SlideShare a Scribd company logo
1 of 20
楽天における大規模データベースの運用
Sep. 29th , 2022
Kenichi Saito
Database Section
Cloud Services Department
Rakuten Group, Inc.
2
About Me
2002年 インフラエンジニア (前職)
• データセンター運用・セキュリティ・バックアップ管理
• 製薬・金融業向け
2007年 楽天中途入社 データベースエンジニア
• MySQL・Informix
• 楽天市場・オークション
2016年 データベースマネージャ
• MySQL・Oracle・NoSQL
• 楽天グループ全体のデータベースを管理
データベース課
シニアマネージャー
Kenich Saito ( 斉藤 健一 )
3
CONTENTS
1. 楽天 DB History
2. 楽天 DBA チーム
3. DB アーキテクチャと運用
4
CONTENTS
1. 楽天 DB History
2. 楽天 DBA チーム
3. DB アーキテクチャと運用
5
データベースの歴史: 楽天市場受注DB
Atago
1997年、たったひとつのデータベースからスタート
https://www.youtube.com/watch?v=T5YvciRzeTQ
参考資料: RNN: Rakuten’s Office Relocation History
6
Atago
Atago rms01
rms01
db000
db050
….
分離 DB
データベースの歴史: 楽天市場受注DB
1999年~2000年、増加するデータ量に対応するため、複数データベースに分割
• RDBMS : Informix
• 店舗IDによる Data Sharding
7
transaction
• 2002/5 E10K(Sun Enterprise 10000) started running.
• 2002/10 SF15K(Sun Fire 15000) started running. E10K was replaced as standby.
• 2004/11 SF25K(Sun Fire 25000) started running. SF15K was replaced as standby.
• 2006/5 Total 4 SF25K machines run as primary database servers.
• 2007/11 SF25K CPU board Upgrade
データベースの歴史: 楽天市場受注DB
2年に1回のペースでサーバのスケールアップ
8
BunriDB
Informix
M9000 Exadata X4 Exadata X8M
RISE DB
Oracle
RISE DB
Oracle
2010 2015 ~ 2016 2020
データベースの歴史: 楽天市場受注DB
脱 Informix HW EOSL
9
DBaaS
パフォーマンス:◎
高可用性:◎
コスト:低
データベース・プラットフォーム
Inexpensive
Cost
Excellent
Performance
Exadata
パフォーマンス:◎
コスト:高
IaaS VM
パフォーマンス:
△
コスト:低
10
データベース・プラットフォーム
CPSD customers Oracle Exadata
DBaaS
IaaS (VM)
MySQL PostgreSQL
Oracle
MySQL
Couchbase
MariaDB
Cassandra
Couchbase
Cassandra
Oracle
1,000 nodes
10 racks
4,000 VMs
11
2. 楽天 DBA チーム
1. 楽天 DB History
3. DB アーキテクチャと運用
12
楽天 DBA
Office
US: 2
France: 1
India: 18
Japan: 18
13
Team Japan (18) India (18) US (2) France (1)
Management
(3)
2 1
DevOps
(18)
10 8
DBA : DBaaS
(8)
3 3 1 1
DBA : Oracle
(10)
3 6 1
楽天 DBA
14
CONTENTS
3. DB アーキテクチャと運用
1. 楽天 DB History
2. 楽天 DBA チーム
15
### Primary Only ### ### Primary + Read Replica ### ### Primary + Read Replica + Backup ###
Primary Primary
Read Replica
Read Replica
Primary
Read Replica
Read Replica
Backup
シングル DB 構成
楽天では、IaaS レイヤーで VM 機
能による冗長性を担保している
リードクエリのオフロード用に
レプリカを追加
負荷に応じてレプリカノードを
追加することでスケールアウト可能
バックアップ専用のレプリカを追加
バックアップによるディスク IO 負荷が
本番サービスに影響を出さないようにできる
DB トポロジー : Primary/Replica
16
### MHA ###
Primary
Read Replica
Read Replica
Backup
Candidate Primary
VIP
Failed
Read Replica
Read Replica
Backup
New Primary
VIP
• MHA により、プライマリ DB 障害時に別のレプリカにフェイルオーバーが可能
• 既存のレプリカのレプリケーション設定も、新しいプライマリ DB に接続されるよう自動で変更される
• アプリケーションからのDB接続ポイントはフェイルオーバー後も同じため、設定変更は不要
DBトポロジー : Primary/Replica for HA
17
• クラスタ構成によって、より洗練された
HA 機能が実現可能
• クラスタ内の 1ノードで障害が発生しても、
別のノードにより透過的にサービスが継続可能
• 楽天では、MariaDB + Galera Cluster で実装。
サーバは、物理サーバと VM をユーザが選択可能
DBトポロジー : Clustering Solution
18
DC1 DC2
クラスタを複数データセンターに構築し
両者をデータレプリケーションすることで
データセンターをまたがったHA を実現
DBトポロジー : HA across multiple datacenter
19
Migration Flow (MySQL on VM to MariaDB on DBaaS)
事前確認 MySQL 5.7 InnoDB
Binlog format
row
Supported
connectors
デプロイ Deploy DBaaS
with MariaDB
Validate
components
integrity
QA データ
移行
Dump on
MySQL
Restore on
DBaaS
Setup MySQL
→ DBaaS
replication
QA テスト
Test APP
Connector
parameters
Test
transaction
persistence
QA tests
本番 データ
移行
Dump on
MySQL
Restore on
DBaaS
Setup MySQL
→ DBaaS
replication
メンテ計画 Maintenance
time FIX
Schedule
adjustment
移行メンテ Service
stop
MySQL VM
becomes
read_only
Stop
replication
Disable
read_only on
DBaaS
Apps switch to
DBaaS
Service
restart
移行後作業 MySQL VM
Stop
DBA
APP チーム
DBA
DBA & APP チーム
DBA
トラブル対応・問い合わせ対応
楽天における大規模データベースの運用

More Related Content

What's hot

What's hot (20)

DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
 
モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側
 
PostgreSQL14の pg_stat_statements 改善(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL14の pg_stat_statements 改善(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQL14の pg_stat_statements 改善(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL14の pg_stat_statements 改善(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
PostgreSQL13でのpg_basebackupの改善について(第13回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのpg_basebackupの改善について(第13回PostgreSQLアンカンファレンス@オンライン)PostgreSQL13でのpg_basebackupの改善について(第13回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのpg_basebackupの改善について(第13回PostgreSQLアンカンファレンス@オンライン)
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
 
ChatGPTのデータソースにPostgreSQLを使う(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
ChatGPTのデータソースにPostgreSQLを使う(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)ChatGPTのデータソースにPostgreSQLを使う(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
ChatGPTのデータソースにPostgreSQLを使う(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
速習!論理レプリケーション ~基礎から最新動向まで~(PostgreSQL Conference Japan 2022 発表資料)
速習!論理レプリケーション ~基礎から最新動向まで~(PostgreSQL Conference Japan 2022 発表資料)速習!論理レプリケーション ~基礎から最新動向まで~(PostgreSQL Conference Japan 2022 発表資料)
速習!論理レプリケーション ~基礎から最新動向まで~(PostgreSQL Conference Japan 2022 発表資料)
 
Python 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそう
 
ビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年version
 
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
 
その Pod 突然落ちても大丈夫ですか!?(OCHaCafe5 #5 実験!カオスエンジニアリング 発表資料)
その Pod 突然落ちても大丈夫ですか!?(OCHaCafe5 #5 実験!カオスエンジニアリング 発表資料)その Pod 突然落ちても大丈夫ですか!?(OCHaCafe5 #5 実験!カオスエンジニアリング 発表資料)
その Pod 突然落ちても大丈夫ですか!?(OCHaCafe5 #5 実験!カオスエンジニアリング 発表資料)
 
PostgreSQLレプリケーション10周年!徹底紹介!(PostgreSQL Conference Japan 2019講演資料)
PostgreSQLレプリケーション10周年!徹底紹介!(PostgreSQL Conference Japan 2019講演資料)PostgreSQLレプリケーション10周年!徹底紹介!(PostgreSQL Conference Japan 2019講演資料)
PostgreSQLレプリケーション10周年!徹底紹介!(PostgreSQL Conference Japan 2019講演資料)
 
データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例
 
大量のデータ処理や分析に使えるOSS Apache Spark入門(Open Source Conference 2021 Online/Kyoto 発表資料)
大量のデータ処理や分析に使えるOSS Apache Spark入門(Open Source Conference 2021 Online/Kyoto 発表資料)大量のデータ処理や分析に使えるOSS Apache Spark入門(Open Source Conference 2021 Online/Kyoto 発表資料)
大量のデータ処理や分析に使えるOSS Apache Spark入門(Open Source Conference 2021 Online/Kyoto 発表資料)
 
pg_walinspectについて調べてみた!(第37回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_walinspectについて調べてみた!(第37回PostgreSQLアンカンファレンス@オンライン 発表資料)pg_walinspectについて調べてみた!(第37回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_walinspectについて調べてみた!(第37回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
アーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーションアーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーション
 
Ingress on Azure Kubernetes Service
Ingress on Azure Kubernetes ServiceIngress on Azure Kubernetes Service
Ingress on Azure Kubernetes Service
 
マイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチマイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチ
 
PostgreSQL 12は ここがスゴイ! ~性能改善やpluggable storage engineなどの新機能を徹底解説~ (NTTデータ テクノ...
PostgreSQL 12は ここがスゴイ! ~性能改善やpluggable storage engineなどの新機能を徹底解説~ (NTTデータ テクノ...PostgreSQL 12は ここがスゴイ! ~性能改善やpluggable storage engineなどの新機能を徹底解説~ (NTTデータ テクノ...
PostgreSQL 12は ここがスゴイ! ~性能改善やpluggable storage engineなどの新機能を徹底解説~ (NTTデータ テクノ...
 
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajpAt least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
 

Similar to 楽天における大規模データベースの運用

C32 DB Performance on Cloud by 安藤賀章
C32 DB Performance on Cloud by 安藤賀章C32 DB Performance on Cloud by 安藤賀章
C32 DB Performance on Cloud by 安藤賀章
Insight Technology, Inc.
 

Similar to 楽天における大規模データベースの運用 (20)

Yahoo! JAPANのOracle構成-2017年版
Yahoo! JAPANのOracle構成-2017年版Yahoo! JAPANのOracle構成-2017年版
Yahoo! JAPANのOracle構成-2017年版
 
MBAAで覚えるDBREの大事なおしごと
MBAAで覚えるDBREの大事なおしごとMBAAで覚えるDBREの大事なおしごと
MBAAで覚えるDBREの大事なおしごと
 
Yahoo! JAPANのOracle構成-2017年版
Yahoo! JAPANのOracle構成-2017年版Yahoo! JAPANのOracle構成-2017年版
Yahoo! JAPANのOracle構成-2017年版
 
C32 DB Performance on Cloud by 安藤賀章
C32 DB Performance on Cloud by 安藤賀章C32 DB Performance on Cloud by 安藤賀章
C32 DB Performance on Cloud by 安藤賀章
 
Rakuten New MySQL Backup System With Xtrabackup
Rakuten New MySQL Backup System With XtrabackupRakuten New MySQL Backup System With Xtrabackup
Rakuten New MySQL Backup System With Xtrabackup
 
しばちょう先生が語る!オラクルデータベースの進化の歴史と最新技術動向#2
しばちょう先生が語る!オラクルデータベースの進化の歴史と最新技術動向#2しばちょう先生が語る!オラクルデータベースの進化の歴史と最新技術動向#2
しばちょう先生が語る!オラクルデータベースの進化の歴史と最新技術動向#2
 
Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Ishikawa)
Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Ishikawa)Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Ishikawa)
Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Ishikawa)
 
ヤフーを支えるフラッシュストレージ
ヤフーを支えるフラッシュストレージヤフーを支えるフラッシュストレージ
ヤフーを支えるフラッシュストレージ
 
IoT時代を迎えて、あなたのシステムは今までのDBで充分ですか?~ GridDBとその適用事例紹介 ~
IoT時代を迎えて、あなたのシステムは今までのDBで充分ですか?~ GridDBとその適用事例紹介 ~ IoT時代を迎えて、あなたのシステムは今までのDBで充分ですか?~ GridDBとその適用事例紹介 ~
IoT時代を迎えて、あなたのシステムは今までのDBで充分ですか?~ GridDBとその適用事例紹介 ~
 
性能問題を起こしにくい信頼されるクラウド RDB のつくりかた
性能問題を起こしにくい信頼されるクラウド RDB のつくりかた性能問題を起こしにくい信頼されるクラウド RDB のつくりかた
性能問題を起こしにくい信頼されるクラウド RDB のつくりかた
 
地方企業がソーシャルゲーム開発を成功させるための10のポイント
地方企業がソーシャルゲーム開発を成功させるための10のポイント地方企業がソーシャルゲーム開発を成功させるための10のポイント
地方企業がソーシャルゲーム開発を成功させるための10のポイント
 
[db tech showcase Tokyo 2014] C34:[楽天] 詳説 楽天のデータベースアーキテクチャ史 -シングルノードから仮想化フラッシ...
[db tech showcase Tokyo 2014] C34:[楽天] 詳説 楽天のデータベースアーキテクチャ史 -シングルノードから仮想化フラッシ...[db tech showcase Tokyo 2014] C34:[楽天] 詳説 楽天のデータベースアーキテクチャ史 -シングルノードから仮想化フラッシ...
[db tech showcase Tokyo 2014] C34:[楽天] 詳説 楽天のデータベースアーキテクチャ史 -シングルノードから仮想化フラッシ...
 
Autonomous を支える技術、Oracle Database 18c デモンストレーション
Autonomous を支える技術、Oracle Database 18c デモンストレーションAutonomous を支える技術、Oracle Database 18c デモンストレーション
Autonomous を支える技術、Oracle Database 18c デモンストレーション
 
PPT Full version: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
PPT Full version: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようPPT Full version: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
PPT Full version: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
 
MySQL Technology Cafe #12 待望の!MDS HA先行レビュー
MySQL Technology Cafe #12 待望の!MDS HA先行レビューMySQL Technology Cafe #12 待望の!MDS HA先行レビュー
MySQL Technology Cafe #12 待望の!MDS HA先行レビュー
 
PDF版 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう Db tech showcase2020
PDF版 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう Db tech showcase2020PDF版 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう Db tech showcase2020
PDF版 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう Db tech showcase2020
 
ioMemoryとAtomic Writeによるデータベース高速化
ioMemoryとAtomic Writeによるデータベース高速化ioMemoryとAtomic Writeによるデータベース高速化
ioMemoryとAtomic Writeによるデータベース高速化
 
ビッグデータやIoTシステムを支えるデータベース 『GridDB』
ビッグデータやIoTシステムを支えるデータベース 『GridDB』ビッグデータやIoTシステムを支えるデータベース 『GridDB』
ビッグデータやIoTシステムを支えるデータベース 『GridDB』
 
[db tech showcase Tokyo 2018] #dbts2018 #D15 『5年連続!第三者機関の評価で(圧倒的)最強のピュアストレージが...
[db tech showcase Tokyo 2018] #dbts2018 #D15 『5年連続!第三者機関の評価で(圧倒的)最強のピュアストレージが...[db tech showcase Tokyo 2018] #dbts2018 #D15 『5年連続!第三者機関の評価で(圧倒的)最強のピュアストレージが...
[db tech showcase Tokyo 2018] #dbts2018 #D15 『5年連続!第三者機関の評価で(圧倒的)最強のピュアストレージが...
 
【de:code 2020】 PostgreSQL もスケールさせよう! - Hyperscale (Citus) -
【de:code 2020】 PostgreSQL もスケールさせよう! - Hyperscale (Citus) -【de:code 2020】 PostgreSQL もスケールさせよう! - Hyperscale (Citus) -
【de:code 2020】 PostgreSQL もスケールさせよう! - Hyperscale (Citus) -
 

More from Rakuten Group, Inc.

More from Rakuten Group, Inc. (20)

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
 
楽天サービスとインフラ部隊
楽天サービスとインフラ部隊楽天サービスとインフラ部隊
楽天サービスとインフラ部隊
 
Rakuten Platform
Rakuten PlatformRakuten Platform
Rakuten Platform
 
Kafka & Hadoop in Rakuten
Kafka & Hadoop in RakutenKafka & Hadoop in Rakuten
Kafka & Hadoop in Rakuten
 
Unclouding Container Challenges
 Unclouding  Container Challenges Unclouding  Container Challenges
Unclouding Container Challenges
 
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
 
アジャイル開発とメトリクス
アジャイル開発とメトリクスアジャイル開発とメトリクス
アジャイル開発とメトリクス
 
AR/SLAM and IoT
AR/SLAM and IoTAR/SLAM and IoT
AR/SLAM and IoT
 

Recently uploaded

研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
atsushi061452
 

Recently uploaded (14)

論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 

楽天における大規模データベースの運用