SlideShare a Scribd company logo
2020 1 30
1 2
2 2
3 2
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 4
4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 R mode . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 6
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 7
6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 11
7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 11
1
2
1
•
•
• logical, numeric, complex, character
•
•
•
2
R #
#
> #################
> ##
> #################
> cat("ABC") #
ABC
3
> 3 * 4
[1] 12
> 3 * 4 + 2
[1] 14
> 3 * (4 + 2)
[1] 18
> 3/4
[1] 0.75
> -5 / -6
[1] 0.8333333
> (-5)/(-6)
[1] 0.8333333
2
I 2
3.1 2
> 2^3 # ^
[1] 8
> 2**3 # * 2
[1] 8
> 2^3*4 #
[1] 32
> 2^(3*4)
[1] 4096
> 2**3*4 # ** *
[1] 32
> 2**(3*4)
[1] 4096
> sqrt(2)
[1] 1.414214
> 2^(1/2)
[1] 1.414214
log(2) log(2)= loge 2 = ln 2
log(100,10)= log10 100
> log(2)
[1] 0.6931472
> log(100, 10)
[1] 2
> exp(1)
[1] 2.718282
> exp(0.6931472)
[1] 2
absolute values
> abs(-0.2)
[1] 0.2
> abs(0.2)
[1] 0.2
3.1
•
•
•
I 3
2
•
4
4.1
•
• 0 1 0 1
•
=⇒
• R mode
4.2 R mode
• logical : TRUE FALSE
T F
• numeric : R numeric
• complex : i
• character :
mode() mode mode()
> mode(TRUE)
[1] "logical"
> mode(FALSE)
[1] "logical"
> mode(pi) # pi
[1] "numeric"
> mode(2.0)
[1] "numeric"
> mode(2)
[1] "numeric"
> mode(2+2i)
[1] "complex"
> mode(" ")
[1] "character"
I 4
4.3 2
is. ()
> is.character(" ")
[1] TRUE
> is.numeric(" ")
[1] FALSE
> is.numeric(3.14)
[1] TRUE
> is.numeric(pi)
[1] TRUE
> is.logical(FALSE)
[1] TRUE
> is.logical(1)
[1] FALSE
4.3
’<-’
> x <- 3 # x 3
> x #
[1] 3
> is.numeric(x) # x
[1] TRUE
> y <- " "
> y
[1] " "
> is.character(y)
[1] TRUE
> is.numeric(x)
[1] TRUE
> mode(y)
[1] "character"
4.4 NULL
• 0 1 0
NULL
• R NULL
> x <- NULL # NULL
> x # x NULL
NULL
I 5
4.5 2
> is.numeric(x)
[1] FALSE
> is.null(x) # NULL
[1] TRUE
> mode(x) # NULL mode "NULL"
[1] "NULL"
> x <- FALSE # x
> is.null(x) # NULL
[1] FALSE
> is.logical(x)
[1] TRUE
> mode(x)
[1] "logical"
4.5
•
• mode
•
• logical numeric complex character
• mode()
• is. ()
•
• NULL
5
1
R
• vector : mode 1
1
• matrix : mode 2
• array : mode n
I 6
5.1 2
• list :
• data.frame : 2
mode
3
5.1
•
•
• vector, matrix, array, list
•
6
6.1
c() c() combine 1
> c(1, 2, 3, 4) #
[1] 1 2 3 4
> c(1, 2, c(3, 4)) #
[1] 1 2 3 4
> v <- c("a", "b", "c") #
> v # v
[1] "a" "b" "c"
> c(v, v, c(1, 2, 3)) #
[1] "a" "b" "c" "a" "b" "c" "1" "2" "3"
6.2
replicate rep(x, times) x times
I 7
6.3 2
> rep(1, 5)
[1] 1 1 1 1 1
> rep(" ", 3)
[1] " " " " " "
> rep(TRUE, 3)
[1] TRUE TRUE TRUE
> rep(c(1, 2), 3) #
[1] 1 2 1 2 1 2
rep()
sequence seq(from, to, by) from to by
by 1
> seq(1, 10)
[1] 1 2 3 4 5 6 7 8 9 10
> seq(1, 10, 2) # 2
[1] 1 3 5 7 9
> seq(10, 1)
[1] 10 9 8 7 6 5 4 3 2 1
> seq(10, 1, -2)
[1] 10 8 6 4 2
6.3
[1]
> seq(1, 50)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
> 1
[1] 1
1 1
[]
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> x[1]
[1] 1
> x[2]
[1] 2
I 8
6.4 2
> x[10]
[1] 10
[]
> days <- c(" ", " ", " ", " ", " ", " ", " ")
> days
[1] " " " " " " " " " " " " " "
> days[3]
[1] " "
> days[c(1, 2, 3)]
[1] " " " " " "
> days[1:3]
[1] " " " " " "
> days[seq(2, 7, 2)] # 2 1 1
[1] " " " " " "
> days[-3] # 3
[1] " " " " " " " " " " " "
> days[-1:-3] # 1 3
[1] " " " " " " " "
> days[-seq(2, 7, 2)] # seq(2,7,2) c(2,4,6)
[1] " " " " " " " "
length()
> length(days)
[1] 7
> length(x)
[1] 10
6.4
1 1 R
1 50 :
1:50 seq(1,50) 1
> x <- 1:50 # seq(1, 50)
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
I 9
6.5 2
[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
> y <- 50:1 # seq(50, 1)
> y
[1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24
[28] 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
> x * 2 # 2
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
[21] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
[41] 82 84 86 88 90 92 94 96 98 100
> x / 2 # 2
[1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
[17] 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
[33] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
[49] 24.5 25.0
> x + 100 # 100
[1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
[21] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
[41] 141 142 143 144 145 146 147 148 149 150
> x + y # x y
[1] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
[28] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
> log(1:5) # log(c(1, 2, 3, 4, 5)) log
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
> (1:5)^2 # c(1, 2, 3, 4, 5)^2
[1] 1 4 9 16 25
(1:5)^2 1:5
2 1:5^2 1 52
= 25
> 1:5^2 # 1:25
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
6.5
• :
• c() rep() seq()
•
• length()
I 10
2
7
rep()
> help(rep)
standard deviation help.search()
> help.serach("standard deviation")
stats::sd stats
sd() help(sd)
R
source
R source
help.search()
7.1
• help()
• help.search()
•
• sd()
8
(1) 2, 4, 6, 8, 10 10
[1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
[26] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
> rep(seq(2, 10, 2), 10)
(2) 2, 4, 6, 8, 10 100
I 11
2
> rep(seq(2, 10, 2), 100)
(3) sd() 2
> sd(rep(seq(2, 10, 2), 10))
[1] 2.857143
> sd(rep(seq(2, 10, 2), 100))
[1] 2.83126
I 12

More Related Content

What's hot

第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)
Wataru Shito
 
第5回 様々なファイル形式の読み込みとデータの書き出し
第5回 様々なファイル形式の読み込みとデータの書き出し第5回 様々なファイル形式の読み込みとデータの書き出し
第5回 様々なファイル形式の読み込みとデータの書き出し
Wataru Shito
 
第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう
Wataru Shito
 
Australian Year 2 Assessment Sample
Australian Year 2 Assessment SampleAustralian Year 2 Assessment Sample
Australian Year 2 Assessment Sample
Teejay Maths
 
HSC 2023 Accounting 1st Paper MCQ
HSC 2023 Accounting 1st Paper MCQ HSC 2023 Accounting 1st Paper MCQ
HSC 2023 Accounting 1st Paper MCQ
Tajul Isalm Apurbo
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomialsmlynczyk
 
Cuadernillo cbc
Cuadernillo cbcCuadernillo cbc
Cuadernillo cbc
Roberto Del Grosso
 
Fundamentos de Programacion.pdf
Fundamentos de Programacion.pdfFundamentos de Programacion.pdf
Fundamentos de Programacion.pdf
Jorge Serran
 
FINALES LIGA MURO 2023.pdf
FINALES  LIGA MURO 2023.pdfFINALES  LIGA MURO 2023.pdf
FINALES LIGA MURO 2023.pdf
Arturo Pacheco Alvarez
 
నాలుగు మృగములను గూర్చిన వివరణ దానియేలు గ్రంథ ధ్యానములు
నాలుగు మృగములను గూర్చిన వివరణ  దానియేలు గ్రంథ ధ్యానములు నాలుగు మృగములను గూర్చిన వివరణ  దానియేలు గ్రంథ ధ్యానములు
నాలుగు మృగములను గూర్చిన వివరణ దానియేలు గ్రంథ ధ్యానములు
Dr. Johnson Satya
 
Algebraic fractions 1
Algebraic fractions 1Algebraic fractions 1
Algebraic fractions 1
EdTechonGC Mallett
 
Ecuaciones sin-denominadores-1c2ba-eso
Ecuaciones sin-denominadores-1c2ba-esoEcuaciones sin-denominadores-1c2ba-eso
Ecuaciones sin-denominadores-1c2ba-eso
EDUCACION
 
పాల్ రెండవ మిషనరీ యాత్ర 2nd missionary journey.pdf
పాల్ రెండవ మిషనరీ యాత్ర  2nd missionary journey.pdfపాల్ రెండవ మిషనరీ యాత్ర  2nd missionary journey.pdf
పాల్ రెండవ మిషనరీ యాత్ర 2nd missionary journey.pdf
Dr. Johnson Satya
 
యెహోవా దేవుని ఏడు పండుగలు.pdf
యెహోవా దేవుని ఏడు పండుగలు.pdfయెహోవా దేవుని ఏడు పండుగలు.pdf
యెహోవా దేవుని ఏడు పండుగలు.pdf
Dr. Johnson Satya
 
Taller productos notables
Taller productos notablesTaller productos notables
Taller productos notables
damarisdiazortega
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
Larson612
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Jhonatan Minchán
 
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
Dr. Johnson Satya
 
Puissances Classe EB7
Puissances Classe EB7Puissances Classe EB7
Puissances Classe EB7
Maths avec TOMKO
 
పాల్ మొదటి మిషనరీ యాత్ర 1st missionary journey of paul telugu.pdf
పాల్ మొదటి మిషనరీ యాత్ర   1st missionary journey of paul telugu.pdfపాల్ మొదటి మిషనరీ యాత్ర   1st missionary journey of paul telugu.pdf
పాల్ మొదటి మిషనరీ యాత్ర 1st missionary journey of paul telugu.pdf
Dr. Johnson Satya
 

What's hot (20)

第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)
 
第5回 様々なファイル形式の読み込みとデータの書き出し
第5回 様々なファイル形式の読み込みとデータの書き出し第5回 様々なファイル形式の読み込みとデータの書き出し
第5回 様々なファイル形式の読み込みとデータの書き出し
 
第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう
 
Australian Year 2 Assessment Sample
Australian Year 2 Assessment SampleAustralian Year 2 Assessment Sample
Australian Year 2 Assessment Sample
 
HSC 2023 Accounting 1st Paper MCQ
HSC 2023 Accounting 1st Paper MCQ HSC 2023 Accounting 1st Paper MCQ
HSC 2023 Accounting 1st Paper MCQ
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomials
 
Cuadernillo cbc
Cuadernillo cbcCuadernillo cbc
Cuadernillo cbc
 
Fundamentos de Programacion.pdf
Fundamentos de Programacion.pdfFundamentos de Programacion.pdf
Fundamentos de Programacion.pdf
 
FINALES LIGA MURO 2023.pdf
FINALES  LIGA MURO 2023.pdfFINALES  LIGA MURO 2023.pdf
FINALES LIGA MURO 2023.pdf
 
నాలుగు మృగములను గూర్చిన వివరణ దానియేలు గ్రంథ ధ్యానములు
నాలుగు మృగములను గూర్చిన వివరణ  దానియేలు గ్రంథ ధ్యానములు నాలుగు మృగములను గూర్చిన వివరణ  దానియేలు గ్రంథ ధ్యానములు
నాలుగు మృగములను గూర్చిన వివరణ దానియేలు గ్రంథ ధ్యానములు
 
Algebraic fractions 1
Algebraic fractions 1Algebraic fractions 1
Algebraic fractions 1
 
Ecuaciones sin-denominadores-1c2ba-eso
Ecuaciones sin-denominadores-1c2ba-esoEcuaciones sin-denominadores-1c2ba-eso
Ecuaciones sin-denominadores-1c2ba-eso
 
పాల్ రెండవ మిషనరీ యాత్ర 2nd missionary journey.pdf
పాల్ రెండవ మిషనరీ యాత్ర  2nd missionary journey.pdfపాల్ రెండవ మిషనరీ యాత్ర  2nd missionary journey.pdf
పాల్ రెండవ మిషనరీ యాత్ర 2nd missionary journey.pdf
 
యెహోవా దేవుని ఏడు పండుగలు.pdf
యెహోవా దేవుని ఏడు పండుగలు.pdfయెహోవా దేవుని ఏడు పండుగలు.pdf
యెహోవా దేవుని ఏడు పండుగలు.pdf
 
Taller productos notables
Taller productos notablesTaller productos notables
Taller productos notables
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
 
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
 
Puissances Classe EB7
Puissances Classe EB7Puissances Classe EB7
Puissances Classe EB7
 
పాల్ మొదటి మిషనరీ యాత్ర 1st missionary journey of paul telugu.pdf
పాల్ మొదటి మిషనరీ యాత్ర   1st missionary journey of paul telugu.pdfపాల్ మొదటి మిషనరీ యాత్ర   1st missionary journey of paul telugu.pdf
పాల్ మొదటి మిషనరీ యాత్ర 1st missionary journey of paul telugu.pdf
 

Similar to 第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)

PRE: Datamining 2nd R
PRE: Datamining 2nd RPRE: Datamining 2nd R
PRE: Datamining 2nd R
sesejun
 
Datamining R 1st
Datamining R 1stDatamining R 1st
Datamining R 1st
sesejun
 
Datamining r 1st
Datamining r 1stDatamining r 1st
Datamining r 1st
sesejun
 
第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2
Wataru Shito
 
第3回 データフレームの基本操作 その1
第3回 データフレームの基本操作 その1第3回 データフレームの基本操作 その1
第3回 データフレームの基本操作 その1
Wataru Shito
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
 
11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf
Anthimos Misailidis
 
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdfΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
Anthimos Misailidis
 
Visual art 1
Visual art 1Visual art 1
Visual art 1
pironchit
 
R programming language
R programming languageR programming language
R programming language
Alberto Minetti
 
Introduction to machine learning algorithms
Introduction to machine learning algorithmsIntroduction to machine learning algorithms
Introduction to machine learning algorithms
bigdata trunk
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
Luis Perez Anampa
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
Mahrukh Khalid
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
Jeff Chasi
 
MATLAB ARRAYS
MATLAB ARRAYSMATLAB ARRAYS
MATLAB ARRAYS
Aditya Choudhury
 
basic mathematics practice of using R Tool
basic mathematics  practice of using R Toolbasic mathematics  practice of using R Tool
basic mathematics practice of using R Tool
SahilBhavsar5
 
01_introduction_lab.pdf
01_introduction_lab.pdf01_introduction_lab.pdf
01_introduction_lab.pdf
zehiwot hone
 
Mat fin
Mat finMat fin
Mat fin
Ellen0101
 
Thesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti EngineeringThesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti Engineering
Marcus Ljungblad
 
กระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศกระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศ
JL'mind Chutimon
 

Similar to 第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き) (20)

PRE: Datamining 2nd R
PRE: Datamining 2nd RPRE: Datamining 2nd R
PRE: Datamining 2nd R
 
Datamining R 1st
Datamining R 1stDatamining R 1st
Datamining R 1st
 
Datamining r 1st
Datamining r 1stDatamining r 1st
Datamining r 1st
 
第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2
 
第3回 データフレームの基本操作 その1
第3回 データフレームの基本操作 その1第3回 データフレームの基本操作 その1
第3回 データフレームの基本操作 その1
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
 
11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf
 
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdfΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
 
Visual art 1
Visual art 1Visual art 1
Visual art 1
 
R programming language
R programming languageR programming language
R programming language
 
Introduction to machine learning algorithms
Introduction to machine learning algorithmsIntroduction to machine learning algorithms
Introduction to machine learning algorithms
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
 
MATLAB ARRAYS
MATLAB ARRAYSMATLAB ARRAYS
MATLAB ARRAYS
 
basic mathematics practice of using R Tool
basic mathematics  practice of using R Toolbasic mathematics  practice of using R Tool
basic mathematics practice of using R Tool
 
01_introduction_lab.pdf
01_introduction_lab.pdf01_introduction_lab.pdf
01_introduction_lab.pdf
 
Mat fin
Mat finMat fin
Mat fin
 
Thesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti EngineeringThesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti Engineering
 
กระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศกระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศ
 

More from Wataru Shito

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
Wataru Shito
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
Wataru Shito
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
Wataru Shito
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
Wataru Shito
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
Wataru Shito
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
Wataru Shito
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
Wataru Shito
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
Wataru Shito
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
Wataru Shito
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
Wataru Shito
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
Wataru Shito
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
Wataru Shito
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
Wataru Shito
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
Wataru Shito
 

More from Wataru Shito (20)

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
 

Recently uploaded

一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
lzdvtmy8
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
tzu5xla
 
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
mkkikqvo
 
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
oaxefes
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
soxrziqu
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
Vietnam Cotton & Spinning Association
 
Sample Devops SRE Product Companies .pdf
Sample Devops SRE  Product Companies .pdfSample Devops SRE  Product Companies .pdf
Sample Devops SRE Product Companies .pdf
Vineet
 
How To Control IO Usage using Resource Manager
How To Control IO Usage using Resource ManagerHow To Control IO Usage using Resource Manager
How To Control IO Usage using Resource Manager
Alireza Kamrani
 
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
1tyxnjpia
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
SaffaIbrahim1
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
eoxhsaa
 
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Aggregage
 
Template xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptxTemplate xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptx
TeukuEriSyahputra
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
exukyp
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Kiwi Creative
 
Jio cinema Retention & Engagement Strategy.pdf
Jio cinema Retention & Engagement Strategy.pdfJio cinema Retention & Engagement Strategy.pdf
Jio cinema Retention & Engagement Strategy.pdf
inaya7568
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
aqzctr7x
 
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
asyed10
 
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
taqyea
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
ytypuem
 

Recently uploaded (20)

一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
 
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
 
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
一比一原版卡尔加里大学毕业证(uc毕业证)如何办理
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
 
Sample Devops SRE Product Companies .pdf
Sample Devops SRE  Product Companies .pdfSample Devops SRE  Product Companies .pdf
Sample Devops SRE Product Companies .pdf
 
How To Control IO Usage using Resource Manager
How To Control IO Usage using Resource ManagerHow To Control IO Usage using Resource Manager
How To Control IO Usage using Resource Manager
 
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
 
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
 
Template xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptxTemplate xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptx
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
 
Jio cinema Retention & Engagement Strategy.pdf
Jio cinema Retention & Engagement Strategy.pdfJio cinema Retention & Engagement Strategy.pdf
Jio cinema Retention & Engagement Strategy.pdf
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
 
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
 
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
 

第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)

  • 1. 2020 1 30 1 2 2 2 3 2 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 R mode . . . . . . . . . . . . . . . . . . . . . . . . 4 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.4 NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 6 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 7 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 11 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8 11 1
  • 2. 2 1 • • • logical, numeric, complex, character • • • 2 R # # > ################# > ## > ################# > cat("ABC") # ABC 3 > 3 * 4 [1] 12 > 3 * 4 + 2 [1] 14 > 3 * (4 + 2) [1] 18 > 3/4 [1] 0.75 > -5 / -6 [1] 0.8333333 > (-5)/(-6) [1] 0.8333333 2 I 2
  • 3. 3.1 2 > 2^3 # ^ [1] 8 > 2**3 # * 2 [1] 8 > 2^3*4 # [1] 32 > 2^(3*4) [1] 4096 > 2**3*4 # ** * [1] 32 > 2**(3*4) [1] 4096 > sqrt(2) [1] 1.414214 > 2^(1/2) [1] 1.414214 log(2) log(2)= loge 2 = ln 2 log(100,10)= log10 100 > log(2) [1] 0.6931472 > log(100, 10) [1] 2 > exp(1) [1] 2.718282 > exp(0.6931472) [1] 2 absolute values > abs(-0.2) [1] 0.2 > abs(0.2) [1] 0.2 3.1 • • • I 3
  • 4. 2 • 4 4.1 • • 0 1 0 1 • =⇒ • R mode 4.2 R mode • logical : TRUE FALSE T F • numeric : R numeric • complex : i • character : mode() mode mode() > mode(TRUE) [1] "logical" > mode(FALSE) [1] "logical" > mode(pi) # pi [1] "numeric" > mode(2.0) [1] "numeric" > mode(2) [1] "numeric" > mode(2+2i) [1] "complex" > mode(" ") [1] "character" I 4
  • 5. 4.3 2 is. () > is.character(" ") [1] TRUE > is.numeric(" ") [1] FALSE > is.numeric(3.14) [1] TRUE > is.numeric(pi) [1] TRUE > is.logical(FALSE) [1] TRUE > is.logical(1) [1] FALSE 4.3 ’<-’ > x <- 3 # x 3 > x # [1] 3 > is.numeric(x) # x [1] TRUE > y <- " " > y [1] " " > is.character(y) [1] TRUE > is.numeric(x) [1] TRUE > mode(y) [1] "character" 4.4 NULL • 0 1 0 NULL • R NULL > x <- NULL # NULL > x # x NULL NULL I 5
  • 6. 4.5 2 > is.numeric(x) [1] FALSE > is.null(x) # NULL [1] TRUE > mode(x) # NULL mode "NULL" [1] "NULL" > x <- FALSE # x > is.null(x) # NULL [1] FALSE > is.logical(x) [1] TRUE > mode(x) [1] "logical" 4.5 • • mode • • logical numeric complex character • mode() • is. () • • NULL 5 1 R • vector : mode 1 1 • matrix : mode 2 • array : mode n I 6
  • 7. 5.1 2 • list : • data.frame : 2 mode 3 5.1 • • • vector, matrix, array, list • 6 6.1 c() c() combine 1 > c(1, 2, 3, 4) # [1] 1 2 3 4 > c(1, 2, c(3, 4)) # [1] 1 2 3 4 > v <- c("a", "b", "c") # > v # v [1] "a" "b" "c" > c(v, v, c(1, 2, 3)) # [1] "a" "b" "c" "a" "b" "c" "1" "2" "3" 6.2 replicate rep(x, times) x times I 7
  • 8. 6.3 2 > rep(1, 5) [1] 1 1 1 1 1 > rep(" ", 3) [1] " " " " " " > rep(TRUE, 3) [1] TRUE TRUE TRUE > rep(c(1, 2), 3) # [1] 1 2 1 2 1 2 rep() sequence seq(from, to, by) from to by by 1 > seq(1, 10) [1] 1 2 3 4 5 6 7 8 9 10 > seq(1, 10, 2) # 2 [1] 1 3 5 7 9 > seq(10, 1) [1] 10 9 8 7 6 5 4 3 2 1 > seq(10, 1, -2) [1] 10 8 6 4 2 6.3 [1] > seq(1, 50) [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > 1 [1] 1 1 1 [] > x <- 1:10 > x [1] 1 2 3 4 5 6 7 8 9 10 > x[1] [1] 1 > x[2] [1] 2 I 8
  • 9. 6.4 2 > x[10] [1] 10 [] > days <- c(" ", " ", " ", " ", " ", " ", " ") > days [1] " " " " " " " " " " " " " " > days[3] [1] " " > days[c(1, 2, 3)] [1] " " " " " " > days[1:3] [1] " " " " " " > days[seq(2, 7, 2)] # 2 1 1 [1] " " " " " " > days[-3] # 3 [1] " " " " " " " " " " " " > days[-1:-3] # 1 3 [1] " " " " " " " " > days[-seq(2, 7, 2)] # seq(2,7,2) c(2,4,6) [1] " " " " " " " " length() > length(days) [1] 7 > length(x) [1] 10 6.4 1 1 R 1 50 : 1:50 seq(1,50) 1 > x <- 1:50 # seq(1, 50) > x [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 I 9
  • 10. 6.5 2 [28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > y <- 50:1 # seq(50, 1) > y [1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 [28] 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 > x * 2 # 2 [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 [21] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 [41] 82 84 86 88 90 92 94 96 98 100 > x / 2 # 2 [1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 [17] 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 [33] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 [49] 24.5 25.0 > x + 100 # 100 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 [21] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [41] 141 142 143 144 145 146 147 148 149 150 > x + y # x y [1] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 [28] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 > log(1:5) # log(c(1, 2, 3, 4, 5)) log [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 > (1:5)^2 # c(1, 2, 3, 4, 5)^2 [1] 1 4 9 16 25 (1:5)^2 1:5 2 1:5^2 1 52 = 25 > 1:5^2 # 1:25 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6.5 • : • c() rep() seq() • • length() I 10
  • 11. 2 7 rep() > help(rep) standard deviation help.search() > help.serach("standard deviation") stats::sd stats sd() help(sd) R source R source help.search() 7.1 • help() • help.search() • • sd() 8 (1) 2, 4, 6, 8, 10 10 [1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 [26] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 > rep(seq(2, 10, 2), 10) (2) 2, 4, 6, 8, 10 100 I 11
  • 12. 2 > rep(seq(2, 10, 2), 100) (3) sd() 2 > sd(rep(seq(2, 10, 2), 10)) [1] 2.857143 > sd(rep(seq(2, 10, 2), 100)) [1] 2.83126 I 12