
2
= 760 − 102.151 ÷ 2 = 708.924𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
623604000
500 × 708.924
= 1759.3𝑚𝑚2
AD20=314.16mm2
As/AD20=5.6 says 6 bars
→6HD20 is required (Asreq=1884.956mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1884.956 × 708.924 × 500 = 668.145𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.1.4. Point ○d of maximum positive moment case 1.2G+1.5Q2:
Figure 27 Maximum positive bending moment
As the picture above shows, the maximum positive bending moment is 228.885knm.
37
Dongyezhan Liu 1421941
𝑀 𝑛 =
𝑀∗
𝜑
=
228.885
0.85
= 269.272𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
269272000
0.85 × 350 × 684 × 30
= 44.11𝑚𝑚
jd=d −
𝑎
2
= 760 − 44.11 ÷ 2 = 708.924𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
269272000
500 × 708.924
= 737.945𝑚𝑚2
AD20=314.16mm2
As/AD20=2.3 says 3 bars
→3HD20 is required (Asreq=942.478mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 737.945 × 500 = 347.748𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.2. Roof level (Stirrups)
38
Dongyezhan Liu 1421941
6.1.2.1. Point ○a of column face SF case 1.35G:
Asreq=942.478mm2
𝑉∗
= 248.797𝑘𝑛
Vn =
𝑉∗
𝜑
=
248.797
0.75
= 331.729𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
331729
350×760
= 1.247𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
942.478
350×760
= 0.0035
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.105√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.105√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.105√30 × 350 × 760 = 153.608𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 331.729 − 153.608 = 178.122kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
178122
= 335 𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 330𝑚𝑚
Check: s= 330mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 330
500
= 79.07𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 330 c/c
6.1.2.2. Point ○b of column face SF case 1.35G:
Asreq=1884.956mm2
𝑉∗
= 298.061𝑘𝑛
Vn =
𝑉∗
𝜑
=
298.061
0.75
= 397.415𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
397415
350×760
= 1.494𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
1884.956
350×760
= 0.0071
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.141√𝑓𝑐
′
39
Dongyezhan Liu 1421941
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.141√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.141√30 × 350 × 760 = 205.229𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 397.415 − 205.229 = 192.185kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
192185
= 310𝑚𝑚
Check: s= 310mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 310
500
= 74.28𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 310 c/c
6.1.3. Level 1-3 (Reinforcement bars)
Figure 28 Maximum bending moment diagram for level1-3
40
Dongyezhan Liu 1421941
6.1.3.1. Point○a of maximum negative moment case 1.2G+1.5Q2:
Figure 29 Maximum negative bending moment
As the picture above shows, the maximum positive bending moment is 449.84knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
449.84
0.85
= 529.224𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
529224000
0.85 × 350 × 684 × 30
= 86.69𝑚𝑚
jd=d −
𝑎
2
= 760 − 86.69 ÷ 2 = 716.654𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
529224000
500 × 716.654
= 1476.93𝑚𝑚2
AD20=314.16mm2
As/AD20=4.7 says 5 bars
→5HD20 is required (Asreq=1570.796mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
41
Dongyezhan Liu 1421941
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 716.654 × 500 = 562.859𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.3.2. Point○b of maximum positive moment case 1.2G+1.5Q2:
Figure 30 Maximum positive bending moment
As the picture above shows, the maximum positive bending moment is 392.742knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
392.742
0.85
= 462.049𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
462049000
0.85 × 350 × 684 × 30
= 75.687𝑚𝑚
jd=d −
𝑎
2
= 760 − 75.687 ÷ 2 = 722.156𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
462049000
500 × 722.156
= 1279.64𝑚𝑚2
AD20=314.16mm2
As/AD20=4.1 says 5 bars
42
Dongyezhan Liu 1421941
→5HD20 is required (Asreq=1570.796mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 722.156 × 500 = 562.859𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.3.3. Point○c of maximum negative moment case 1.2G+1.5Q1+1.5Q2:
Figure 31 Maximum negative bending moment
As the picture above shows, the maximum positive bending moment is 674.36knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
674.36
0.85
= 793.365𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
793365000
0.85 × 350 × 684 × 30
= 129.96𝑚𝑚
43
Dongyezhan Liu 1421941
jd=d −
𝑎
2
= 760 − 129.96 ÷ 2 = 695𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
793365000
500 × 695
= 2283𝑚𝑚2
AD20=314.16mm2
As/AD20=7.3 says 8 bars
→8HD20 is required (Asreq=2513.274mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 2513.274 × 695 × 500 = 873.388𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.3.4. Point○d of maximum positive moment case 1.2G+1.5Q2:
Figure 32 Maximum positive bending moment
As the picture above shows, the maximum positive bending moment is 339.337knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
339.337
0.85
= 399.22𝑘𝑛𝑚
44
Dongyezhan Liu 1421941
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
399220000
0.85 × 350 × 684 × 30
= 65.39𝑚𝑚
jd=d −
𝑎
2
= 760 − 65.39 ÷ 2 = 727.302𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
399220000
500 × 727.302
= 1097.81𝑚𝑚2
AD20=314.16mm2
As/AD20=3.5 says 4 bars
→4HD20 is required (Asreq=1256.637mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 727.302 × 500 = 456.977𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.1.4. Level 1-3 (Stirrups)
6.1.4.1. Point ○a of column face SF case 1.2G+1.5Q2:
Asreq=1570.796mm2
𝑉∗
= 335.079𝑘𝑛
45
Dongyezhan Liu 1421941
Vn =
𝑉∗
𝜑
=
335.079
0.75
= 446.772𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
446772
350×760
= 1.68𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
1570.796
350×760
= 0.0059
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.129√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.129√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.129√30 × 350 × 760 = 188.022𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 446.772 − 188.022 = 258.75kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
258750
= 230𝑚𝑚
Check: s= 230mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 230
500
= 55.11𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 230 c/c
6.1.4.2. Point ○b of column face SF case 1.2G+1.5Q1+1.5Q2:
Asreq=2513.274mm2
𝑉∗
= 374.692𝑘𝑛
Vn =
𝑉∗
𝜑
=
374.692
0.75
= 499.589𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
499589
350×760
= 1.878𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
2513.274
350×760
= 0.0094
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.164√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.164√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.164√30 × 350 × 760 = 239.644𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 499.589 − 239.644 = 259.946kn
46
Dongyezhan Liu 1421941
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
259946
= 220𝑚𝑚
Check: s= 220mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 220
500
= 52.72𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 220 c/c
6.2. Design Beams for transversal section
6.2.1. Roof level (Reinforcement bars)
Figure 33 Maximum bending moment diagram for roof transversal section
47
Dongyezhan Liu 1421941
6.2.1.1. Point○d of maximum negative moment case 1.2G+1.5Q1+1.5Q2:
Figure 34 Maximum negative bending moment for transversal sction
As the picture above shows, the maximum positive bending moment is 219.047 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
219.047
0.85
= 257.702𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
257702000
0.85 × 350 × 684 × 30
= 42.214𝑚𝑚
jd=d −
𝑎
2
= 760 − 42.214 ÷ 2 = 738.893𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
257702000
500 × 738.893
= 697.54𝑚𝑚2
AD20=314.16mm2
As/AD20=2.2 says 3 bars
→3HD20 is required (Asreq=942.478 mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
48
Dongyezhan Liu 1421941
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 738.893 × 500 = 348.195𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.1.2. point ○b of maximum positive moment case 1.35G:
Figure 35 Maximum positive bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 252.614 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
252.614
0.85
= 297.193𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
297193000
0.85 × 350 × 684 × 30
= 48.683𝑚𝑚
jd=d −
𝑎
2
= 760 − 48.683 ÷ 2 = 735.659𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
297193000
500 × 735.659
= 807.96𝑚𝑚2
AD20=314.16mm2
As/AD20=2.57 says 3 bars
49
Dongyezhan Liu 1421941
→3HD20 is required (Asreq=942.478mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 735.659 × 500 = 346.671𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.1.3. Point○c of maximum negative moment case 1.35G:
Figure 36 Maximum negative bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 402.042 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
402.042
0.85
= 472.991𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
472991000
0.85 × 350 × 684 × 30
= 77.48𝑚𝑚
50
Dongyezhan Liu 1421941
jd=d −
𝑎
2
= 760 − 77.48 ÷ 2 = 721.26𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
472991000
500 × 721.26
= 1311.57𝑚𝑚2
AD20=314.16mm2
As/AD20=4.17 says 5 bars
→5HD20 is required (Asreq=1570.796 mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 721.26 × 500 = 566.476𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.1.4. Point ○d of maximum positive moment case 1.2G+1.5Q1+1.5Q2:
Figure 37 Maximum positive bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 180.401 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
180.401
0.85
= 212.236𝑘𝑛𝑚
51
Dongyezhan Liu 1421941
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
212236000
0.85 × 350 × 684 × 30
= 34.766𝑚𝑚
jd=d −
𝑎
2
= 760 − 34.766 ÷ 2 = 742.617𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
212236000
500 × 742.617
= 571.59𝑚𝑚2
AD20=314.16mm2
As/AD20=1.82 says 2 bars
→2HD20 is required (Asreq=628.319mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 > 𝐎 𝑠𝑟𝑒𝑞 ( 𝑁𝑂𝑇 𝑂𝐟)
Thus, increase the dimensions.
Try HD24 AD24 = 452.389 mm2
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
24
2
= 758𝑚𝑚
Assume jd= 0.9d= 758×0.9= 682.2mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
212236000
0.85 × 350 × 682.2 × 30
= 34.7858𝑚𝑚
jd=d −
𝑎
2
= 760 − 34.7858 ÷ 2 = 740.571𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
212236000
500 × 740.571
= 573.17𝑚𝑚2
As/AD24=1.27 says 2 bars
→2HD24 is required (Asreq=904.779 mm2
)
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
52
Dongyezhan Liu 1421941
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 904.779 × 740.571 × 500 = 335.026𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.2. Roof level (Stirrups)
6.2.2.1. Point ○a of column face SF case 1.35G:
Asreq=942.478mm2
𝑉∗
= 237.826𝑘𝑛
Vn =
𝑉∗
𝜑
=
237.826
0.75
= 317.101𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
317101
350×760
= 1.192𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
942.478
350×760
= 0.0035
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.105√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.105√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.105√30 × 350 × 760 = 153.608𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 317.101 − 153.608 = 163.494kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
163494
= 360𝑚𝑚
Check: s= 360mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 360
500
= 86.266𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 360 c/c
53
Dongyezhan Liu 1421941
6.2.2.2. Point ○b of column face SF case 1.35G:
Asreq=1570.796 mm2
𝑉∗
= 284.524𝑘𝑛
Vn =
𝑉∗
𝜑
=
284.524
0.75
= 379.365𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
379365
350×760
= 1.426𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
1570.796
350×760
= 0.0059
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.129√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.129√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.129√30 × 350 × 760 = 188.022𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 379.365 − 188.022 = 191.343kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
191343
= 310𝑚𝑚
Check: s= 310mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 310
500
= 74.28𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 310 c/c
54
Dongyezhan Liu 1421941
6.2.3. Level 1-3 (Reinforcement bars)
Figure 38 Maximum bending moment diagram for level 1-3 (transversal section)
6.2.3.1. Point○a of maximum negative moment case 1.2G+1.5Q2:
Figure 39 Maximum negative bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 337.041 knm.
55
Dongyezhan Liu 1421941
𝑀 𝑛 =
𝑀∗
𝜑
=
337.041
0.85
= 396.519𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
396519000
0.85 × 350 × 684 × 30
= 64.953𝑚𝑚
jd=d −
𝑎
2
= 760 − 64.953 ÷ 2 = 727.523𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
396519000
500 × 727.523
= 1090.05𝑚𝑚2
AD20=314.16mm2
As/AD20=3.47 says 4 bars
→4HD20 is required (Asreq=1256.637 mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 727.523 × 500 = 457.116𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
56
Dongyezhan Liu 1421941
6.2.3.2. Point ○b of maximum positive moment case 1.2G+1.5Q2:
Figure 40 Maximum positive bending moment
As the picture above shows, the maximum positive bending moment is 318.837 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
318.837
0.85
= 375.102𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
375102000
0.85 × 350 × 684 × 30
= 61.445𝑚𝑚
jd=d −
𝑎
2
= 760 − 61.445 ÷ 2 = 729.278𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
375102000
500 × 729.278
= 1028.7𝑚𝑚2
AD20=314.16mm2
As/AD20=3.27says 4 bars
→4HD20 is required (Asreq=1256.637mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
57
Dongyezhan Liu 1421941
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 729.278 × 500 = 458.219𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.3.3. Point○c of maximum negative moment case 1.2G++1.5Q1+1.5Q2:
Figure 41 Maximum negative bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 523.994 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
523.994
0.85
= 616.464𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
616464000
0.85 × 350 × 684 × 30
= 100.982𝑚𝑚
jd=d −
𝑎
2
= 760 − 100.982 ÷ 2 = 709.509𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
616464000
500 × 709.509
= 1737.72𝑚𝑚2
AD20=314.16mm2
As/AD20=5.5 says 6 bars
58
Dongyezhan Liu 1421941
→6HD20 is required (Asreq=1884.956 mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1884.956 × 709.509 × 500 = 668.697𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.3.4. Point ○d of maximum positive moment case 1.2G+1.5Q2:
Figure 42 Maximum positive bending moment for transversal section
As the picture above shows, the maximum positive bending moment is 269.456 knm.
𝑀 𝑛 =
𝑀∗
𝜑
=
269.456
0.85
= 317.007𝑘𝑛𝑚
d = h − 𝐶𝑐 −
𝐷
2
= 800 − 30 −
20
2
= 760𝑚𝑚
Assume jd= 0.9d= 760×0.9= 684mm
∑ 𝐹 = 0 C=T
a =
𝑀 𝑛
0.85𝑏𝑓𝑐
′ 𝑗 𝑑
=
317007000
0.85 × 350 × 684 × 30
= 51.928𝑚𝑚
59
Dongyezhan Liu 1421941
jd=d −
𝑎
2
= 760 − 51.928 ÷ 2 = 734.063𝑚𝑚
𝐎 𝑠 =
𝑀 𝑛
𝑓𝑊 𝑗 𝑑
=
317007000
500 × 734.063
= 863.74𝑚𝑚2
AD20=314.16mm2
As/AD20=2.75says 3 bars
→3HD20 is required (Asreq=942.478mm2
)
Check: 𝐎 𝑚𝑖𝑛 =
√𝑓𝑐
′
4𝑓𝑊
𝑏 𝑀 𝑑 =
√30
4×500
× 350 × 800 = 728.471𝑚𝑚2
𝐎 𝑚𝑎𝑥 =
10+𝑓𝑐
′
6𝑓𝑊
𝑏 𝑀 𝑑 =
40
6×500
× 350 × 800 = 3546.667𝑚𝑚2
𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟)
𝑃𝑚𝑎𝑥 =
10 + 𝑓𝑐
′
6𝑓𝑊
=
40
6 × 500
= 0.013 < 0.025 (𝑂𝐟)
M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 728.471 × 500 = 345.906𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
6.2.4. Level 1-3 (Stirrups)
Figure 43 Maximum shear force diagram for level 1-3 (transversal section)
6.2.4.1. Point ○a of column face SF case 1.2G+1.5Q2:
Asreq=1256.437mm2
𝑉∗
= 322.181𝑘𝑛
Vn =
𝑉∗
𝜑
=
322.181
0.75
= 429.575𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
429575
350×760
= 1.615𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
1256.437
350×760
= 0.0047
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.117√𝑓𝑐
′
60
Dongyezhan Liu 1421941
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.117√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.117√30 × 350 × 760 = 170.815𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 429.575 − 1570.815 = 258.76kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
258760
= 230𝑚𝑚
Check: s= 230mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 230
500
= 55.115𝑚𝑚2
< 𝐎 𝑉 = 157.08𝑚𝑚2
𝑂𝐟
Thus, R10@ 230 c/c
6.2.4.2. Point ○b of column face SF case 1.35G:
Asreq=1884.956 mm2
𝑉∗
= 362.965𝑘𝑛
Vn =
𝑉∗
𝜑
=
362.965
0.75
= 483.965𝑘𝑛
𝑣 𝑛 =
𝑉𝑛
𝑏 𝑀 𝑑
=
483965
350×760
= 1.819𝑀𝑝𝑎
ρ =
𝐎 𝑠
𝑏 𝑀 𝑑
=
1884.956
350×760
= 0.0071
𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐
′ = 0.141√𝑓𝑐
′
Check 0.08√𝑓𝑐
′ < 𝑣𝑐 = 0.141√𝑓𝑐
′ < 0.2√𝑓𝑐
′ 𝑂𝐟
𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.141√30 × 350 × 760 = 205.229𝑘𝑛
𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 483.965 − 205.229 = 278.724kn
Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2
𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑠
→ 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡
𝑑
𝑉𝑠
=
157.08×500×760
278724
= 210𝑚𝑚
Check: s= 210mm<
𝑑
2
=
760
2
= 380𝑚𝑚 𝑂𝐟
61
Dongyezhan Liu 1421941
Check:
𝐎 𝑉,𝑚𝑖𝑛 =
1
16
√𝑓𝑐
′
𝑏 𝑀 𝑠
𝑓𝑊𝑡
=
1
16
√30
350 × 210
500
= 74.28𝑚𝑚2
< 𝐎 𝑉 = 50.32𝑚𝑚2
𝑂𝐟
Thus, R10@ 210 c/c
7.Column Design
7.1. Marginal columns (Longitudinal section)
b= 500mm h= 500mm Cc= 30mm
Assume D24 will be used (AD24=452.39 mm2
)
gh = h – 2cc – D = 500 – 2 x 30 - 24 = 416
g= gh/h= 416/500= 0.83
Figure 44 Columns design for the whole building
7.1.1. Roof level
 Reinforcement bars
(Ncorresponding & M*) case1.35G
Mdes= 256.865knm Ndes=272.638kn
62
Dongyezhan Liu 1421941
𝑁∗
𝜙.𝑏.ℎ
=
272638
0.85× 500×500
= 1.28 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
256865000
0.85×500×5002 = 2.42 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008
(N*
& Mcorres) case1.35G= (Ncorresponding & M*) case1.35G
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 154.296kn N*
= 272.638kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×154.296= 351.203kn where Ѐo’=1.75
Vn= 
75.0
203.351*

V
468.031kn where  =0.75
Vn= 
bd
Vn
2.044Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb=
''
109.0p1007.0 cc ff   Check:
'''
2.0109.008.0 ccc fff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
2726383
1
3
1
Agf
N
c
1.109
Vc=KaKnVbAcv=1×1.109×0.109 30 ×500×458=179.817kn
Vs=Vn- Vc= 468.031- 179.817= 288.214kn
Vc=Vb.Kn=  109.130111.0 0.785Mpa
63
Dongyezhan Liu 1421941
Steel shear stress:
Vs= Vn- Vc/2= 2.044-0.785/2= 1.651Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  399.206
4500
500500651.1
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

288214
45850016.314
Vs
dfA
S
s
d
fAV ytvprov
req
req
ytvprovs 250mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 250 mm
  
ï‚Žï‚Ž

500
120500651.1min
fyt
bsVs
Avreq 198.143mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
7.1.2. Level 3
 Reinforcement bars
(Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2
Mdes= 246.286knm Ndes=655.828kn
𝑁∗
𝜙.𝑏.ℎ
=
655.828
0.85× 500×500
= 3.09 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
246286000
0.85×500×5002 = 2.32 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
64
Dongyezhan Liu 1421941
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2= (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 140.354kn N*
= 655.828kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×140.354= 319.305kn where Ѐo’=1.75
Vn= 
75.0
319.305*

V
425.74kn where  =0.75
Vn= 
bd
Vn
1.859Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
6558283
1
3
1
Agf
N
c
1.262
Vc=KaKnVbAcv=1×1.262×0.708×500×458=204.688kn
Vs=Vn- Vc= 425.74-204.668= 221.072kn
Vc=Vb.Kn=  622.1087.0 0.894Mpa
Steel shear stress:
Vs= Vn- Vc/2= 1.859-0.894/2= 1.412Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
65
Dongyezhan Liu 1421941
Av=
  532.176
4500
500500124.1
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

221072
45850016.314
Vs
dfA
S
s
d
fAV
ytvprov
req
req
ytvprovs 330mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 330 mm
  
ï‚Žï‚Ž

500
120500124.1min
fyt
bsVs
Avreq 198.143mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 169.471mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041mm< Avprov= 314.16mm2
OK
4legged R10 @ 120c/c
7.1.3. Level 2
 Reinforcement bars
(Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2
Mdes= 274.86knm Ndes=1052.32kn
𝑁∗
𝜙.𝑏.ℎ
=
1052320
0.85× 500×500
= 4.95 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
274860000
0.85×500×5002 = 2.59 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2= (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2
Thus, the maximum pt= 0.014
66
Dongyezhan Liu 1421941
Asreq= pt×b×h= 0.014×500×500= 3500mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 7.7
39.452
3500
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 150.38kn N*
= 1052.32kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×150.38= 342.115kn where Ѐo’=1.75
Vn= 
75.0
342.115*

V
456.153kn where =0.75
Vn= 
bd
Vn
1.992Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
10523203
1
3
1
Agf
N
c
1.421
Vc=KaKnVbAcv=1×1.421×0.708×500×458=230.382kn
Vs=Vn- Vc= 456.153-230.382= 225.77kn
Vc=Vb.Kn=  .4211087.0 1Mpa
Steel shear stress:
Vs= Vn- Vc/2= 1.992-1 /2= 1.489Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  114.186
4500
500500894.1
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

770225
45850016.314
Vs
dfA
S
s
d
fAV ytvprov
req
req
ytvprovs 320mm
10db = 10 x 24 = 240 mm
67
Dongyezhan Liu 1421941
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 320 mm
  
ï‚Žï‚Ž

500
120500.4891min
fyt
bsVs
Avreq 198.143mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041 mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
7.1.4. Level 1
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 235.584knm Ndes=1101.533kn
𝑁∗
𝜙.𝑏.ℎ
=
1101533
0.85× 500×500
= 5.18 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
235584000
0.85×500×5002 = 2.22 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 168.908knm Ndes=1441.401kn
𝑁∗
𝜙.𝑏.ℎ
=
1441401
0.85× 500×500
= 6.78 MPa
68
Dongyezhan Liu 1421941
𝑀∗
𝜙.𝑏.ℎ2 =
168908000
0.85×500×5002 = 1.59 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
Thus, the maximum pt= 0.012
Asreq= pt×b×h= 0.012×500×500= 3000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 6.6
39.452
3000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 103.735kn N*
= 1441.401 kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×103.735= 235.997kn where Ѐo’=1.75
Vn= 
75.0
235.997*

V
314.663kn where  =0.75
Vn= 
bd
Vn
1.374Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
14414013
1
3
1
Agf
N
c
1.577
Vc=KaKnVbAcv=1×1.577×0.708×500×458=255.616kn
Vs=Vn- Vc= 314.663-255.616= 59.047kn
Vc=Vb.Kn=  .5771087.0 1.116Mpa
Steel shear stress:
Vs= Vn- Vc/2= 0.816Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
69
Dongyezhan Liu 1421941
Av=
  995.101
4500
5005000.816
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

59047
45850016.314
Vs
dfA
S
s
d
fAV
ytvprov
req
req
ytvprovs 1220mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 1220 mm
  
ï‚Žï‚Ž

500
120500816.0min
fyt
bsVs
Avreq 97.915 mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041mm< Avprov= 314.16mm2
OK
4legged R10 @ 120c/c
7.2. Marginal columns (Transversal section)
7.2.1. Roof level
 Reinforcement bars
(Ncorresponding & M*) case 1.2G+1.5Q1+1.5Q2
Mdes= 219.047 knm Ndes=254.401kn
𝑁∗
𝜙.𝑏.ℎ
=
254401
0.85× 500×500
= 1.2 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
219047000
0.85×500×5002 = 2.06 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014
70
Dongyezhan Liu 1421941
(N*
& Mcorres) case1.35G
Mdes= 215.25 knm Ndes=267.212 kn
𝑁∗
𝜙.𝑏.ℎ
=
267212
0.85× 500×500
= 1.26 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
215250000
0.85×500×5002 = 2.03MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt=0.013
Thus, the maximum pt= 0.014
Asreq= pt×b×h= 0.014×500×500= 3500mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 7.7
39.452
3500
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 119.402 kn N*
= 267.212 kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×119.402= 271.64 kn where Ѐo’=1.75
Vn= 
75.0
271.64*

V
362.186 kn where  =0.75
Vn= 
bd
Vn
1.582 Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
2672123
1
3
1
Agf
N
c
1.107
Vc=KaKnVbAcv=1×1.107×0.708×500×458=179.465 kn
71
Dongyezhan Liu 1421941
Vs=Vn- Vc= 362.186-179.465= 182.721 kn
Vc=Vb.Kn=  .1071087.0 0.784 Mpa
Steel shear stress:
Vs= Vn- Vc/2= 1.19 Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  719.148
4500
50050019.1
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

59047
45850016.314
Vs
dfA
S
s
d
fAV
ytvprov
req
req
ytvprovs 390mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 390 mm
  
ï‚Žï‚Ž

500
12050019.1min
fyt
bsVs
Avreq 142.77 mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
7.2.2. Level 3
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 199.312knm Ndes=506.22 kn
𝑁∗
𝜙.𝑏.ℎ
=
506220
0.85× 500×500
= 2.38 MPa
72
Dongyezhan Liu 1421941
𝑀∗
𝜙.𝑏.ℎ2 =
199312000
0.85×500×5002 = 1.88 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 191.908 knm Ndes=649.762 kn
𝑁∗
𝜙.𝑏.ℎ
=
649762
0.85× 500×500
= 3.06MPa
𝑀∗
𝜙.𝑏.ℎ2 =
191908000
0.85×500×5002 = 1.81 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt=0.013
Thus, the maximum pt= 0.014
Asreq= pt×b×h= 0.014×500×500= 3500mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 7.7
39.452
3500
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE=110.304 kn N*
= 649.762 kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×110.304= 271.64 kn where Ѐo’=1.75
Vn= 
75.0
271.64*

V
362.186kn where  =0.75
Vn= 
bd
Vn
1.582Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
73
Dongyezhan Liu 1421941
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
6497623
1
3
1
Agf
N
c
1.26
Vc=KaKnVbAcv=1×1.26×0.708×500×458=204.275 kn
Vs=Vn- Vc= 362.186 -204.275= 157.911 kn
Vc=Vb.Kn=  .261087.0 0.892 Mpa
Steel shear stress:
Vs= Vn- Vc/2= 1.136 Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  .948141
4500
500500136.1
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

157911
45850016.314
Vs
dfA
S
s
d
fAV ytvprov
req
req
ytvprovs 460 mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 460 mm
  
ï‚Žï‚Ž

500
120500136.1min
fyt
bsVs
Avreq 136.27 mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041 mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
7.2.3. Level 2
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
74
Dongyezhan Liu 1421941
Mdes= 219.094 knm Ndes=808.283 kn
𝑁∗
𝜙.𝑏.ℎ
=
808283
0.85× 500×500
= 3.8 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
219094000
0.85×500×5002 = 2.0 6MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 209.113 knm Ndes=1043.388 kn
𝑁∗
𝜙.𝑏.ℎ
=
1043388
0.85× 500×500
= 4.91 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
209113000
0.85×500×5002 = 1.97 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt=0.011
Thus, the maximum pt= 0.012
Asreq= pt×b×h= 0.012×500×500= 3000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 6.6
39.452
3000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE=123.506 kn N*
= 1043.388kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×123.506= 235.997 kn where Ѐo’=1.75
Vn= 
75.0
235.997*

V
314.663 kn where  =0.75
Vn= 
bd
Vn
1.5374Mpa
75
Dongyezhan Liu 1421941

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
388.10433
1
3
1
Agf
N
c
1.417
Vc=KaKnVbAcv=1×1.417×0.708×500×458=229.803 kn
Vs=Vn- Vc= 314.663-229.803= 84.86 kn
Vc=Vb.Kn=  .4171087.0 1 Mpa
Steel shear stress:
Vs= Vn- Vc/2= 0.872Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  04.109
4500
500500872.0
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

84860
45850016.314
Vs
dfA
S
s
d
fAV
ytvprov
req
req
ytvprovs 850 mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 850 mm
  
ï‚Žï‚Ž

500
120500872.0min
fyt
bsVs
Avreq 104.678mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041 mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
76
Dongyezhan Liu 1421941
7.2.4. Level 1
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 216.8 knm Ndes= 1114.559kn
𝑁∗
𝜙.𝑏.ℎ
=
1114559
0.85× 500×500
= 5.24 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
216800000
0.85×500×5002 = 2.04 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt=0.008
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 125.161 knm Ndes=1427.949 kn
𝑁∗
𝜙.𝑏.ℎ
=
1427949
0.85× 500×500
= 6.72 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
125161000
0.85×500×5002 = 1.18 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE=94.231 kn N*
= 1427.949 kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×94.231= 214.376 kn where Ѐo’=1.75
77
Dongyezhan Liu 1421941
Vn= 
75.0
214.376*

V
285.834 kn where  =0.75
Vn= 
bd
Vn
1.248Mpa

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
14279493
1
3
1
Agf
N
c
1.57
Vc=KaKnVbAcv=1×1.57×0.708×500×458=254.743kn
Vs=Vn- Vc= 285.834 -254.743= 31.091 kn
Vc=Vb.Kn=  .571087.0 1.112 Mpa
Steel shear stress:
Vs= Vn- Vc/2= 0.692 Mpa
Use 4 legged R10 stirrups  Avprov= 314.16mm2
Av=
  497.86
4500
500500692.0
4fy
bhs

ï‚Ž
ï‚Žï‚Ž

ï‚Ž
V
mm < Avprov= 314.16mm2
OK

ï‚Žï‚Ž

31091
45850016.314
Vs
dfA
S
s
d
fAV
ytvprov
req
req
ytvprovs 2310 mm
10db = 10 x 24 = 240 mm
Smin= mm125
4
500
4
b
 Smin=120mm
mm150
3
458
3
d

Sreq = 2310 mm
  
ï‚Žï‚Ž

500
120500692.0min
fyt
bsVs
Avreq 83.037 mm < Avprov= 314.16mm2
OK
For anti-buckling:

ï‚Ž

500
120500
30
16
1
16
1 min'
vmin
yt
c
c
f
sb
fA 41.079mm< Avprov= 314.16mm2
OK
78
Dongyezhan Liu 1421941

ï‚Žï‚Ž
ï‚Žï‚Ž


24500135
120500248
135
A minb D
df
sf
A
byt
y
te 134.041 mm< Avprov= 314.16mm2
OK
4 legged R10 @ 120c/c
7.3. Internal columns
7.3.1. Roof level
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 105.789knm Ndes=454.292kn
𝑁∗
𝜙.𝑏.ℎ
=
454292
0.85× 500×500
= 2.14 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
105789000
0.85×500×5002 = 1 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012
(N*
& Mcorres) case1.35G
Mdes= 36.89knm Ndes=600.272kn
𝑁∗
𝜙.𝑏.ℎ
=
600272
0.85× 500×500
= 2.82 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
36890000
0.85×500×5002 = 3.17 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
Thus, the maximum pt= 0.012
Asreq= pt×b×h= 0.012×500×500= 3000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 6.6
39.452
3000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
79
Dongyezhan Liu 1421941
VE= 52.789 kn N*
= 600.272kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×52.789= 120.095 kn where Ѐo’=1.75
Vn= 
75.0
120.095*

V
160.127 kn where  =0.75

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
6002723
1
3
1
Agf
N
c
1.24
Vc=KaKnVbAcv=1×1.24×0.708×500×458=201.065kn
Vs=Vn- Vc= 160.127-201.065= -40.939kn
Thus, no need stirrups but constructive.
Use 4 legged R10 stirrups  Avprov= 314.16mm2
4 legged R10 @ 240c/c
7.3.2. Level 3
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 120.9knm Ndes=974.727kn
𝑁∗
𝜙.𝑏.ℎ
=
1974727
0.85× 500×500
= 4.59 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
120900000
0.85×500×5002 = 1.14 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 9.5knm Ndes=1342.712 kn
80
Dongyezhan Liu 1421941
𝑁∗
𝜙.𝑏.ℎ
=
1441401
0.85× 500×500
= 6.32 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
168908000
0.85×500×5002 = 0.09 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 66.38kn N*
= 1342.712kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×66.38= 151.015kn where Ѐo’=1.75
Vn= 
75.0
151.015*

V
201.353kn where  =0.75

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
13427123
1
3
1
Agf
N
c
1.537
Vc=KaKnVbAcv=1×1.3537×0.708×500×458=249.215kn
Vs=Vn- Vc= 201.353-249.215= -47.863kn
Thus, no need stirrups but constructive.
Use 4 legged R10 stirrups  Avprov= 314.16mm2
4 legged R10 @ 240c/c
81
Dongyezhan Liu 1421941
7.3.3. Level 2
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 166.117knm Ndes= 1497.766kn
𝑁∗
𝜙.𝑏.ℎ
=
1497766
0.85× 500×500
= 7.05 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
166117000
0.85×500×5002 = 1.56 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 30.435knm Ndes=2123.84 kn
𝑁∗
𝜙.𝑏.ℎ
=
2123840
0.85× 500×500
= 9.99 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
30435000
0.85×500×5002 = 0.29 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 94.426kn N*
= 2123.84kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE=1.3×1.75×94.426= 214.819 kn where Ѐo’=1.75
82
Dongyezhan Liu 1421941
Vn= 
75.0
214.819*

V
286.428kn where  =0.75

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
ï‚Ž
ï‚Ž
 2'
*
50030
21238403
1
3
1
Agf
N
c
1.85
Vc=KaKnVbAcv=1×1.85×0.708×500×458=299.875kn
Vs=Vn- Vc= 286.426-299.875= -13.449kn
Thus, no need stirrups but constructive.
Use 4 legged R10 stirrups  Avprov= 314.16mm2
4 legged R10 @ 240c/c
7.3.4. Level 1
 Reinforcement bars
(Ncorresponding & M*) caseG+Eu+Q
Mdes= 204.836knm Ndes=2029.268kn
𝑁∗
𝜙.𝑏.ℎ
=
2029268
0.85× 500×500
= 9.55 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
204836000
0.85×500×5002 = 1.93 MPa
(Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008
(N*
& Mcorres) case1.2G+1.5Q1+1.5Q2
Mdes= 15.532knm Ndes=2912.379 kn
𝑁∗
𝜙.𝑏.ℎ
=
2912379
0.85× 500×500
= 13.71 MPa
𝑀∗
𝜙.𝑏.ℎ2 =
15532000
0.85×500×5002 = 0.15 MPa
From Column chart 500/30/0.8 & 0.9 → minimum pt<0
83
Dongyezhan Liu 1421941
Thus, the maximum pt= 0.008
Asreq= pt×b×h= 0.008×500×500= 2000mm2
(Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars
N= 4.4
39.452
2000
24

D
sreq
A
A
The minimum reinforce bars is 8.
Thus, use 8D24
 Stirrups
VE= 84.235kn N*
= 2912.379kn
d=h-Cc-D/2=500- 30- 24= 458mm
V*=1.3.Ѐo’.VE= 191.635kn where Ѐo’=1.75
Vn= 

*
V
255.513 kn where  =0.75

ï‚Ž

458500
243
bd
DA
P S
0.0059
Vb= 708.0p1007.0
'
 cf Check:
''
2.0708.008.0 cc ff  OK
Kn= 
Agf
N
c
'
*
3
1 2.165
Vc=KaKnVbAcv=1×2.165×0.708×500×458=351kn
Vs=Vn- Vc= 255.513-351= -95kn
Thus, no need stirrups but constructive.
Use 4 legged R10 stirrups  Avprov= 314.16mm2
4 legged R10 @ 240c/c
8.Conclusions
84
Dongyezhan Liu 1421941
This project is being designed for the commercial office building located in Auckland centre
region. The dimensions of beams and columns are considered as 350×800 mm and 500×500
mm. The permanent, imposed and earthquake actions are calculated for creating the
structure frame. The structure frame is taken into account by two different aspects:
longitudinal and transversal section, which has the unique factors influenced by the various
length of bays for both sides. All the above components are relevant with the NZS 3101:2006
part 1 Concrete design and NZS 1170 series -Structural design actions.
In the result of load distribution applying on each level, for the permanent load distribution,
they are all equal to each other. The only different is the point load, which is calculated by
self-weight of glazing and columns. For the imposed load distribution, the main difference
could be observed by eyes. As roof level treated as other levels, the value of φe is remarkably
lower than other levels.
The internal columns design is done from longitudinal section due to the critical value
existing in this section. As the pt number is tiny caused by columns size w, all the
reinforcement bars are used as 8HD24.
9.References
Structural Concrete, Dr. Lusa Tuleasca handouts
Park, R., & Pauley, T. (1975). Reinforced concrete structures. Christchurch, New Zealand: John
Wiley & Sons Company.
Noel, J. (1993). Reinforced concrete design. Texas, USA: McGraw-Hill Company.
NZS3101: 2006 Concrete structures standard
NZS4203: 1992 Code of practice for general structural design and design loading for building
NZS1170: 2002 part 0: General principles
NZS1170: 2002 part 1: Permanent, imposed and other actions
NZS1170: 2002 part 5: Earthquake actions- New Zealand
10. Appendices
10.1. Longitudinal section combinations
10.1.1. 1.35G
 Bending moment
85
Dongyezhan Liu 1421941
 Shear force
 Axial load
86
Dongyezhan Liu 1421941
10.1.2. 1.2G+1.5Q1
 Bending moment
 Shear force
87
Dongyezhan Liu 1421941
 Axial load
10.1.3. 1.2G+1.5Q2
 Bending moment
88
Dongyezhan Liu 1421941
 Shear force
 Axial load
89
Dongyezhan Liu 1421941
10.1.4. 1.2G+1.5Q1+1.5Q2
 Bending moment
 Shear force
90
Dongyezhan Liu 1421941
 Axial load
10.1.5. G+Eu+𝜑𝑐 𝑄
 Bending moment
91
Dongyezhan Liu 1421941
 Shear force
 Axial load
92
Dongyezhan Liu 1421941
10.2. Transversal section
10.2.1. 1.35G
 Bending moment
 Shear force
93
Dongyezhan Liu 1421941
 Axial load
10.2.2. 1.2G+1.5Q1
 Bending moment
94
Dongyezhan Liu 1421941
 Shear force
 Axial load
95
Dongyezhan Liu 1421941
10.2.3. 1.2G+1.5Q2
 Bending moment
 Shear force
96
Dongyezhan Liu 1421941
 Axial load
10.2.4. 1.2G+1.5Q1+1.5Q2
 Bending moment
97
Dongyezhan Liu 1421941
 Shear force
 Axial load
98
Dongyezhan Liu 1421941
10.2.5. G+Eu+𝜑𝑐 𝑄
 Bending moment
 Shear force
99
Dongyezhan Liu 1421941
 Axial load

More Related Content

What's hot

Design of Concrete Structure 1
Design of Concrete Structure 1Design of Concrete Structure 1
Design of Concrete Structure 1
SHARIQUE AHMAD
 
Design of concrete structures-Nilson-15th-Edition
Design of concrete structures-Nilson-15th-EditionDesign of concrete structures-Nilson-15th-Edition
Design of concrete structures-Nilson-15th-Edition
Bahzad5
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For Frames
Amr Hamed
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
Lawrence Omai
 
Slabs -Design steps
Slabs -Design steps Slabs -Design steps
Slabs -Design steps
rohinibjn
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
Ar. Aakansha
 
Structurala Analysis Report
Structurala Analysis ReportStructurala Analysis Report
Structurala Analysis Report
surendra1985
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
Puspendu Ray
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Hossam Shafiq II
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
51412
 
Axially loaded columns
Axially loaded columnsAxially loaded columns
Axially loaded columns
Yash Patel
 
Beam design
Beam designBeam design
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
ahsanrabbani
 
Design of beams
Design of beamsDesign of beams
Design of beams
Sabna Thilakan
 
7 losses in prestress
7 losses in prestress7 losses in prestress
7 losses in prestress
Manju Paranthaman
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
PraveenKumar Shanmugam
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
srinu_anduri
 
Combined footings
Combined footingsCombined footings
Combined footings
seemavgiri
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
Latif Hyder Wadho
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
Afgaab Cumar
 

What's hot (20)

Design of Concrete Structure 1
Design of Concrete Structure 1Design of Concrete Structure 1
Design of Concrete Structure 1
 
Design of concrete structures-Nilson-15th-Edition
Design of concrete structures-Nilson-15th-EditionDesign of concrete structures-Nilson-15th-Edition
Design of concrete structures-Nilson-15th-Edition
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For Frames
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
 
Slabs -Design steps
Slabs -Design steps Slabs -Design steps
Slabs -Design steps
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Structurala Analysis Report
Structurala Analysis ReportStructurala Analysis Report
Structurala Analysis Report
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Axially loaded columns
Axially loaded columnsAxially loaded columns
Axially loaded columns
 
Beam design
Beam designBeam design
Beam design
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
 
Design of beams
Design of beamsDesign of beams
Design of beams
 
7 losses in prestress
7 losses in prestress7 losses in prestress
7 losses in prestress
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
 
Combined footings
Combined footingsCombined footings
Combined footings
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 

Viewers also liked

DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
Ali Meer
 
Analysisanddesignofamulti storey staad pro.
Analysisanddesignofamulti storey staad pro.Analysisanddesignofamulti storey staad pro.
Analysisanddesignofamulti storey staad pro.
CADmantra Technologies
 
Structural analysis and design of multi storey ppt
Structural analysis and design of multi storey pptStructural analysis and design of multi storey ppt
Structural analysis and design of multi storey ppt
SHIVUNAIKA B
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
Tarun kumar
 
Building Codes And The Design Process
Building Codes And The Design ProcessBuilding Codes And The Design Process
Building Codes And The Design Process
Eric Anderson
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
Nik M Farid
 
Analysis and design of building
Analysis and design of buildingAnalysis and design of building
Analysis and design of building
Krishnagnr
 
Multistorey building
Multistorey buildingMultistorey building
Multistorey building
Rahul
 

Viewers also liked (8)

DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
 
Analysisanddesignofamulti storey staad pro.
Analysisanddesignofamulti storey staad pro.Analysisanddesignofamulti storey staad pro.
Analysisanddesignofamulti storey staad pro.
 
Structural analysis and design of multi storey ppt
Structural analysis and design of multi storey pptStructural analysis and design of multi storey ppt
Structural analysis and design of multi storey ppt
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
 
Building Codes And The Design Process
Building Codes And The Design ProcessBuilding Codes And The Design Process
Building Codes And The Design Process
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
 
Analysis and design of building
Analysis and design of buildingAnalysis and design of building
Analysis and design of building
 
Multistorey building
Multistorey buildingMultistorey building
Multistorey building
 

Similar to Structural design of a four storey office building

Byangabo commercial building
Byangabo commercial buildingByangabo commercial building
Byangabo commercial building
Ntwari Alex
 
Design engineering 2A report
Design engineering 2A reportDesign engineering 2A report
Design engineering 2A report
tirath prajapati
 
UDL In Assessments
UDL In AssessmentsUDL In Assessments
UDL In Assessments
Scott Rains
 
A Critical Appraisal of the Impact of Diversity on Idea generation
A Critical Appraisal of the Impact of Diversity on Idea generationA Critical Appraisal of the Impact of Diversity on Idea generation
A Critical Appraisal of the Impact of Diversity on Idea generation
'RAYO D.ISHOLA
 
ICI final project
ICI final projectICI final project
ICI final project
LY97
 
Ici final project
Ici final projectIci final project
Ici final project
æž© 庄壁
 
ici final project.pdf
ici final project.pdfici final project.pdf
ici final project.pdf
æž© 庄壁
 
Project Management.Project 1
Project Management.Project 1Project Management.Project 1
Project Management.Project 1
suzzanekan
 
Ici final-individual-loon-jing-wei
Ici final-individual-loon-jing-weiIci final-individual-loon-jing-wei
Ici final-individual-loon-jing-wei
Roy Loon
 
REPORTS ON BUILDING CONSTRUCTION
REPORTS ON BUILDING CONSTRUCTIONREPORTS ON BUILDING CONSTRUCTION
REPORTS ON BUILDING CONSTRUCTION
Rising Sher
 
EnviroStock Combined GENERAL & GRANTS Intro Letter
EnviroStock Combined GENERAL & GRANTS Intro LetterEnviroStock Combined GENERAL & GRANTS Intro Letter
EnviroStock Combined GENERAL & GRANTS Intro Letter
Danny Stock
 
Project report on design &amp; execution of a theatre and arts complex
Project report on design &amp; execution of a theatre and arts complexProject report on design &amp; execution of a theatre and arts complex
Project report on design &amp; execution of a theatre and arts complex
Service_supportAssignment
 
online quiz application project presentation
online quiz application project presentationonline quiz application project presentation
online quiz application project presentation
GyanuRana
 
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdfMuni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
TonL168323
 
SENN 2013 Participatory Monitoring and Evaluation-130918.ppt
SENN 2013 Participatory Monitoring and Evaluation-130918.pptSENN 2013 Participatory Monitoring and Evaluation-130918.ppt
SENN 2013 Participatory Monitoring and Evaluation-130918.ppt
ZiaUlhaq765467
 
A study of the reasons, which fail's employees from making results in the pro...
A study of the reasons, which fail's employees from making results in the pro...A study of the reasons, which fail's employees from making results in the pro...
A study of the reasons, which fail's employees from making results in the pro...
Apsara Kaduruwana
 
Avit final thesis doc
Avit final thesis docAvit final thesis doc
Avit final thesis doc
Avith Theophil
 
INTERNSHIP REPORT
INTERNSHIP REPORTINTERNSHIP REPORT
INTERNSHIP REPORT
Tristan Yu
 
Wall-C
Wall-CWall-C
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
Michael Agwulonu
 

Similar to Structural design of a four storey office building (20)

Byangabo commercial building
Byangabo commercial buildingByangabo commercial building
Byangabo commercial building
 
Design engineering 2A report
Design engineering 2A reportDesign engineering 2A report
Design engineering 2A report
 
UDL In Assessments
UDL In AssessmentsUDL In Assessments
UDL In Assessments
 
A Critical Appraisal of the Impact of Diversity on Idea generation
A Critical Appraisal of the Impact of Diversity on Idea generationA Critical Appraisal of the Impact of Diversity on Idea generation
A Critical Appraisal of the Impact of Diversity on Idea generation
 
ICI final project
ICI final projectICI final project
ICI final project
 
Ici final project
Ici final projectIci final project
Ici final project
 
ici final project.pdf
ici final project.pdfici final project.pdf
ici final project.pdf
 
Project Management.Project 1
Project Management.Project 1Project Management.Project 1
Project Management.Project 1
 
Ici final-individual-loon-jing-wei
Ici final-individual-loon-jing-weiIci final-individual-loon-jing-wei
Ici final-individual-loon-jing-wei
 
REPORTS ON BUILDING CONSTRUCTION
REPORTS ON BUILDING CONSTRUCTIONREPORTS ON BUILDING CONSTRUCTION
REPORTS ON BUILDING CONSTRUCTION
 
EnviroStock Combined GENERAL & GRANTS Intro Letter
EnviroStock Combined GENERAL & GRANTS Intro LetterEnviroStock Combined GENERAL & GRANTS Intro Letter
EnviroStock Combined GENERAL & GRANTS Intro Letter
 
Project report on design &amp; execution of a theatre and arts complex
Project report on design &amp; execution of a theatre and arts complexProject report on design &amp; execution of a theatre and arts complex
Project report on design &amp; execution of a theatre and arts complex
 
online quiz application project presentation
online quiz application project presentationonline quiz application project presentation
online quiz application project presentation
 
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdfMuni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
Muni Budhu - Soil Mechanics and Foundations (2010, Wiley) - libgen.lc.pdf
 
SENN 2013 Participatory Monitoring and Evaluation-130918.ppt
SENN 2013 Participatory Monitoring and Evaluation-130918.pptSENN 2013 Participatory Monitoring and Evaluation-130918.ppt
SENN 2013 Participatory Monitoring and Evaluation-130918.ppt
 
A study of the reasons, which fail's employees from making results in the pro...
A study of the reasons, which fail's employees from making results in the pro...A study of the reasons, which fail's employees from making results in the pro...
A study of the reasons, which fail's employees from making results in the pro...
 
Avit final thesis doc
Avit final thesis docAvit final thesis doc
Avit final thesis doc
 
INTERNSHIP REPORT
INTERNSHIP REPORTINTERNSHIP REPORT
INTERNSHIP REPORT
 
Wall-C
Wall-CWall-C
Wall-C
 
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
A TECHNICAL REPORT ON STUDENTS’ INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) UND...
 

Structural design of a four storey office building

  • 1. 1 Dongyezhan Liu 1421941 Faculty of Technology and Built Environment DEPARTMENT OF CIVIL ENGINEERING ENGINEERING DEVELOPMENT PROJECT (ENGG MG7001/MG7101) Structural design of a four storey office building Dongyezhan Liu Disclaimer: Dongyezhan Liu This document is a report on << Proposal for Structural design of a four storey office building>> that was carried out as part of a student learning exercise. It has been marked and awarded a grade. However, regardless of the grade awarded, there is no guarantee that the contents of this document will be free from errors, inconsistencies, or discrepancies. While this document may contain findings and recommendations that could be of use to the client, or indeed anyone else reading this report, neither Unitec, the author of this report, nor any of the persons mentioned under the Acknowledgements section of this document, shall bear any responsibility or liability; should the client or anyone else, upon implementing the design or utilising any of the findings and recommendations contained within this document, incur any harm, damage, liability, injury, or any other kind of loss whatsoever. October 2016
  • 2. 2 Dongyezhan Liu 1421941 Permission Statement I hereby, give ------- OR don’t give -------- permission for my research/design project report entitled: _____________Structural design of a four storey office building to be held in the Unitec Library. Course: ___________Bachelor of Engineering Technology (Civil) ________ Year of completion: _____2016___ Department/School of _________Engineering_________________ I agree to this research being consulted for research or study purposes only provided that due acknowledgement of its use is made where appropriate and any copying is made in accordance with the Copyright Act 1994. I agree to this research being available for interlibrary loan. I have made all efforts to ensure that the information contained in the report is accurate. I will not be held responsible for any inaccuracies. Also, I agree to this work being copied for archive, external moderation, monitoring, promotional and future learning purposes. Name: ________Dongyezhan Liu______ Signed: _______Dongyezhan Liu_______ Date: _____10/10/2016______ ✓
  • 3. 3 Dongyezhan Liu 1421941 Declaration for Ethical Approval of Research/Design Project I ________Dongyezhan Liu_________ declare that this research or design project: (Student’s full name) Either  Does not involve humans as participants? Or  Has ethical approval from UREC (as included in this project report)? Signed: ________Dongyezhan Liu_______ Date: _____10/10/2016______ (Signature)
  • 4. 4 Dongyezhan Liu 1421941 Executive Summary The design of this project is about a 24×30 mm2 four storey reinforced concrete building located on Auckland centre region. This project is focusing on structural frame analyses and critical beams and columns design based on calculating the permanent, imposed and Earthquake actions through utilizing Multi-frame program. While this project is in process, to get start with the design ideas, the New Zealand standards, design concept, structural factors and possible procedures relating to this project have been studied and learned to get methodology and literature view done. The basic theory of this project is to design the actions based on concrete frame. Meanwhile, the maximum bending moment, shear force and axial load diagram are analysed through the different situations from combinations of actions. The critical columns and beams design are undertaken from the BM, SF and AL diagram. The capacity of beams and columns will be counted. All of these are compliant with NZS 1170 series -Structural design actions and NZS 3101:2006, Concrete Structures Standard. The detailed drawings are included. Acknowledgement I would like to express my heartfelt thanks to my tutor Dr. Sherif Beskhyroun. This project cannot be successfully completed without his great guidance and patience. In the process I deal with this project, I have received many constructive suggestions and effective feedbacks from him. Finally, I would like to thank my parents and family for all the supports throughout this project.
  • 5. 5 Dongyezhan Liu 1421941 Table of Contents 1. Introduction........................................................................................................................8 1.1. Description of the building..........................................................................................8 1.2. Literature views.........................................................................................................10 1.3. Objectives..................................................................................................................11 1.4. Reinforced concrete..................................................................................................11 1.5. Structural considerations and assumptions..............................................................12 1.5.1. Gravity load........................................................................................................12 1.5.2. Material properties............................................................................................13 1.6. Durability...................................................................................................................14 1.7. Fire resistance ...........................................................................................................14 2. Methodology.....................................................................................................................14 2.1. New Zealand standards.............................................................................................14 2.2. Multi-frame ...............................................................................................................15 3. Frame building ..................................................................................................................15 3.1. Frame building...........................................................................................................15 3.2. Preliminary member sizes.........................................................................................16 4. Actions ..............................................................................................................................17 4.1. Longitudinal actions ..................................................................................................17 4.1.1. Permanent actions G .........................................................................................17 4.1.2. Imposed action Q...............................................................................................18 4.2. Transversal action .....................................................................................................19 4.2.1. Permanent actions G .........................................................................................19 4.2.2. Imposed action Q...............................................................................................20 4.3. Earthquake action .....................................................................................................21 5. Structure analysis .............................................................................................................25 5.1. Longitudinal section ..................................................................................................26 5.2. Transversal section....................................................................................................29 6. Beams Design....................................................................................................................31 6.1. Design Beams for longitudinal section......................................................................31 6.1.1. Roof level (Reinforcement bars)........................................................................32
  • 6. 6 Dongyezhan Liu 1421941 6.1.2. Roof level (Stirrups) ...........................................................................................37 6.1.3. Level 1-3 (Reinforcement bars)..........................................................................39 6.1.4. Level 1-3 (Stirrups).............................................................................................44 6.2. Design Beams for transversal section .......................................................................46 6.2.1. Roof level (Reinforcement bars)........................................................................46 6.2.2. Roof level (Stirrups) ...........................................................................................52 6.2.3. Level 1-3 (Reinforcement bars)..........................................................................54 6.2.4. Level 1-3 (Stirrups).............................................................................................59 7. Column Design..................................................................................................................61 7.1. Marginal columns (Longitudinal section)..................................................................61 7.1.1. Roof level ...........................................................................................................61 7.1.2. Level 3 ................................................................................................................63 7.1.3. Level 2 ................................................................................................................65 7.1.4. Level 1 ................................................................................................................67 7.2. Marginal columns (Transversal section) ...................................................................69 7.2.1. Roof level ...........................................................................................................69 7.2.2. Level 3 ................................................................................................................71 7.2.3. Level 2 ................................................................................................................73 7.2.4. Level 1.....................................................................................................................76 7.3. Internal columns .......................................................................................................78 7.3.1. Roof level ...........................................................................................................78 7.3.2. Level 3 ................................................................................................................79 7.3.3. Level 2 ................................................................................................................81 7.3.4. Level 1 ................................................................................................................82 8. Conclusions.......................................................................................................................83 9. References........................................................................................................................84 10. Appendices....................................................................................................................84 10.1. Longitudinal section combinations........................................................................84 10.1.1. 1.35G ..............................................................................................................84 10.1.2. 1.2G+1.5Q1 .....................................................................................................86 10.1.3. 1.2G+1.5Q2 ....................................................................................................87 10.1.4. 1.2G+1.5Q1+1.5Q2.........................................................................................89 10.1.5. G+Eu+𝜑𝑐𝑄......................................................................................................90
  • 7. 7 Dongyezhan Liu 1421941 10.2. Transversal section................................................................................................92 10.2.1. 1.35G ..............................................................................................................92 10.2.2. 1.2G+1.5Q1 ....................................................................................................93 10.2.3. 1.2G+1.5Q2 ....................................................................................................95 10.2.4. 1.2G+1.5Q1+1.5Q2.........................................................................................96 10.2.5. G+Eu+𝜑𝑐𝑄......................................................................................................98 Figure 1 longitudinal section ......................................................................................................9 Figure 2 Transversal section.......................................................................................................9 Figure 3 Plan view ....................................................................................................................10 Figure 4 Table 3.2 from the NZS1170.1 structural design action.............................................12 Figure 5 Table 3.1 from NZS1170.0 general principles.............................................................13 Figure 6 Table3.6 from NZS3101:2006 Part1 ...........................................................................14 Figure 7 Floor plan....................................................................................................................16 Figure 8 Clause 9.4.1.2 Beams with rectangular cross sections NZS 3101.......................16 Figure 9 Permanent actions G of longitudinal section .............................................................18 Figure 10 Imposed actions Q of longitudinal section ...............................................................19 Figure 11 Permanent actions G of transversal section.............................................................20 Figure 12 Imposed actions Q of transversal section.................................................................21 Figure 13 Earthquake actions (Longitudinal section) ...............................................................24 . Figure 14 Deflection due to Earthquake actions (Longitudinal section).................................24 Figure 15 Earthquake actions (Transversal section).................................................................25 Figure 16 Deflection due to Earthquake actions (Transversal section)....................................25 Figure 17 Maximum bending moment diagram for longitudinal section.................................26 Figure 18 Maximum shear force diagram for longitudinal section ..........................................27 Figure 19 Maximum axial load diagram for longitudinal section .............................................28 Figure 20 Maximum bending moment diagram for transversal section ..................................29 Figure 21 Maximum shear force diagram for transversal section............................................30 Figure 22 Maximum axial load diagram for transversal section...............................................31 Figure 23 Maximum bending moment diagram for roof..........................................................32 Figure 24 Maximum negative bending moment......................................................................33 Figure 25 Maximum positive bending moment .......................................................................34 Figure 26 Maximum negative bending moment......................................................................35 Figure 27 Maximum positive bending moment .......................................................................36 Figure 28 Maximum bending moment diagram for level1-3 ...................................................39 Figure 29 Maximum negative bending moment......................................................................40 Figure 30 Maximum positive bending moment .......................................................................41 Figure 31 Maximum negative bending moment......................................................................42 Figure 32 Maximum positive bending moment .......................................................................43 Figure 33 Maximum bending moment diagram for roof transversal section ..................46 Figure 34 Maximum negative bending moment for transversal sction ...................................47
  • 8. 8 Dongyezhan Liu 1421941 Figure 35 Maximum positive bending moment for transversal section...................................48 Figure 36 Maximum negative bending moment for transversal section .................................49 Figure 37 Maximum positive bending moment for transversal section...................................50 Figure 38 Maximum bending moment diagram for level 1-3 (transversal section) .................54 Figure 39 Maximum negative bending moment for transversal section .................................54 Figure 40 Maximum positive bending moment .......................................................................56 Figure 41 Maximum negative bending moment for transversal section .................................57 Figure 42 Maximum positive bending moment for transversal section...................................58 Figure 43 Maximum shear force diagram for level 1-3 (transversal section)...........................59 Figure 44 Columns design for the whole building....................................................................61 1.Introduction 1.1. Description of the building In recent years, Auckland city has been growing rapidly. And, more and more people decide to work in the CBD. Therefore, there is a need to construct more office building regarding market demand. My project is to design a four storey reinforced concrete building in central Auckland. In my design, the structural design will be divided mainly into two parts: manual structural analyses and finite program (Multi-frame 2D). In other words, this design will focus on slabs, columns, and beams. This building is 24*30m. And, the story height is 4.5m. The strand height will be 3.5m for each level. The short edge will have 3 bays. Therefore, for each bay
  • 9. 9 Dongyezhan Liu 1421941 will be 8*10m in a rectangular shape. This building could be demonstrated in Multi-frame 2D. Figure 1 longitudinal section Figure 2 Transversal section
  • 10. 10 Dongyezhan Liu 1421941 Figure 3 Plan view In the design part, the earthquake and wind actions will be considered in order to design the resistance of reinforced concrete frame. For more details, the capacity of the maximum load will be required to calculate to analyse bending moment, shear force and axial force at critical sections under the ultimate strength design. Due to safety consideration, there are two vital elements related to against failures. This consideration includes serviceability limit state and ultimate limit state. The serviceability limit state is to remain the elastic ensuring that the durability of the structures is on the allowed range of normal working conditions. The ultimate limit state is providing ductility prevented collapsed. All the elements will be concerned with New Zealand concrete standards and structural design action standards. 1.2. Literature views The design of structures included the related elements are required to meet the standard for stability, stiffness, strength, ductility, durability, robustness and fire resistance. (NZS3101: 2006)
  • 11. 11 Dongyezhan Liu 1421941 Reinforced concrete is one of the most widely used composite materials in modern building constructions. It utilizes the concrete in resisting compression forces, and steel bars or wires, to resist reasonable tension forces. (Noel, 1993) For the earthquake actions, it is defined in the equivalent static forces. To analyse the equivalent static forces, each level of the structure needs to be acted simultaneously. In this part, the horizontal seismic shear will be considered for calculating the combination of horizontal design action coefficient and total seismic weight of the building. (NZS170. 5:2002) To satisfy the static equilibrium of the horizontal forces for each level of the building, the shear force, V, is required to be equal in magnitude and opposite in direction to the full set of equivalent static lateral forces acting at various heights above ground level (Lusa, 2016) The destruction of the building of reinforced concrete elements in flexure could exist in 3 ways, tension, compression and balanced failure. They have been dictated by the volume of longitudinal reinforcement in tension. (Lusa, 2016) (p=As/(b×d)) In this equation, the ratio of reinforcement equals to the area of tension steel divided by effective section area of concrete. (NZS3101: 2006) The shear walls can be very efficient in resisting lateral loads originating from wind or earthquakes. Well-designed shear walls in seismic areas can provide adequate structural safety and give a great measure of protection against costly non-structural damage during moderate seismic disturbances. (Park & Pauley, 1975) 1.3. Objectives In my project, the design will be undertaken by the following approach: Design the permanent and imposed actions Design the earthquake and wind actions Analyse the maximum axial force, shear force and bending moment using the multi-frame 2D Design the specified columns Design the specified beams 1.4. Reinforced concrete It is most widely used materials in the world especially in construction (economic building materials) The maintenance cost of reinforced concrete is very low. And, in structure like footings, dams, piers etc. reinforced concrete is the most economical construction material. Compared to the use of steel in structure, reinforced concrete requires less skilled labour for the erection of structure. Furthermore, Reinforced concrete, as a fluid material in the beginning, can be economically moulded into a nearly limitless range of shapes. It has great fire and weather resistance than other normal materials. (Such as: steel and timber)
  • 12. 12 Dongyezhan Liu 1421941 Reinforced concrete has a high compressive strength and adequate tensile strength compared to other building materials. Due to the provided reinforcement, reinforced concrete can also withstand a good amount tensile stress. 1.5. Structural considerations and assumptions 1.5.1. Gravity load  Permanent load Double Tee Floors – 3.79 Kpa Ceiling and services – 0.3 Kpa Partition wall – 0.4 Kpa  Imposed load The purpose of this building is used for office building only. The heavy loading duty cannot be applied on the level of building. The roof level is assumed as other floors. Figure 4 Table 3.2 from the NZS1170.1 structural design action  Earthquake load Important level =3 as the office building is high consequence for loss of human life.
  • 13. 13 Dongyezhan Liu 1421941 Figure 5 Table 3.1 from NZS1170.0 general principles Z = 0.13 (Auckland region) Site subsoil class C (shallow soil) Design working life = 50 years, according to NZS3101:2006 Part1, The provisions of this section shall apply to the detailing and specifying for durability of reinforced and pre-stressed concrete structures and members with a specified intended life of 50 or 100 years. Compliance with this section will ensure that the structure is sufficiently durable to satisfy the requirements of the NZ Building Code throughout the life of the structure, with only normal maintenance and without requiring reconstruction or major renovation. The 50 years corresponds to the minimum structural performance life of a member to comply with that code. Limited ductile frame for the structure design  Wind load Due to the non-critical case compared with the earthquake load, the wind load is not took into account in this project. 1.5.2. Material properties - Concrete density 𝜌𝑐 =24 kn/m3 - Concrete compressive strength f 𝑐 ′ =30 Mpa (not less than 25MPa and not greater than 100MPa) - Modulus of elasticity for concrete Ec = (fc’)1/2 * 3200 + 6900 (25084MPa) - Modulus of Elasticity for steel Es = 200000 MPa - Main bending& shear reinforcement bar steel Grade 500E - Main stirrups steel Grade 500
  • 14. 14 Dongyezhan Liu 1421941 1.6. Durability According to NZS3101:2006 Part1, this project building is located at non-aggressive soil with A2 exposure classification and is situated at protected environment. Due to the standard, for fc’ = 30Mpa, the minimum required concrete cover is set up as 30mm for beams and columns. Figure 6 Table3.6 from NZS3101:2006 Part1 1.7. Fire resistance The fire resistance is assumed as 60 minutes throughout the office building. 2.Methodology All the procedures of this project are analysed, calculated and considered through the New Zealand Standards. For the details, auto CAD will be use to demonstrate specified drawings. And, the analyses of the maximum of axial forces, shear forces and bending moments will be utilized in Multi-frame 2D. 2.1. New Zealand standards NZS1170: 2002 part 0: General principles It provides general procedures and criteria for the structural design of a building or structure in the limit states format. It covers limit states design, actions, and combinations of actions, methods of analysis, robustness and confirmation of design. The objective of this standard is to provide designers with general procedures and criteria for the structural design of structures. It outlines a design methodology applied in accordance with established engineering principles.
  • 15. 15 Dongyezhan Liu 1421941 NZS1170: 2002 part 1: Permanent, imposed and other actions It specifies the varied situations in terms of the limit state design of structures used by permanent, imposed, liquid pressure, ground water, rainwater pounding and earth pressure actions. NZS1170: 2002 part 2: Wind actions It provides that the procedures to determine the winds speed resulting in any directions of the building. Also, it shows that the criteria of wind actions undertaken in reasonable structural design between different wind zone. (Except tornadoes) NZS1170: 2002 part 5: Earthquake actions- New Zealand It establishes the requirements of structural design for period of vibration, horizontal seismic shear and equivalent static horizontal force. NZS3101: 2006 Concrete structures standard (Part1- The design of concrete structures) It outlines the verified methodology and compliant criteria of designing reinforced and pre- stressed concrete structures with New Zealand Building Code. Additionally, it also has summary tables to guide engineers design from aspects of beams, columns and connections. 2.2. Multi-frame The Multi-frame program is the basic software which has been taught in the Unitec structure class to design the structural frame. It includes the majority of materials about beams and columns section. In this software, the permanent, imposed and earthquake action could be inputted onto the different level of building. Also, there is possible to put all the basic static actions into combination static actions to prepare the various situations. Also, the maximum bending moment, shear force and axial load could be analysed for calculating the capacity for critical beams and columns. 3. Frame building 3.1. Frame building The frame is illustrated as below.
  • 16. 16 Dongyezhan Liu 1421941 Figure 7 Floor plan 3.2. Preliminary member sizes In the AS/NZS 3101: part 1:2006 concrete standard, the table 2.1 & the clause 9.4.1. Design of reinforced concrete beams will be used as main design principles for my project. According to this: Figure 8 Clause 9.4.1.2 Beams with rectangular cross sections NZS 3101 The depth, width and clear length between the faces of supports of members with rectangular cross sections, to which moments are applied at both ends by adjacent beams, columns or both, shall be such that:
  • 17. 17 Dongyezhan Liu 1421941 𝐿𝑛 𝑏𝑀 ≀ 25 𝐿𝑛ℎ 𝑏 𝑀 2 ≀ 100 Therefore, the beam sizes will be undertaken as: From Table 2.1, fy= 500Mpa one end continuous h ≥ 𝐿 20 = 10000 20 = 500𝑚𝑚 fy=500Mpaboth end continuous h=600. 700, 800mm h ≥ 𝐿 25 = 10000 25 = 400𝑚𝑚 Design beams: 350×800 mm mm h bw 400 2  mmbbb wce 5005050  mm bb LLn ce 950050010000 22  Check: 2575.23 400 9500n  wb L OK Check: 10078.20 nh 2  wb L OK Check: 3 350 800 232  b h OK For the column sizes, from clause 10.4. Dimensions of columns and piers. mmbbb wce 5005050  Therefore, columns will be: 500×500mm 4.Actions 4.1. Longitudinal actions 4.1.1. Permanent actions G Slabs
  • 18. 18 Dongyezhan Liu 1421941 Double Tee Floors = 3.79Kpa Ceiling & services = 0.3Kpa Partition wall= 0.4Kpa mknGfloors /92.35879.34.03.0   Beams 6.72kn/m240.80.351beams G Columns mG /kn6245.05.01columns  Numbers of columns: 4×4=16 Weight: Roof: 6 × 3.5 2 = 10.5𝑘𝑛 total: 10.5×16= 168kn Level3: 6 ×  3.5 2 + 3.5 2  = 21𝑘𝑛 total: 21×16= 336kn Level2: 6 ×  3.5 2 + 3.5 2  = 21𝑘𝑛 total: 21×16= 336kn Level1: 6 ×  3.5 2 + 4.5 2 = 24𝑘𝑛 total: 24×16= 384kn Glazing& Certain wall Gglazing=0.5Kpa Figure 9 Permanent actions G of longitudinal section 4.1.2. Imposed action Q For roof level:
  • 19. 19 Dongyezhan Liu 1421941 𝜑 𝑒 = 1.8 𝐎 = 0.12 = 0.122 ⟹ 𝜑 𝑒 = 0.25𝑘𝑝𝑎 (𝜑 𝑒 ≀ 0.25) A=10×8=80m2 For level3, 2, & 1: 𝑄 𝑢 = 1 × 3 = 3𝑘𝑝𝑎 𝜑 𝑎 = 0.3 + 3 √𝐎 = 0.41 ⟹ 𝜑 𝑎 = 0.635𝑘𝑝𝑎 (0.5 ≀ 𝜑 𝑎 ≀ 1) Figure 10 Imposed actions Q of longitudinal section 4.2. Transversal action 4.2.1. Permanent actions G Slabs Double Tee Floors = 3.79Kpa Ceiling & services = 0.3Kpa Partition wall= 0.4Kpa mknGfloors /9.441079.34.03.0   Beams 6.72kn/m240.80.351beams G Columns mG /kn6245.05.01columns  Numbers of columns: 4×4=16 Weight: Roof: 6 × 3.5 2 = 10.5𝑘𝑛 total: 10.5×16= 168kn
  • 20. 20 Dongyezhan Liu 1421941 Level3: 6 ×  3.5 2 + 3.5 2  = 21𝑘𝑛 total: 21×16= 336kn Level2: 6 ×  3.5 2 + 3.5 2  = 21𝑘𝑛 total: 21×16= 336kn Level1: 6 ×  3.5 2 + 4.5 2 = 24𝑘𝑛 total: 24×16= 384kn Glazing& Certain wall Gglazing=0.5Kpa Figure 11 Permanent actions G of transversal section 4.2.2. Imposed action Q For roof level: 𝜑 𝑒 = 1.8 𝐎 = 0.12 = 0.122 ⟹ 𝜑 𝑒 = 0.25𝑘𝑝𝑎 (𝜑 𝑒 ≀ 0.25) A=10×8=80m2 For level3, 2, & 1: 𝑄 𝑢 = 1 × 3 = 3𝑘𝑝𝑎 𝜑 𝑎 = 0.3 + 3 √𝐎 = 0.41 ⟹ 𝜑 𝑎 = 0.635𝑘𝑝𝑎 (0.5 ≀ 𝜑 𝑎 ≀ 1)
  • 21. 21 Dongyezhan Liu 1421941 Figure 12 Imposed actions Q of transversal section 4.3. Earthquake action Seismic weight: Beams: 0.8 × 0.35 × 24 × (10 − 0.5) × (8 − 0.5) × 9 = 4309.2kn Columns: 𝑊𝑟𝑜𝑜𝑓: (0.5 × 0.5 × 24) × 3.5 2 × (4 × 4) = 168kn 6 ×  3.5 2 + 3.5 2  = 21kn 𝑊3: 21×16= 336kn 6 ×  3.5 2 + 3.5 2  = 21𝑘𝑛 𝑊2: 21×16= 336kn 6 ×  3.5 2 + 4.5 2 = 24𝑘𝑛 𝑊1: 24×16= 384kn Glazing& Certain wall: 𝑊𝑟𝑜𝑜𝑓: 8 × 0.5 × 3.5 2 = 7𝑘𝑛 ↓ 𝑊3: 8 × 0.5 × ( 3.5 2 + 3.5 2 ) = 14𝑘𝑛 ↓ 𝑊2: 8 × 0.5 × ( 3.5 2 + 3.5 2 ) = 14𝑘𝑛 ↓
  • 22. 22 Dongyezhan Liu 1421941 𝑊1: 8 × 0.5 × ( 3.5 2 + 4.5 2 ) = 16𝑘𝑛 ↓ 𝜑 𝑒 𝑄: φe = 0.3 From (NZS1170.5) Wroof=0.3 × (0.25 × 8) × 10 × 3 = 18kn W3=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn W2=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn W1=0.3 × (0.635 × 8) × 10 × 3 = 45.72kn 𝑟𝒊 = 𝑮 𝒃𝒆𝒂𝒎𝒔 + 𝑮 𝒄𝒐𝒍𝒖𝒎𝒏𝒔 + 𝑮 𝒔𝒍𝒂𝒃𝒔 + 𝑮 𝒈𝒍𝒂𝒛𝒊𝒏𝒈 + 𝝋 𝒆 𝑞 𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 168 + 14 + 18 =7503.58kn 𝑊3 = 4309.2 + 2994.38 + 336 + 28 + 45.72 =7713.3kn 𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 336 + 28 + 45.72 =7713.3kn 𝑊𝑟𝑜𝑜𝑓 = 4309.2 + 2994.38 + 384 + 32 + 45.72 =7765.3kn 𝑊𝑖 = 𝐺 𝑏𝑒𝑎𝑚𝑠 + 𝐺𝑐𝑜𝑙𝑢𝑚𝑛𝑠 + 𝐺𝑠𝑙𝑎𝑏𝑠 + 𝐺 𝑔𝑙𝑎𝑧𝑖𝑛𝑔 + 𝜑 𝑒 𝑄 𝑟 𝒕 = 𝑟 𝒓𝒐𝒐𝒇 + 𝑟 𝟑 + 𝑟 𝟐 + 𝑟 𝟏 = 𝟑𝟎𝟔𝟗𝟓. 𝟒𝟖𝒌𝒏 V = 𝐶(𝑇) 𝑊𝑡 = 30695.08𝑘𝑛 (Assume𝐶(𝑇) = 1) Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v + 𝑊𝑖ℎ𝑖 ∑ 𝑊𝑖ℎ𝑖 + 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛] Roof 7503.58 15 112553.7 13125.075 3 7713.3 11.5 88702.95 8408.524 2 7713.3 8 61706.4 5849.408 1 7765.3 4.5 34943.85 3312.474 ∑ 297906.9 ∑ 30695.48 √ OK For internal frame: [Fi/5] Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v + 𝑊𝑖ℎ𝑖 ∑ 𝑊𝑖ℎ𝑖 + 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛] Roof 1500.716 15 22510.74 2625.015 3 1542.66 11.5 17740.59 1681.7 2 1542.66 8 12341.28 1169.882
  • 23. 23 Dongyezhan Liu 1421941 1 1553.06 4.5 6988.77 662.495 ∑ 59581.38 ∑ 6139.092 √ OK d4= 334.031 mm d3= 290.139 mm d2= 219.529 mm d1= 127.898 mm Level Wi[kn] Fi[kn] di[m] 𝑊𝑖 𝑑𝑖 2 Fidi Roof 1500.716 2625.015 0.334 167.414 876.755 3 1542.66 1681.7 0.29 129.738 487.693 2 1542.66 1169.882 0.22 74.665 257.374 1 1553.06 662.495 0.128 25.445 84.8 ∑ 6139.092 √ OK ∑ 397.262 ∑ 1706.6 T = 2π√ ∑(𝑊 𝑖 𝑑 𝑖 2) 𝑔 ∑(𝐹𝑖𝑑𝑖) = 0.968𝑠 From NZS1170.5 Earthquake standard, Thus, 𝐶ℎ(𝑇) = 1.222 when T=0.968s Z= 0.13(Auckland) Important level= 3 Design working life 50 years Annual probability of exceedance 1/1000 →RS=Ru= 1.3 N(T, D)= 1 Annual probability of exceedance 1/250 Thus, 𝐶(𝑇) = 𝐶ℎ(𝑇) 𝑍𝑅𝑁(𝑇, 𝐷) → 𝐶(𝑇) =1.222×0.13×1=0.207 𝐶 𝑑(𝑇) = 𝐶(𝑇1) 𝑆 𝑝 𝐟 𝜇 ≥ ( 𝑍 20 + 0.02) 𝑅 𝑢 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 0.03𝑅 𝑢 𝑆 𝑝 = 0.7 (𝜇 = 3) 𝐟𝜇 = 𝜇 = 3 (𝑆ℎ𝑎𝑙𝑙𝑜𝑀 𝑠𝑜𝑖𝑙, 𝑇 ≥ 0.7𝑠) Check: 𝐶 𝑑(𝑇) = 0.207×0.7 3 = 0.048 ≥ 0.034  𝑂𝐟(≥ 0.039 𝑂𝐟) Therefore, V = Cd(T)Wt = 0.048 × 6139.096 = 294.677kn Level Wi[kn] Hi[m] Wihi[knm] Fi= 0.92v + 𝑊𝑖ℎ𝑖 ∑ 𝑊𝑖ℎ𝑖 + 0.08𝑣 (𝑅𝑜𝑜𝑓 𝑜𝑛𝑙𝑊)[𝑘𝑛] Roof 1500.716 15 22510.74 126 T Shallow soil 0.9 1.29 1 1.19
  • 24. 24 Dongyezhan Liu 1421941 3 1542.66 11.5 17740.59 80.722 2 1542.66 8 12341.28 56.154 1 1553.06 4.5 6988.77 31.8 ∑ 59581.38 ∑ 294.677 √ OK d4= 16.033 mm d3= 13.927 mm d2= 10.537 mm d1= 6.139 mm Figure 13 Earthquake actions (Longitudinal section) . Figure 14 Deflection due to Earthquake actions (Longitudinal section)
  • 25. 25 Dongyezhan Liu 1421941 Figure 15 Earthquake actions (Transversal section) Figure 16 Deflection due to Earthquake actions (Transversal section) 5.Structure analysis According to section 4 combinations of static actions from NZS1170.0 General Principles, to use the combinations of actions for ultimate limit states in checking strength:
  • 26. 26 Dongyezhan Liu 1421941 Ed= 1.35G permanent action only (does not apply to pre-stressing forces) Ed= 1.2G+1.5Q permanent and imposed action Ed= G+Eu+𝜑𝑐 𝑄 where 𝜑𝑐 = 0.4 (for office building, from Table 4.1 in NZS1170.0 General Principles) All the above combinations of static actions are analysed in Multi-frame. 5.1. Longitudinal section Figure 17 Maximum bending moment diagram for longitudinal section
  • 27. 27 Dongyezhan Liu 1421941 Figure 18 Maximum shear force diagram for longitudinal section
  • 28. 28 Dongyezhan Liu 1421941 Figure 19 Maximum axial load diagram for longitudinal section
  • 29. 29 Dongyezhan Liu 1421941 5.2. Transversal section Figure 20 Maximum bending moment diagram for transversal section
  • 30. 30 Dongyezhan Liu 1421941 Figure 21 Maximum shear force diagram for transversal section
  • 31. 31 Dongyezhan Liu 1421941 Figure 22 Maximum axial load diagram for transversal section 6.Beams Design 6.1. Design Beams for longitudinal section From NZS 3101 Part1: clause 9.3.8.4 Maximum diameter of longitudinal beam bar in internal beam column joint zones. It says: For nominally ductile structures the maximum diameter of longitudinal beam bars passing through beam column joint zones shall not exceed the appropriate requirement given below for internal beam column joints: For the earthquake does not govern: 𝑑 𝑏 ℎ𝑐 ≀ 6𝛌 𝑡 × √𝑓𝑐 ′ 𝑓𝑊(1+ 𝑓 𝑠 𝑓 𝑊 ) where 𝛌 𝑡 = 1 (𝑜𝑛𝑒 𝑀𝑎𝑊𝑓𝑟𝑎𝑚𝑒) 𝑓𝑠 = 0.5𝑓𝑊
  • 32. 32 Dongyezhan Liu 1421941 Therefore, 𝑑 𝑏 = (6 + √30 500×1.5 ) × 500 = 21.9𝑚𝑚 → Choose HD20 6.1.1. Roof level (Reinforcement bars) Figure 23 Maximum bending moment diagram for roof
  • 33. 33 Dongyezhan Liu 1421941 6.1.1.1. Point○a of maximum negative moment case 1.35G: Figure 24 Maximum negative bending moment As the picture above shows, the maximum positive bending moment is 315.765knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 315.765 0.85 = 371.488𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 371488000 0.85 × 350 × 684 × 30 = 60.85𝑚𝑚 jd=d − 𝑎 2 = 760 − 60.85 ÷ 2 = 729.575𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 371488000 500 × 729.575 = 1018.36𝑚𝑚2 AD20=314.16mm2 As/AD20=3.24 says 4 bars →4HD20 is required (Asreq=1256.64mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2
  • 34. 34 Dongyezhan Liu 1421941 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256 × 729.575 × 500 = 458.171𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.1.2. Point of ○b maximum positive moment case 1.35G: Figure 25 Maximum positive bending moment As the picture above shows, the maximum positive bending moment is 285.748knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 285.748 0.85 = 336.744𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 336744000 0.85 × 350 × 684 × 30 = 55.068𝑚𝑚 jd=d − 𝑎 2 = 760 − 55.068 ÷ 2 = 732.446𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 336744000 500 × 732.446 = 917.92𝑚𝑚2 AD20=314.16mm2 As/AD20=2.9 says 3 bars
  • 35. 35 Dongyezhan Liu 1421941 →3HD20 is required (Asreq=942.478mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 732.466 × 500 = 345.166𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.1.3. . Point ○c of maximum negative moment case 1.35G: Figure 26 Maximum negative bending moment As the picture above shows, the maximum positive bending moment is 530.063knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 530.063 0.85 = 623.604𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 623604000 0.85 × 350 × 684 × 30 = 102.151𝑚𝑚
  • 36. 36 Dongyezhan Liu 1421941 jd=d − 𝑎 2 = 760 − 102.151 ÷ 2 = 708.924𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 623604000 500 × 708.924 = 1759.3𝑚𝑚2 AD20=314.16mm2 As/AD20=5.6 says 6 bars →6HD20 is required (Asreq=1884.956mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1884.956 × 708.924 × 500 = 668.145𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.1.4. Point ○d of maximum positive moment case 1.2G+1.5Q2: Figure 27 Maximum positive bending moment As the picture above shows, the maximum positive bending moment is 228.885knm.
  • 37. 37 Dongyezhan Liu 1421941 𝑀 𝑛 = 𝑀∗ 𝜑 = 228.885 0.85 = 269.272𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 269272000 0.85 × 350 × 684 × 30 = 44.11𝑚𝑚 jd=d − 𝑎 2 = 760 − 44.11 ÷ 2 = 708.924𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 269272000 500 × 708.924 = 737.945𝑚𝑚2 AD20=314.16mm2 As/AD20=2.3 says 3 bars →3HD20 is required (Asreq=942.478mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 737.945 × 500 = 347.748𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.2. Roof level (Stirrups)
  • 38. 38 Dongyezhan Liu 1421941 6.1.2.1. Point ○a of column face SF case 1.35G: Asreq=942.478mm2 𝑉∗ = 248.797𝑘𝑛 Vn = 𝑉∗ 𝜑 = 248.797 0.75 = 331.729𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 331729 350×760 = 1.247𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 942.478 350×760 = 0.0035 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.105√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.105√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.105√30 × 350 × 760 = 153.608𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 331.729 − 153.608 = 178.122kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 178122 = 335 𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 330𝑚𝑚 Check: s= 330mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 330 500 = 79.07𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 330 c/c 6.1.2.2. Point ○b of column face SF case 1.35G: Asreq=1884.956mm2 𝑉∗ = 298.061𝑘𝑛 Vn = 𝑉∗ 𝜑 = 298.061 0.75 = 397.415𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 397415 350×760 = 1.494𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 1884.956 350×760 = 0.0071 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.141√𝑓𝑐 ′
  • 39. 39 Dongyezhan Liu 1421941 Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.141√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.141√30 × 350 × 760 = 205.229𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 397.415 − 205.229 = 192.185kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 192185 = 310𝑚𝑚 Check: s= 310mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 310 500 = 74.28𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 310 c/c 6.1.3. Level 1-3 (Reinforcement bars) Figure 28 Maximum bending moment diagram for level1-3
  • 40. 40 Dongyezhan Liu 1421941 6.1.3.1. Point○a of maximum negative moment case 1.2G+1.5Q2: Figure 29 Maximum negative bending moment As the picture above shows, the maximum positive bending moment is 449.84knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 449.84 0.85 = 529.224𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 529224000 0.85 × 350 × 684 × 30 = 86.69𝑚𝑚 jd=d − 𝑎 2 = 760 − 86.69 ÷ 2 = 716.654𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 529224000 500 × 716.654 = 1476.93𝑚𝑚2 AD20=314.16mm2 As/AD20=4.7 says 5 bars →5HD20 is required (Asreq=1570.796mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2
  • 41. 41 Dongyezhan Liu 1421941 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 716.654 × 500 = 562.859𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.3.2. Point○b of maximum positive moment case 1.2G+1.5Q2: Figure 30 Maximum positive bending moment As the picture above shows, the maximum positive bending moment is 392.742knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 392.742 0.85 = 462.049𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 462049000 0.85 × 350 × 684 × 30 = 75.687𝑚𝑚 jd=d − 𝑎 2 = 760 − 75.687 ÷ 2 = 722.156𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 462049000 500 × 722.156 = 1279.64𝑚𝑚2 AD20=314.16mm2 As/AD20=4.1 says 5 bars
  • 42. 42 Dongyezhan Liu 1421941 →5HD20 is required (Asreq=1570.796mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 722.156 × 500 = 562.859𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.3.3. Point○c of maximum negative moment case 1.2G+1.5Q1+1.5Q2: Figure 31 Maximum negative bending moment As the picture above shows, the maximum positive bending moment is 674.36knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 674.36 0.85 = 793.365𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 793365000 0.85 × 350 × 684 × 30 = 129.96𝑚𝑚
  • 43. 43 Dongyezhan Liu 1421941 jd=d − 𝑎 2 = 760 − 129.96 ÷ 2 = 695𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 793365000 500 × 695 = 2283𝑚𝑚2 AD20=314.16mm2 As/AD20=7.3 says 8 bars →8HD20 is required (Asreq=2513.274mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 2513.274 × 695 × 500 = 873.388𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.3.4. Point○d of maximum positive moment case 1.2G+1.5Q2: Figure 32 Maximum positive bending moment As the picture above shows, the maximum positive bending moment is 339.337knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 339.337 0.85 = 399.22𝑘𝑛𝑚
  • 44. 44 Dongyezhan Liu 1421941 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 399220000 0.85 × 350 × 684 × 30 = 65.39𝑚𝑚 jd=d − 𝑎 2 = 760 − 65.39 ÷ 2 = 727.302𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 399220000 500 × 727.302 = 1097.81𝑚𝑚2 AD20=314.16mm2 As/AD20=3.5 says 4 bars →4HD20 is required (Asreq=1256.637mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 727.302 × 500 = 456.977𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.1.4. Level 1-3 (Stirrups) 6.1.4.1. Point ○a of column face SF case 1.2G+1.5Q2: Asreq=1570.796mm2 𝑉∗ = 335.079𝑘𝑛
  • 45. 45 Dongyezhan Liu 1421941 Vn = 𝑉∗ 𝜑 = 335.079 0.75 = 446.772𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 446772 350×760 = 1.68𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 1570.796 350×760 = 0.0059 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.129√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.129√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.129√30 × 350 × 760 = 188.022𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 446.772 − 188.022 = 258.75kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 258750 = 230𝑚𝑚 Check: s= 230mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 230 500 = 55.11𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 230 c/c 6.1.4.2. Point ○b of column face SF case 1.2G+1.5Q1+1.5Q2: Asreq=2513.274mm2 𝑉∗ = 374.692𝑘𝑛 Vn = 𝑉∗ 𝜑 = 374.692 0.75 = 499.589𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 499589 350×760 = 1.878𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 2513.274 350×760 = 0.0094 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.164√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.164√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.164√30 × 350 × 760 = 239.644𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 499.589 − 239.644 = 259.946kn
  • 46. 46 Dongyezhan Liu 1421941 Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 259946 = 220𝑚𝑚 Check: s= 220mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 220 500 = 52.72𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 220 c/c 6.2. Design Beams for transversal section 6.2.1. Roof level (Reinforcement bars) Figure 33 Maximum bending moment diagram for roof transversal section
  • 47. 47 Dongyezhan Liu 1421941 6.2.1.1. Point○d of maximum negative moment case 1.2G+1.5Q1+1.5Q2: Figure 34 Maximum negative bending moment for transversal sction As the picture above shows, the maximum positive bending moment is 219.047 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 219.047 0.85 = 257.702𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 257702000 0.85 × 350 × 684 × 30 = 42.214𝑚𝑚 jd=d − 𝑎 2 = 760 − 42.214 ÷ 2 = 738.893𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 257702000 500 × 738.893 = 697.54𝑚𝑚2 AD20=314.16mm2 As/AD20=2.2 says 3 bars →3HD20 is required (Asreq=942.478 mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2
  • 48. 48 Dongyezhan Liu 1421941 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 738.893 × 500 = 348.195𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.1.2. point ○b of maximum positive moment case 1.35G: Figure 35 Maximum positive bending moment for transversal section As the picture above shows, the maximum positive bending moment is 252.614 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 252.614 0.85 = 297.193𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 297193000 0.85 × 350 × 684 × 30 = 48.683𝑚𝑚 jd=d − 𝑎 2 = 760 − 48.683 ÷ 2 = 735.659𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 297193000 500 × 735.659 = 807.96𝑚𝑚2 AD20=314.16mm2 As/AD20=2.57 says 3 bars
  • 49. 49 Dongyezhan Liu 1421941 →3HD20 is required (Asreq=942.478mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 735.659 × 500 = 346.671𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.1.3. Point○c of maximum negative moment case 1.35G: Figure 36 Maximum negative bending moment for transversal section As the picture above shows, the maximum positive bending moment is 402.042 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 402.042 0.85 = 472.991𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 472991000 0.85 × 350 × 684 × 30 = 77.48𝑚𝑚
  • 50. 50 Dongyezhan Liu 1421941 jd=d − 𝑎 2 = 760 − 77.48 ÷ 2 = 721.26𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 472991000 500 × 721.26 = 1311.57𝑚𝑚2 AD20=314.16mm2 As/AD20=4.17 says 5 bars →5HD20 is required (Asreq=1570.796 mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1570.796 × 721.26 × 500 = 566.476𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.1.4. Point ○d of maximum positive moment case 1.2G+1.5Q1+1.5Q2: Figure 37 Maximum positive bending moment for transversal section As the picture above shows, the maximum positive bending moment is 180.401 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 180.401 0.85 = 212.236𝑘𝑛𝑚
  • 51. 51 Dongyezhan Liu 1421941 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 212236000 0.85 × 350 × 684 × 30 = 34.766𝑚𝑚 jd=d − 𝑎 2 = 760 − 34.766 ÷ 2 = 742.617𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 212236000 500 × 742.617 = 571.59𝑚𝑚2 AD20=314.16mm2 As/AD20=1.82 says 2 bars →2HD20 is required (Asreq=628.319mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 > 𝐎 𝑠𝑟𝑒𝑞 ( 𝑁𝑂𝑇 𝑂𝐟) Thus, increase the dimensions. Try HD24 AD24 = 452.389 mm2 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 24 2 = 758𝑚𝑚 Assume jd= 0.9d= 758×0.9= 682.2mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 212236000 0.85 × 350 × 682.2 × 30 = 34.7858𝑚𝑚 jd=d − 𝑎 2 = 760 − 34.7858 ÷ 2 = 740.571𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 212236000 500 × 740.571 = 573.17𝑚𝑚2 As/AD24=1.27 says 2 bars →2HD24 is required (Asreq=904.779 mm2 ) 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟)
  • 52. 52 Dongyezhan Liu 1421941 M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 904.779 × 740.571 × 500 = 335.026𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.2. Roof level (Stirrups) 6.2.2.1. Point ○a of column face SF case 1.35G: Asreq=942.478mm2 𝑉∗ = 237.826𝑘𝑛 Vn = 𝑉∗ 𝜑 = 237.826 0.75 = 317.101𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 317101 350×760 = 1.192𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 942.478 350×760 = 0.0035 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.105√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.105√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.105√30 × 350 × 760 = 153.608𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 317.101 − 153.608 = 163.494kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 163494 = 360𝑚𝑚 Check: s= 360mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 360 500 = 86.266𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 360 c/c
  • 53. 53 Dongyezhan Liu 1421941 6.2.2.2. Point ○b of column face SF case 1.35G: Asreq=1570.796 mm2 𝑉∗ = 284.524𝑘𝑛 Vn = 𝑉∗ 𝜑 = 284.524 0.75 = 379.365𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 379365 350×760 = 1.426𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 1570.796 350×760 = 0.0059 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.129√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.129√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.129√30 × 350 × 760 = 188.022𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 379.365 − 188.022 = 191.343kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 191343 = 310𝑚𝑚 Check: s= 310mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 310 500 = 74.28𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 310 c/c
  • 54. 54 Dongyezhan Liu 1421941 6.2.3. Level 1-3 (Reinforcement bars) Figure 38 Maximum bending moment diagram for level 1-3 (transversal section) 6.2.3.1. Point○a of maximum negative moment case 1.2G+1.5Q2: Figure 39 Maximum negative bending moment for transversal section As the picture above shows, the maximum positive bending moment is 337.041 knm.
  • 55. 55 Dongyezhan Liu 1421941 𝑀 𝑛 = 𝑀∗ 𝜑 = 337.041 0.85 = 396.519𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 396519000 0.85 × 350 × 684 × 30 = 64.953𝑚𝑚 jd=d − 𝑎 2 = 760 − 64.953 ÷ 2 = 727.523𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 396519000 500 × 727.523 = 1090.05𝑚𝑚2 AD20=314.16mm2 As/AD20=3.47 says 4 bars →4HD20 is required (Asreq=1256.637 mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 727.523 × 500 = 457.116𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟)
  • 56. 56 Dongyezhan Liu 1421941 6.2.3.2. Point ○b of maximum positive moment case 1.2G+1.5Q2: Figure 40 Maximum positive bending moment As the picture above shows, the maximum positive bending moment is 318.837 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 318.837 0.85 = 375.102𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 375102000 0.85 × 350 × 684 × 30 = 61.445𝑚𝑚 jd=d − 𝑎 2 = 760 − 61.445 ÷ 2 = 729.278𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 375102000 500 × 729.278 = 1028.7𝑚𝑚2 AD20=314.16mm2 As/AD20=3.27says 4 bars →4HD20 is required (Asreq=1256.637mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2
  • 57. 57 Dongyezhan Liu 1421941 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1256.637 × 729.278 × 500 = 458.219𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.3.3. Point○c of maximum negative moment case 1.2G++1.5Q1+1.5Q2: Figure 41 Maximum negative bending moment for transversal section As the picture above shows, the maximum positive bending moment is 523.994 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 523.994 0.85 = 616.464𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 616464000 0.85 × 350 × 684 × 30 = 100.982𝑚𝑚 jd=d − 𝑎 2 = 760 − 100.982 ÷ 2 = 709.509𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 616464000 500 × 709.509 = 1737.72𝑚𝑚2 AD20=314.16mm2 As/AD20=5.5 says 6 bars
  • 58. 58 Dongyezhan Liu 1421941 →6HD20 is required (Asreq=1884.956 mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 1884.956 × 709.509 × 500 = 668.697𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.3.4. Point ○d of maximum positive moment case 1.2G+1.5Q2: Figure 42 Maximum positive bending moment for transversal section As the picture above shows, the maximum positive bending moment is 269.456 knm. 𝑀 𝑛 = 𝑀∗ 𝜑 = 269.456 0.85 = 317.007𝑘𝑛𝑚 d = h − 𝐶𝑐 − 𝐷 2 = 800 − 30 − 20 2 = 760𝑚𝑚 Assume jd= 0.9d= 760×0.9= 684mm ∑ 𝐹 = 0 C=T a = 𝑀 𝑛 0.85𝑏𝑓𝑐 ′ 𝑗 𝑑 = 317007000 0.85 × 350 × 684 × 30 = 51.928𝑚𝑚
  • 59. 59 Dongyezhan Liu 1421941 jd=d − 𝑎 2 = 760 − 51.928 ÷ 2 = 734.063𝑚𝑚 𝐎 𝑠 = 𝑀 𝑛 𝑓𝑊 𝑗 𝑑 = 317007000 500 × 734.063 = 863.74𝑚𝑚2 AD20=314.16mm2 As/AD20=2.75says 3 bars →3HD20 is required (Asreq=942.478mm2 ) Check: 𝐎 𝑚𝑖𝑛 = √𝑓𝑐 ′ 4𝑓𝑊 𝑏 𝑀 𝑑 = √30 4×500 × 350 × 800 = 728.471𝑚𝑚2 𝐎 𝑚𝑎𝑥 = 10+𝑓𝑐 ′ 6𝑓𝑊 𝑏 𝑀 𝑑 = 40 6×500 × 350 × 800 = 3546.667𝑚𝑚2 𝐎 𝑚𝑖𝑛 ≀ 𝐎 𝑠𝑟𝑒𝑞 ≀ 𝐎 𝑚𝑎𝑥 (𝑂𝐟) 𝑃𝑚𝑎𝑥 = 10 + 𝑓𝑐 ′ 6𝑓𝑊 = 40 6 × 500 = 0.013 < 0.025 (𝑂𝐟) M = 𝐎 𝑠𝑟𝑒𝑞 𝑗 𝑑 𝑓𝑊 = 942.478 × 728.471 × 500 = 345.906𝑘𝑛𝑚 > 𝑀𝑛 (𝑂𝐟) 6.2.4. Level 1-3 (Stirrups) Figure 43 Maximum shear force diagram for level 1-3 (transversal section) 6.2.4.1. Point ○a of column face SF case 1.2G+1.5Q2: Asreq=1256.437mm2 𝑉∗ = 322.181𝑘𝑛 Vn = 𝑉∗ 𝜑 = 322.181 0.75 = 429.575𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 429575 350×760 = 1.615𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 1256.437 350×760 = 0.0047 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.117√𝑓𝑐 ′
  • 60. 60 Dongyezhan Liu 1421941 Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.117√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.117√30 × 350 × 760 = 170.815𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 429.575 − 1570.815 = 258.76kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 258760 = 230𝑚𝑚 Check: s= 230mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 230 500 = 55.115𝑚𝑚2 < 𝐎 𝑉 = 157.08𝑚𝑚2 𝑂𝐟 Thus, R10@ 230 c/c 6.2.4.2. Point ○b of column face SF case 1.35G: Asreq=1884.956 mm2 𝑉∗ = 362.965𝑘𝑛 Vn = 𝑉∗ 𝜑 = 362.965 0.75 = 483.965𝑘𝑛 𝑣 𝑛 = 𝑉𝑛 𝑏 𝑀 𝑑 = 483965 350×760 = 1.819𝑀𝑝𝑎 ρ = 𝐎 𝑠 𝑏 𝑀 𝑑 = 1884.956 350×760 = 0.0071 𝑣𝑐 = (0.07 + 10𝜌)√𝑓𝑐 ′ = 0.141√𝑓𝑐 ′ Check 0.08√𝑓𝑐 ′ < 𝑣𝑐 = 0.141√𝑓𝑐 ′ < 0.2√𝑓𝑐 ′ 𝑂𝐟 𝑉𝑐 = 𝑣𝑐 𝑏 𝑀 𝑑 = 0.141√30 × 350 × 760 = 205.229𝑘𝑛 𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 483.965 − 205.229 = 278.724kn Use 2 legged R10 → 𝐎 𝑉 = 157.08𝑚𝑚2 𝑉𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑠 → 𝑠 = 𝐎 𝑉 𝑓𝑊𝑡 𝑑 𝑉𝑠 = 157.08×500×760 278724 = 210𝑚𝑚 Check: s= 210mm< 𝑑 2 = 760 2 = 380𝑚𝑚 𝑂𝐟
  • 61. 61 Dongyezhan Liu 1421941 Check: 𝐎 𝑉,𝑚𝑖𝑛 = 1 16 √𝑓𝑐 ′ 𝑏 𝑀 𝑠 𝑓𝑊𝑡 = 1 16 √30 350 × 210 500 = 74.28𝑚𝑚2 < 𝐎 𝑉 = 50.32𝑚𝑚2 𝑂𝐟 Thus, R10@ 210 c/c 7.Column Design 7.1. Marginal columns (Longitudinal section) b= 500mm h= 500mm Cc= 30mm Assume D24 will be used (AD24=452.39 mm2 ) gh = h – 2cc – D = 500 – 2 x 30 - 24 = 416 g= gh/h= 416/500= 0.83 Figure 44 Columns design for the whole building 7.1.1. Roof level  Reinforcement bars (Ncorresponding & M*) case1.35G Mdes= 256.865knm Ndes=272.638kn
  • 62. 62 Dongyezhan Liu 1421941 𝑁∗ 𝜙.𝑏.ℎ = 272638 0.85× 500×500 = 1.28 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 256865000 0.85×500×5002 = 2.42 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008 (N* & Mcorres) case1.35G= (Ncorresponding & M*) case1.35G Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 154.296kn N* = 272.638kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×154.296= 351.203kn where Ѐo’=1.75 Vn=  75.0 203.351*  V 468.031kn where  =0.75 Vn=  bd Vn 2.044Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= '' 109.0p1007.0 cc ff   Check: ''' 2.0109.008.0 ccc fff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 2726383 1 3 1 Agf N c 1.109 Vc=KaKnVbAcv=1×1.109×0.109 30 ×500×458=179.817kn Vs=Vn- Vc= 468.031- 179.817= 288.214kn Vc=Vb.Kn=  109.130111.0 0.785Mpa
  • 63. 63 Dongyezhan Liu 1421941 Steel shear stress: Vs= Vn- Vc/2= 2.044-0.785/2= 1.651Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   399.206 4500 500500651.1 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  288214 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 250mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 250 mm    ï‚Žï‚Ž  500 120500651.1min fyt bsVs Avreq 198.143mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c 7.1.2. Level 3  Reinforcement bars (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2 Mdes= 246.286knm Ndes=655.828kn 𝑁∗ 𝜙.𝑏.ℎ = 655.828 0.85× 500×500 = 3.09 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 246286000 0.85×500×5002 = 2.32 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag
  • 64. 64 Dongyezhan Liu 1421941 From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2= (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2 Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 140.354kn N* = 655.828kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×140.354= 319.305kn where Ѐo’=1.75 Vn=  75.0 319.305*  V 425.74kn where  =0.75 Vn=  bd Vn 1.859Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 6558283 1 3 1 Agf N c 1.262 Vc=KaKnVbAcv=1×1.262×0.708×500×458=204.688kn Vs=Vn- Vc= 425.74-204.668= 221.072kn Vc=Vb.Kn=  622.1087.0 0.894Mpa Steel shear stress: Vs= Vn- Vc/2= 1.859-0.894/2= 1.412Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2
  • 65. 65 Dongyezhan Liu 1421941 Av=   532.176 4500 500500124.1 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  221072 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 330mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 330 mm    ï‚Žï‚Ž  500 120500124.1min fyt bsVs Avreq 198.143mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 169.471mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041mm< Avprov= 314.16mm2 OK 4legged R10 @ 120c/c 7.1.3. Level 2  Reinforcement bars (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2 Mdes= 274.86knm Ndes=1052.32kn 𝑁∗ 𝜙.𝑏.ℎ = 1052320 0.85× 500×500 = 4.95 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 274860000 0.85×500×5002 = 2.59 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2= (Ncorresponding & M*) case1.2G+1.5Q1+1.5Q2 Thus, the maximum pt= 0.014
  • 66. 66 Dongyezhan Liu 1421941 Asreq= pt×b×h= 0.014×500×500= 3500mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 7.7 39.452 3500 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 150.38kn N* = 1052.32kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×150.38= 342.115kn where Ѐo’=1.75 Vn=  75.0 342.115*  V 456.153kn where =0.75 Vn=  bd Vn 1.992Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 10523203 1 3 1 Agf N c 1.421 Vc=KaKnVbAcv=1×1.421×0.708×500×458=230.382kn Vs=Vn- Vc= 456.153-230.382= 225.77kn Vc=Vb.Kn=  .4211087.0 1Mpa Steel shear stress: Vs= Vn- Vc/2= 1.992-1 /2= 1.489Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   114.186 4500 500500894.1 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  770225 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 320mm 10db = 10 x 24 = 240 mm
  • 67. 67 Dongyezhan Liu 1421941 Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 320 mm    ï‚Žï‚Ž  500 120500.4891min fyt bsVs Avreq 198.143mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041 mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c 7.1.4. Level 1  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 235.584knm Ndes=1101.533kn 𝑁∗ 𝜙.𝑏.ℎ = 1101533 0.85× 500×500 = 5.18 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 235584000 0.85×500×5002 = 2.22 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 168.908knm Ndes=1441.401kn 𝑁∗ 𝜙.𝑏.ℎ = 1441401 0.85× 500×500 = 6.78 MPa
  • 68. 68 Dongyezhan Liu 1421941 𝑀∗ 𝜙.𝑏.ℎ2 = 168908000 0.85×500×5002 = 1.59 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0 Thus, the maximum pt= 0.012 Asreq= pt×b×h= 0.012×500×500= 3000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 6.6 39.452 3000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 103.735kn N* = 1441.401 kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×103.735= 235.997kn where Ѐo’=1.75 Vn=  75.0 235.997*  V 314.663kn where  =0.75 Vn=  bd Vn 1.374Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 14414013 1 3 1 Agf N c 1.577 Vc=KaKnVbAcv=1×1.577×0.708×500×458=255.616kn Vs=Vn- Vc= 314.663-255.616= 59.047kn Vc=Vb.Kn=  .5771087.0 1.116Mpa Steel shear stress: Vs= Vn- Vc/2= 0.816Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2
  • 69. 69 Dongyezhan Liu 1421941 Av=   995.101 4500 5005000.816 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  59047 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 1220mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 1220 mm    ï‚Žï‚Ž  500 120500816.0min fyt bsVs Avreq 97.915 mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041mm< Avprov= 314.16mm2 OK 4legged R10 @ 120c/c 7.2. Marginal columns (Transversal section) 7.2.1. Roof level  Reinforcement bars (Ncorresponding & M*) case 1.2G+1.5Q1+1.5Q2 Mdes= 219.047 knm Ndes=254.401kn 𝑁∗ 𝜙.𝑏.ℎ = 254401 0.85× 500×500 = 1.2 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 219047000 0.85×500×5002 = 2.06 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014
  • 70. 70 Dongyezhan Liu 1421941 (N* & Mcorres) case1.35G Mdes= 215.25 knm Ndes=267.212 kn 𝑁∗ 𝜙.𝑏.ℎ = 267212 0.85× 500×500 = 1.26 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 215250000 0.85×500×5002 = 2.03MPa From Column chart 500/30/0.8 & 0.9 → minimum pt=0.013 Thus, the maximum pt= 0.014 Asreq= pt×b×h= 0.014×500×500= 3500mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 7.7 39.452 3500 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 119.402 kn N* = 267.212 kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×119.402= 271.64 kn where Ѐo’=1.75 Vn=  75.0 271.64*  V 362.186 kn where  =0.75 Vn=  bd Vn 1.582 Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 2672123 1 3 1 Agf N c 1.107 Vc=KaKnVbAcv=1×1.107×0.708×500×458=179.465 kn
  • 71. 71 Dongyezhan Liu 1421941 Vs=Vn- Vc= 362.186-179.465= 182.721 kn Vc=Vb.Kn=  .1071087.0 0.784 Mpa Steel shear stress: Vs= Vn- Vc/2= 1.19 Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   719.148 4500 50050019.1 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  59047 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 390mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 390 mm    ï‚Žï‚Ž  500 12050019.1min fyt bsVs Avreq 142.77 mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c 7.2.2. Level 3  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 199.312knm Ndes=506.22 kn 𝑁∗ 𝜙.𝑏.ℎ = 506220 0.85× 500×500 = 2.38 MPa
  • 72. 72 Dongyezhan Liu 1421941 𝑀∗ 𝜙.𝑏.ℎ2 = 199312000 0.85×500×5002 = 1.88 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.014 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 191.908 knm Ndes=649.762 kn 𝑁∗ 𝜙.𝑏.ℎ = 649762 0.85× 500×500 = 3.06MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 191908000 0.85×500×5002 = 1.81 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt=0.013 Thus, the maximum pt= 0.014 Asreq= pt×b×h= 0.014×500×500= 3500mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 7.7 39.452 3500 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE=110.304 kn N* = 649.762 kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×110.304= 271.64 kn where Ѐo’=1.75 Vn=  75.0 271.64*  V 362.186kn where  =0.75 Vn=  bd Vn 1.582Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK
  • 73. 73 Dongyezhan Liu 1421941 Kn=  ï‚Ž ï‚Ž  2' * 50030 6497623 1 3 1 Agf N c 1.26 Vc=KaKnVbAcv=1×1.26×0.708×500×458=204.275 kn Vs=Vn- Vc= 362.186 -204.275= 157.911 kn Vc=Vb.Kn=  .261087.0 0.892 Mpa Steel shear stress: Vs= Vn- Vc/2= 1.136 Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   .948141 4500 500500136.1 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  157911 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 460 mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 460 mm    ï‚Žï‚Ž  500 120500136.1min fyt bsVs Avreq 136.27 mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041 mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c 7.2.3. Level 2  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q
  • 74. 74 Dongyezhan Liu 1421941 Mdes= 219.094 knm Ndes=808.283 kn 𝑁∗ 𝜙.𝑏.ℎ = 808283 0.85× 500×500 = 3.8 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 219094000 0.85×500×5002 = 2.0 6MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 209.113 knm Ndes=1043.388 kn 𝑁∗ 𝜙.𝑏.ℎ = 1043388 0.85× 500×500 = 4.91 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 209113000 0.85×500×5002 = 1.97 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt=0.011 Thus, the maximum pt= 0.012 Asreq= pt×b×h= 0.012×500×500= 3000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 6.6 39.452 3000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE=123.506 kn N* = 1043.388kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×123.506= 235.997 kn where Ѐo’=1.75 Vn=  75.0 235.997*  V 314.663 kn where  =0.75 Vn=  bd Vn 1.5374Mpa
  • 75. 75 Dongyezhan Liu 1421941  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 388.10433 1 3 1 Agf N c 1.417 Vc=KaKnVbAcv=1×1.417×0.708×500×458=229.803 kn Vs=Vn- Vc= 314.663-229.803= 84.86 kn Vc=Vb.Kn=  .4171087.0 1 Mpa Steel shear stress: Vs= Vn- Vc/2= 0.872Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   04.109 4500 500500872.0 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  84860 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 850 mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 850 mm    ï‚Žï‚Ž  500 120500872.0min fyt bsVs Avreq 104.678mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041 mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c
  • 76. 76 Dongyezhan Liu 1421941 7.2.4. Level 1  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 216.8 knm Ndes= 1114.559kn 𝑁∗ 𝜙.𝑏.ℎ = 1114559 0.85× 500×500 = 5.24 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 216800000 0.85×500×5002 = 2.04 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt=0.008 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 125.161 knm Ndes=1427.949 kn 𝑁∗ 𝜙.𝑏.ℎ = 1427949 0.85× 500×500 = 6.72 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 125161000 0.85×500×5002 = 1.18 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0 Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE=94.231 kn N* = 1427.949 kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×94.231= 214.376 kn where Ѐo’=1.75
  • 77. 77 Dongyezhan Liu 1421941 Vn=  75.0 214.376*  V 285.834 kn where  =0.75 Vn=  bd Vn 1.248Mpa  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 14279493 1 3 1 Agf N c 1.57 Vc=KaKnVbAcv=1×1.57×0.708×500×458=254.743kn Vs=Vn- Vc= 285.834 -254.743= 31.091 kn Vc=Vb.Kn=  .571087.0 1.112 Mpa Steel shear stress: Vs= Vn- Vc/2= 0.692 Mpa Use 4 legged R10 stirrups  Avprov= 314.16mm2 Av=   497.86 4500 500500692.0 4fy bhs  ï‚Ž ï‚Žï‚Ž  ï‚Ž V mm < Avprov= 314.16mm2 OK  ï‚Žï‚Ž  31091 45850016.314 Vs dfA S s d fAV ytvprov req req ytvprovs 2310 mm 10db = 10 x 24 = 240 mm Smin= mm125 4 500 4 b  Smin=120mm mm150 3 458 3 d  Sreq = 2310 mm    ï‚Žï‚Ž  500 120500692.0min fyt bsVs Avreq 83.037 mm < Avprov= 314.16mm2 OK For anti-buckling:  ï‚Ž  500 120500 30 16 1 16 1 min' vmin yt c c f sb fA 41.079mm< Avprov= 314.16mm2 OK
  • 78. 78 Dongyezhan Liu 1421941  ï‚Žï‚Ž ï‚Žï‚Ž   24500135 120500248 135 A minb D df sf A byt y te 134.041 mm< Avprov= 314.16mm2 OK 4 legged R10 @ 120c/c 7.3. Internal columns 7.3.1. Roof level  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 105.789knm Ndes=454.292kn 𝑁∗ 𝜙.𝑏.ℎ = 454292 0.85× 500×500 = 2.14 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 105789000 0.85×500×5002 = 1 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.012 (N* & Mcorres) case1.35G Mdes= 36.89knm Ndes=600.272kn 𝑁∗ 𝜙.𝑏.ℎ = 600272 0.85× 500×500 = 2.82 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 36890000 0.85×500×5002 = 3.17 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0 Thus, the maximum pt= 0.012 Asreq= pt×b×h= 0.012×500×500= 3000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 6.6 39.452 3000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups
  • 79. 79 Dongyezhan Liu 1421941 VE= 52.789 kn N* = 600.272kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×52.789= 120.095 kn where Ѐo’=1.75 Vn=  75.0 120.095*  V 160.127 kn where  =0.75  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 6002723 1 3 1 Agf N c 1.24 Vc=KaKnVbAcv=1×1.24×0.708×500×458=201.065kn Vs=Vn- Vc= 160.127-201.065= -40.939kn Thus, no need stirrups but constructive. Use 4 legged R10 stirrups  Avprov= 314.16mm2 4 legged R10 @ 240c/c 7.3.2. Level 3  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 120.9knm Ndes=974.727kn 𝑁∗ 𝜙.𝑏.ℎ = 1974727 0.85× 500×500 = 4.59 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 120900000 0.85×500×5002 = 1.14 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 9.5knm Ndes=1342.712 kn
  • 80. 80 Dongyezhan Liu 1421941 𝑁∗ 𝜙.𝑏.ℎ = 1441401 0.85× 500×500 = 6.32 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 168908000 0.85×500×5002 = 0.09 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0 Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 66.38kn N* = 1342.712kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×66.38= 151.015kn where Ѐo’=1.75 Vn=  75.0 151.015*  V 201.353kn where  =0.75  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 13427123 1 3 1 Agf N c 1.537 Vc=KaKnVbAcv=1×1.3537×0.708×500×458=249.215kn Vs=Vn- Vc= 201.353-249.215= -47.863kn Thus, no need stirrups but constructive. Use 4 legged R10 stirrups  Avprov= 314.16mm2 4 legged R10 @ 240c/c
  • 81. 81 Dongyezhan Liu 1421941 7.3.3. Level 2  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 166.117knm Ndes= 1497.766kn 𝑁∗ 𝜙.𝑏.ℎ = 1497766 0.85× 500×500 = 7.05 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 166117000 0.85×500×5002 = 1.56 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 30.435knm Ndes=2123.84 kn 𝑁∗ 𝜙.𝑏.ℎ = 2123840 0.85× 500×500 = 9.99 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 30435000 0.85×500×5002 = 0.29 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0 Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 94.426kn N* = 2123.84kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE=1.3×1.75×94.426= 214.819 kn where Ѐo’=1.75
  • 82. 82 Dongyezhan Liu 1421941 Vn=  75.0 214.819*  V 286.428kn where  =0.75  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  ï‚Ž ï‚Ž  2' * 50030 21238403 1 3 1 Agf N c 1.85 Vc=KaKnVbAcv=1×1.85×0.708×500×458=299.875kn Vs=Vn- Vc= 286.426-299.875= -13.449kn Thus, no need stirrups but constructive. Use 4 legged R10 stirrups  Avprov= 314.16mm2 4 legged R10 @ 240c/c 7.3.4. Level 1  Reinforcement bars (Ncorresponding & M*) caseG+Eu+Q Mdes= 204.836knm Ndes=2029.268kn 𝑁∗ 𝜙.𝑏.ℎ = 2029268 0.85× 500×500 = 9.55 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 204836000 0.85×500×5002 = 1.93 MPa (Cl 10.3.8.1) Minimum longitudinal reinforcement in nominally ductile design 0.008Ag From Column chart 500/30/0.8 & 0.9 → minimum pt= 0.008 (N* & Mcorres) case1.2G+1.5Q1+1.5Q2 Mdes= 15.532knm Ndes=2912.379 kn 𝑁∗ 𝜙.𝑏.ℎ = 2912379 0.85× 500×500 = 13.71 MPa 𝑀∗ 𝜙.𝑏.ℎ2 = 15532000 0.85×500×5002 = 0.15 MPa From Column chart 500/30/0.8 & 0.9 → minimum pt<0
  • 83. 83 Dongyezhan Liu 1421941 Thus, the maximum pt= 0.008 Asreq= pt×b×h= 0.008×500×500= 2000mm2 (Cl 10.3.8.2) Minimum number of longitudinal reinforcement bars N= 4.4 39.452 2000 24  D sreq A A The minimum reinforce bars is 8. Thus, use 8D24  Stirrups VE= 84.235kn N* = 2912.379kn d=h-Cc-D/2=500- 30- 24= 458mm V*=1.3.Ѐo’.VE= 191.635kn where Ѐo’=1.75 Vn=   * V 255.513 kn where  =0.75  ï‚Ž  458500 243 bd DA P S 0.0059 Vb= 708.0p1007.0 '  cf Check: '' 2.0708.008.0 cc ff  OK Kn=  Agf N c ' * 3 1 2.165 Vc=KaKnVbAcv=1×2.165×0.708×500×458=351kn Vs=Vn- Vc= 255.513-351= -95kn Thus, no need stirrups but constructive. Use 4 legged R10 stirrups  Avprov= 314.16mm2 4 legged R10 @ 240c/c 8.Conclusions
  • 84. 84 Dongyezhan Liu 1421941 This project is being designed for the commercial office building located in Auckland centre region. The dimensions of beams and columns are considered as 350×800 mm and 500×500 mm. The permanent, imposed and earthquake actions are calculated for creating the structure frame. The structure frame is taken into account by two different aspects: longitudinal and transversal section, which has the unique factors influenced by the various length of bays for both sides. All the above components are relevant with the NZS 3101:2006 part 1 Concrete design and NZS 1170 series -Structural design actions. In the result of load distribution applying on each level, for the permanent load distribution, they are all equal to each other. The only different is the point load, which is calculated by self-weight of glazing and columns. For the imposed load distribution, the main difference could be observed by eyes. As roof level treated as other levels, the value of φe is remarkably lower than other levels. The internal columns design is done from longitudinal section due to the critical value existing in this section. As the pt number is tiny caused by columns size w, all the reinforcement bars are used as 8HD24. 9.References Structural Concrete, Dr. Lusa Tuleasca handouts Park, R., & Pauley, T. (1975). Reinforced concrete structures. Christchurch, New Zealand: John Wiley & Sons Company. Noel, J. (1993). Reinforced concrete design. Texas, USA: McGraw-Hill Company. NZS3101: 2006 Concrete structures standard NZS4203: 1992 Code of practice for general structural design and design loading for building NZS1170: 2002 part 0: General principles NZS1170: 2002 part 1: Permanent, imposed and other actions NZS1170: 2002 part 5: Earthquake actions- New Zealand 10. Appendices 10.1. Longitudinal section combinations 10.1.1. 1.35G  Bending moment
  • 85. 85 Dongyezhan Liu 1421941  Shear force  Axial load
  • 86. 86 Dongyezhan Liu 1421941 10.1.2. 1.2G+1.5Q1  Bending moment  Shear force
  • 87. 87 Dongyezhan Liu 1421941  Axial load 10.1.3. 1.2G+1.5Q2  Bending moment
  • 88. 88 Dongyezhan Liu 1421941  Shear force  Axial load
  • 89. 89 Dongyezhan Liu 1421941 10.1.4. 1.2G+1.5Q1+1.5Q2  Bending moment  Shear force
  • 90. 90 Dongyezhan Liu 1421941  Axial load 10.1.5. G+Eu+𝜑𝑐 𝑄  Bending moment
  • 91. 91 Dongyezhan Liu 1421941  Shear force  Axial load
  • 92. 92 Dongyezhan Liu 1421941 10.2. Transversal section 10.2.1. 1.35G  Bending moment  Shear force
  • 93. 93 Dongyezhan Liu 1421941  Axial load 10.2.2. 1.2G+1.5Q1  Bending moment
  • 94. 94 Dongyezhan Liu 1421941  Shear force  Axial load
  • 95. 95 Dongyezhan Liu 1421941 10.2.3. 1.2G+1.5Q2  Bending moment  Shear force
  • 96. 96 Dongyezhan Liu 1421941  Axial load 10.2.4. 1.2G+1.5Q1+1.5Q2  Bending moment
  • 97. 97 Dongyezhan Liu 1421941  Shear force  Axial load
  • 98. 98 Dongyezhan Liu 1421941 10.2.5. G+Eu+𝜑𝑐 𝑄  Bending moment  Shear force