SlideShare a Scribd company logo
Comprehensive Examination
Master’s in Statistics and Analytics
Md Abul Hayat
Graduate Assistant
Electrical Engineering
April 26, 2021
Contents
• An Introduction to Locally Linear Embedding
– Objective
– Idea
– Algorithm
– Results
• Explaining Variational Approximations
– Idea
– Algorithm
– Examples
• Q&A
An Introduction to Locally Linear Embedding
Lawrence K. Saul, Sam T. Roweis
Unpublished (2000)
Available at https://cs.nyu.edu/~roweis/lle/publications.html
Locally Linear Embedding (LLE)
• Unsupervised dimension reduction technique
• Eigenvector method for nonlinear dimensionality reduction
– Both PCA and MDS are eigenvector methods
– designed to model linear variabilities in high dimensional data
– optimizations do not involve local minima
• LLE maps high dimensional data into a system of lower dimensionality
LLE Algorithm
• Data contains 𝑁 real valued vectors 𝑋𝑖 of dimension 𝐷
• We want to minimize
• The number of neighbors 𝐾 to look for is predefined
• Assuming the data lie on or near a smooth nonlinear manifold of
dimensionality 𝑑 ≪ 𝐷
• LLE is done by choosing 𝑑 dimensional coordinates 𝑌𝑖 that minimize
LLE Algorithm
Courtesy: https://cs.nyu.edu/~roweis/lle/algorithm.html
Constrained Least Squares Problem
• Step 1:
s.t.
• Notations
• Cost Function
Constrained Least Squares Problem
• Cost Function
• Assuming,
• The cost function becomes
• Optimization
Eigenvector Problem
• Step-2
• Notation
– 𝑊𝑖 is i-th column of 𝑛 𝑥 𝑛 weight matrix 𝑊
– 𝐼𝑖 is i-th column of 𝑛 𝑥 𝑛 identity matrix 𝐼
• Using this notation
Eigenvector Problem
• This gives
• Replacing 𝑀
• The solution 𝑌 consists of 𝑑 eigenvectors of 𝑀 corresponding to 2 to 𝑑 + 1
minimum eigenvalues
Results
Results
Explaining Variational Approximations
John T. Ormerod, Matt P. Wand
The American Statistician (2010)
Introduction
• Variational approximations facilitate approximate inference for the
parameters in complex statistical models and provide fast, deterministic
alternatives to Monte Carlo methods
• Variational approximations are limited in their approximation accuracy
– opposed to MCMC that can be very accurate
• This paper does not discuss the quality of variational approximations
• Variational approximations can be useful for both likelihood-based and
Bayesian inference
• Topics
– Section 2: Density transform approach
– Section 3: Tangent transform approach
– Section 4: Same idea on frequentist context
Density Transform Approach
• Consider a generic Bayesian model with parameter vector 𝜃 ∈ Θ and
observed data vector 𝒚
• Posterior density function
• The denominator 𝑝(𝒚) is known as the marginal likelihood
– model evidence in the Computer Science literature
• Assuming q to be an arbitrary density function and q ∈ Θ
Density Transform Approach
equality if and only if 𝑞(𝜽) = 𝑝(𝜽|𝒚)
Density Transform Approach
• Exponential of Evidence Lower-bound (ELBO)
The key idea of density transform bases variationals approach is
• Approximation of the posterior density 𝑝(𝜽|𝒚) by a 𝑞(𝜽) for which 𝑝(𝒚; 𝑞) is
more tractable than 𝑝(𝒚)
• Tractability is achieved by restricting 𝑞 to a more manageable class of
densities and then maximizing 𝑝(𝒚; 𝑞) over that class
• Maximization of 𝑝(𝒚; 𝑞) is equivalent to minimization of the Kullback–Leibler
divergence between 𝑞 and 𝑝(· |𝒚)
Density Transform Approach
• The most common restrictions for the q density are:
– 𝑞(𝜽) factorizes into Π𝑖=1
𝑀
𝑞𝑖(𝜽𝑖) for some partition {𝜽1, … , 𝜽𝑀} of 𝜽
• Product density transform
• Mean Field Approximation (Variational Bayes)
• Nonparametric restriction
– 𝑞 is a member of a parametric family of density functions
• Depending on the Bayesian model at hand, both restrictions can have minor
or major impacts on the resulting inference
Product Density Transforms
• ELBO under product density transform
• We also define
Product Density Transforms
• ELBO under product density transform becomes
• From Result 1
• The optimal 𝑞1 is then
Product Density Transforms
• Repeating the same argument for maximizing
• where E−𝜃𝑖
denotes expectation with respect to density Π𝑗≠𝑖𝑞𝑗(𝜃𝑗)
• The key thing to note is the expectation is on distribution 𝒒𝒊
• A valid alternative expression with full conditionals
Algorithm: Product Density Transforms
•
Example 1: Normal Random Sample
• Random independent sample 𝑋𝑖 from normal distribution with
𝜃 = {𝜇, 𝜎2
}
• The product density transform approximation to 𝑝(𝜇, 𝜎2
|𝒙) is
• The optimal densities take the form
Example 1: Normal Random Sample
• Standard manipulations lead to
• Here, where 𝒙 = 𝑋1, … , 𝑋𝑛
𝑇
and 𝑋 = (𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛)/𝑛
Example 1: Normal Random Sample
• Optimal densities
• Also
• ELBO
Example 1: Normal Random Sample
• Algorithm and result
Example 2: Linear Mixed Model
• Bayesian Gaussian Linear Mixed Model
– 𝒀 and 𝜷 are a 𝑛𝑥1 and 𝑝𝑥1 vector respectively
– Variance component model
– Conjugate priors
Example 2: Linear Mixed Model
• Tractable solution arises for two component model
• Let 𝝁𝑞 𝜷, 𝒖 and Σ𝑞(𝜷, 𝒖) be the mean and covariance of 𝑞∗ 𝜷, 𝒖
• Set 𝑪 = 𝑿 𝒁
• Markov blanket
Example 2: Linear Mixed Model
•
• Upon convergence the approximate posteriors are:
Example 2: Linear Mixed Model
• Longitudinal Orthodontic Measurement (Pinherio and Bates 2000)
• Model
• Comparing with
• Here
Example 2: Linear Mixed Model
•
Example 3: Probit Regression
• Bayesian probit regression
• Likelihood
• Auxiliary variable
Example 3: Probit Regression
• Product density
Example 4: Finite Mixture Model
• Let (𝑋1, 𝑋2, ⋯ 𝑋𝑛) be univariate samples that are modeled as mixture of 𝐾
normal density functions with parameter (𝜇𝑘, 𝜎𝑘
2
)
• Auxiliary variable
Example 4: Finite Mixture Model
•
•
Parametric Density Transform
• Poisson Regression with Gaussian Transform
– Assuming 𝜷 ∼ (𝝁𝜷, 𝚺𝜷) and 𝑿 = [1 𝑥1𝑖 ⋯ 𝑥𝑘𝑖]
• Likelihood
• Marginal likelihood
• Take the 𝑞 𝛽 = 𝑁(𝝁𝑞 𝛽 , 𝚺𝑞(𝛽)) density
Tangent Transform Approach
• Work with ‘tangent-type’ representations of concave and convex functions
– The value of 𝜉 can then be chosen to make the approximation as accurate as possible.
Bayesian Logistic Regression
• Model
• Likelihood
• Assuming 𝜷 ∼ 𝝁𝜷, 𝚺𝜷 , the posterior of 𝜷 is
– Here
Bayesian Logistic Regression
• Here
• Similarly
• Lower bound on 𝑝(𝒚, 𝜷)
Bayesian Logistic Regression
• Maximizing the following term using EM gives us the solution
Questions?
Thanks for listening :D

More Related Content

Similar to STAN_MS_PPT.pptx

Machine Learning (Decisoion Trees)
Machine Learning (Decisoion Trees)Machine Learning (Decisoion Trees)
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_Souma
MDO_Lab
 
Computational Giants_nhom.pptx
Computational Giants_nhom.pptxComputational Giants_nhom.pptx
Computational Giants_nhom.pptx
ThAnhonc
 
Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models
ananth
 
Scaling and Normalization
Scaling and NormalizationScaling and Normalization
Scaling and Normalization
Kush Kulshrestha
 
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
Maninda Edirisooriya
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
Sakthivel Murugan
 
Recommender system
Recommender systemRecommender system
Recommender system
Bhumi Patel
 
Factor analysis ppt
Factor analysis pptFactor analysis ppt
Factor analysis ppt
Mukesh Bisht
 
An Introduction to Factor analysis ppt
An Introduction to Factor analysis pptAn Introduction to Factor analysis ppt
An Introduction to Factor analysis ppt
Mukesh Bisht
 
Lecture 4 duality and sensitivity in lp
Lecture 4 duality and sensitivity in lpLecture 4 duality and sensitivity in lp
Lecture 4 duality and sensitivity in lp
kongara
 
How to analyse bulk transcriptomic data using Deseq2
How to analyse bulk transcriptomic data using Deseq2How to analyse bulk transcriptomic data using Deseq2
How to analyse bulk transcriptomic data using Deseq2
AdamCribbs1
 
RM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptxRM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptx
AliMusa44
 
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
Spark Summit
 
Sess03 Dimension Reduction Methods.pptx
Sess03 Dimension Reduction Methods.pptxSess03 Dimension Reduction Methods.pptx
Sess03 Dimension Reduction Methods.pptx
SarthakKabi1
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016
Christian Robert
 
CounterFactual Explanations.pdf
CounterFactual Explanations.pdfCounterFactual Explanations.pdf
CounterFactual Explanations.pdf
Bong-Ho Lee
 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
Hadrian7
 
3D QSAR
3D QSAR3D QSAR
3D QSAR
suraj wanjari
 

Similar to STAN_MS_PPT.pptx (20)

Machine Learning (Decisoion Trees)
Machine Learning (Decisoion Trees)Machine Learning (Decisoion Trees)
Machine Learning (Decisoion Trees)
 
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_Souma
 
Computational Giants_nhom.pptx
Computational Giants_nhom.pptxComputational Giants_nhom.pptx
Computational Giants_nhom.pptx
 
Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models
 
Scaling and Normalization
Scaling and NormalizationScaling and Normalization
Scaling and Normalization
 
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
Lecture 9 - Decision Trees and Ensemble Methods, a lecture in subject module ...
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Recommender system
Recommender systemRecommender system
Recommender system
 
Factor analysis ppt
Factor analysis pptFactor analysis ppt
Factor analysis ppt
 
An Introduction to Factor analysis ppt
An Introduction to Factor analysis pptAn Introduction to Factor analysis ppt
An Introduction to Factor analysis ppt
 
Lecture 4 duality and sensitivity in lp
Lecture 4 duality and sensitivity in lpLecture 4 duality and sensitivity in lp
Lecture 4 duality and sensitivity in lp
 
How to analyse bulk transcriptomic data using Deseq2
How to analyse bulk transcriptomic data using Deseq2How to analyse bulk transcriptomic data using Deseq2
How to analyse bulk transcriptomic data using Deseq2
 
RM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptxRM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptx
 
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models (DB T...
 
Sess03 Dimension Reduction Methods.pptx
Sess03 Dimension Reduction Methods.pptxSess03 Dimension Reduction Methods.pptx
Sess03 Dimension Reduction Methods.pptx
 
Viva extented final
Viva extented finalViva extented final
Viva extented final
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016
 
CounterFactual Explanations.pdf
CounterFactual Explanations.pdfCounterFactual Explanations.pdf
CounterFactual Explanations.pdf
 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
 
3D QSAR
3D QSAR3D QSAR
3D QSAR
 

More from Md Abul Hayat

Self-supervised Learning for Astronomical Images
Self-supervised Learning for Astronomical ImagesSelf-supervised Learning for Astronomical Images
Self-supervised Learning for Astronomical Images
Md Abul Hayat
 
dissertation_proposal_presentation.pdf
dissertation_proposal_presentation.pdfdissertation_proposal_presentation.pdf
dissertation_proposal_presentation.pdf
Md Abul Hayat
 
Review_Sp23.pdf
Review_Sp23.pdfReview_Sp23.pdf
Review_Sp23.pdf
Md Abul Hayat
 
Fa18_P1.pptx
Fa18_P1.pptxFa18_P1.pptx
Fa18_P1.pptx
Md Abul Hayat
 
Sp18_P2.pptx
Sp18_P2.pptxSp18_P2.pptx
Sp18_P2.pptx
Md Abul Hayat
 
Sp18_P1.pptx
Sp18_P1.pptxSp18_P1.pptx
Sp18_P1.pptx
Md Abul Hayat
 
Sp20_P1.pptx
Sp20_P1.pptxSp20_P1.pptx
Sp20_P1.pptx
Md Abul Hayat
 
Sp19_P2.pptx
Sp19_P2.pptxSp19_P2.pptx
Sp19_P2.pptx
Md Abul Hayat
 
Sp19_P1.pptx
Sp19_P1.pptxSp19_P1.pptx
Sp19_P1.pptx
Md Abul Hayat
 
Fa19_P2.pptx
Fa19_P2.pptxFa19_P2.pptx
Fa19_P2.pptx
Md Abul Hayat
 
Fa19_P1.pptx
Fa19_P1.pptxFa19_P1.pptx
Fa19_P1.pptx
Md Abul Hayat
 
Fa18_P2.pptx
Fa18_P2.pptxFa18_P2.pptx
Fa18_P2.pptx
Md Abul Hayat
 
Fa18_P1.pptx
Fa18_P1.pptxFa18_P1.pptx
Fa18_P1.pptx
Md Abul Hayat
 

More from Md Abul Hayat (13)

Self-supervised Learning for Astronomical Images
Self-supervised Learning for Astronomical ImagesSelf-supervised Learning for Astronomical Images
Self-supervised Learning for Astronomical Images
 
dissertation_proposal_presentation.pdf
dissertation_proposal_presentation.pdfdissertation_proposal_presentation.pdf
dissertation_proposal_presentation.pdf
 
Review_Sp23.pdf
Review_Sp23.pdfReview_Sp23.pdf
Review_Sp23.pdf
 
Fa18_P1.pptx
Fa18_P1.pptxFa18_P1.pptx
Fa18_P1.pptx
 
Sp18_P2.pptx
Sp18_P2.pptxSp18_P2.pptx
Sp18_P2.pptx
 
Sp18_P1.pptx
Sp18_P1.pptxSp18_P1.pptx
Sp18_P1.pptx
 
Sp20_P1.pptx
Sp20_P1.pptxSp20_P1.pptx
Sp20_P1.pptx
 
Sp19_P2.pptx
Sp19_P2.pptxSp19_P2.pptx
Sp19_P2.pptx
 
Sp19_P1.pptx
Sp19_P1.pptxSp19_P1.pptx
Sp19_P1.pptx
 
Fa19_P2.pptx
Fa19_P2.pptxFa19_P2.pptx
Fa19_P2.pptx
 
Fa19_P1.pptx
Fa19_P1.pptxFa19_P1.pptx
Fa19_P1.pptx
 
Fa18_P2.pptx
Fa18_P2.pptxFa18_P2.pptx
Fa18_P2.pptx
 
Fa18_P1.pptx
Fa18_P1.pptxFa18_P1.pptx
Fa18_P1.pptx
 

Recently uploaded

Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
Tiktokethiodaily
 
FP Growth Algorithm and its Applications
FP Growth Algorithm and its ApplicationsFP Growth Algorithm and its Applications
FP Growth Algorithm and its Applications
MaleehaSheikh2
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Linda486226
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
benishzehra469
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar
 
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
slg6lamcq
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
vcaxypu
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
haila53
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
TravisMalana
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
enxupq
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
slg6lamcq
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
enxupq
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
ocavb
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
yhkoc
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
NABLAS株式会社
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
vcaxypu
 
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
NABLAS株式会社
 

Recently uploaded (20)

Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
 
FP Growth Algorithm and its Applications
FP Growth Algorithm and its ApplicationsFP Growth Algorithm and its Applications
FP Growth Algorithm and its Applications
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
 
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
一比一原版(UniSA毕业证书)南澳大学毕业证如何办理
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
 
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
 

STAN_MS_PPT.pptx

  • 1. Comprehensive Examination Master’s in Statistics and Analytics Md Abul Hayat Graduate Assistant Electrical Engineering April 26, 2021
  • 2. Contents • An Introduction to Locally Linear Embedding – Objective – Idea – Algorithm – Results • Explaining Variational Approximations – Idea – Algorithm – Examples • Q&A
  • 3. An Introduction to Locally Linear Embedding Lawrence K. Saul, Sam T. Roweis Unpublished (2000) Available at https://cs.nyu.edu/~roweis/lle/publications.html
  • 4. Locally Linear Embedding (LLE) • Unsupervised dimension reduction technique • Eigenvector method for nonlinear dimensionality reduction – Both PCA and MDS are eigenvector methods – designed to model linear variabilities in high dimensional data – optimizations do not involve local minima • LLE maps high dimensional data into a system of lower dimensionality
  • 5. LLE Algorithm • Data contains 𝑁 real valued vectors 𝑋𝑖 of dimension 𝐷 • We want to minimize • The number of neighbors 𝐾 to look for is predefined • Assuming the data lie on or near a smooth nonlinear manifold of dimensionality 𝑑 ≪ 𝐷 • LLE is done by choosing 𝑑 dimensional coordinates 𝑌𝑖 that minimize
  • 7. Constrained Least Squares Problem • Step 1: s.t. • Notations • Cost Function
  • 8. Constrained Least Squares Problem • Cost Function • Assuming, • The cost function becomes • Optimization
  • 9. Eigenvector Problem • Step-2 • Notation – 𝑊𝑖 is i-th column of 𝑛 𝑥 𝑛 weight matrix 𝑊 – 𝐼𝑖 is i-th column of 𝑛 𝑥 𝑛 identity matrix 𝐼 • Using this notation
  • 10. Eigenvector Problem • This gives • Replacing 𝑀 • The solution 𝑌 consists of 𝑑 eigenvectors of 𝑀 corresponding to 2 to 𝑑 + 1 minimum eigenvalues
  • 13. Explaining Variational Approximations John T. Ormerod, Matt P. Wand The American Statistician (2010)
  • 14. Introduction • Variational approximations facilitate approximate inference for the parameters in complex statistical models and provide fast, deterministic alternatives to Monte Carlo methods • Variational approximations are limited in their approximation accuracy – opposed to MCMC that can be very accurate • This paper does not discuss the quality of variational approximations • Variational approximations can be useful for both likelihood-based and Bayesian inference • Topics – Section 2: Density transform approach – Section 3: Tangent transform approach – Section 4: Same idea on frequentist context
  • 15. Density Transform Approach • Consider a generic Bayesian model with parameter vector 𝜃 ∈ Θ and observed data vector 𝒚 • Posterior density function • The denominator 𝑝(𝒚) is known as the marginal likelihood – model evidence in the Computer Science literature • Assuming q to be an arbitrary density function and q ∈ Θ
  • 16. Density Transform Approach equality if and only if 𝑞(𝜽) = 𝑝(𝜽|𝒚)
  • 17. Density Transform Approach • Exponential of Evidence Lower-bound (ELBO) The key idea of density transform bases variationals approach is • Approximation of the posterior density 𝑝(𝜽|𝒚) by a 𝑞(𝜽) for which 𝑝(𝒚; 𝑞) is more tractable than 𝑝(𝒚) • Tractability is achieved by restricting 𝑞 to a more manageable class of densities and then maximizing 𝑝(𝒚; 𝑞) over that class • Maximization of 𝑝(𝒚; 𝑞) is equivalent to minimization of the Kullback–Leibler divergence between 𝑞 and 𝑝(· |𝒚)
  • 18. Density Transform Approach • The most common restrictions for the q density are: – 𝑞(𝜽) factorizes into Π𝑖=1 𝑀 𝑞𝑖(𝜽𝑖) for some partition {𝜽1, … , 𝜽𝑀} of 𝜽 • Product density transform • Mean Field Approximation (Variational Bayes) • Nonparametric restriction – 𝑞 is a member of a parametric family of density functions • Depending on the Bayesian model at hand, both restrictions can have minor or major impacts on the resulting inference
  • 19. Product Density Transforms • ELBO under product density transform • We also define
  • 20. Product Density Transforms • ELBO under product density transform becomes • From Result 1 • The optimal 𝑞1 is then
  • 21. Product Density Transforms • Repeating the same argument for maximizing • where E−𝜃𝑖 denotes expectation with respect to density Π𝑗≠𝑖𝑞𝑗(𝜃𝑗) • The key thing to note is the expectation is on distribution 𝒒𝒊 • A valid alternative expression with full conditionals
  • 22. Algorithm: Product Density Transforms •
  • 23. Example 1: Normal Random Sample • Random independent sample 𝑋𝑖 from normal distribution with 𝜃 = {𝜇, 𝜎2 } • The product density transform approximation to 𝑝(𝜇, 𝜎2 |𝒙) is • The optimal densities take the form
  • 24. Example 1: Normal Random Sample • Standard manipulations lead to • Here, where 𝒙 = 𝑋1, … , 𝑋𝑛 𝑇 and 𝑋 = (𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛)/𝑛
  • 25. Example 1: Normal Random Sample • Optimal densities • Also • ELBO
  • 26. Example 1: Normal Random Sample • Algorithm and result
  • 27. Example 2: Linear Mixed Model • Bayesian Gaussian Linear Mixed Model – 𝒀 and 𝜷 are a 𝑛𝑥1 and 𝑝𝑥1 vector respectively – Variance component model – Conjugate priors
  • 28. Example 2: Linear Mixed Model • Tractable solution arises for two component model • Let 𝝁𝑞 𝜷, 𝒖 and Σ𝑞(𝜷, 𝒖) be the mean and covariance of 𝑞∗ 𝜷, 𝒖 • Set 𝑪 = 𝑿 𝒁 • Markov blanket
  • 29. Example 2: Linear Mixed Model • • Upon convergence the approximate posteriors are:
  • 30. Example 2: Linear Mixed Model • Longitudinal Orthodontic Measurement (Pinherio and Bates 2000) • Model • Comparing with • Here
  • 31. Example 2: Linear Mixed Model •
  • 32. Example 3: Probit Regression • Bayesian probit regression • Likelihood • Auxiliary variable
  • 33. Example 3: Probit Regression • Product density
  • 34. Example 4: Finite Mixture Model • Let (𝑋1, 𝑋2, ⋯ 𝑋𝑛) be univariate samples that are modeled as mixture of 𝐾 normal density functions with parameter (𝜇𝑘, 𝜎𝑘 2 ) • Auxiliary variable
  • 35. Example 4: Finite Mixture Model • •
  • 36. Parametric Density Transform • Poisson Regression with Gaussian Transform – Assuming 𝜷 ∼ (𝝁𝜷, 𝚺𝜷) and 𝑿 = [1 𝑥1𝑖 ⋯ 𝑥𝑘𝑖] • Likelihood • Marginal likelihood • Take the 𝑞 𝛽 = 𝑁(𝝁𝑞 𝛽 , 𝚺𝑞(𝛽)) density
  • 37. Tangent Transform Approach • Work with ‘tangent-type’ representations of concave and convex functions – The value of 𝜉 can then be chosen to make the approximation as accurate as possible.
  • 38. Bayesian Logistic Regression • Model • Likelihood • Assuming 𝜷 ∼ 𝝁𝜷, 𝚺𝜷 , the posterior of 𝜷 is – Here
  • 39. Bayesian Logistic Regression • Here • Similarly • Lower bound on 𝑝(𝒚, 𝜷)
  • 40. Bayesian Logistic Regression • Maximizing the following term using EM gives us the solution