SlideShare a Scribd company logo
2020 1 30
1 1
2 2
3 2
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 4
4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 R mode . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 6
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 7
6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 11
7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 11
1
•
1
2
•
• logical, numeric, complex, character
•
•
•
2
R #
#
> #################
> ##
> #################
> cat("ABC") #
ABC
3
> 3 * 4
[1] 12
> 3 * 4 + 2
[1] 14
> 3 * (4 + 2)
[1] 18
> 3/4
[1] 0.75
> -5 / -6
[1] 0.8333333
> (-5)/(-6)
[1] 0.8333333
2
> 2^3 # ^
[1] 8
> 2**3 # * 2
[1] 8
> 2^3*4 #
I 2
3.1 2
[1] 32
> 2^(3*4)
[1] 4096
> 2**3*4 # ** *
[1] 32
> 2**(3*4)
[1] 4096
> sqrt(2)
[1] 1.414214
> 2^(1/2)
[1] 1.414214
log(2) log(2)= loge 2 = ln 2
log(100,10)= log10 100
> log(2)
[1] 0.6931472
> log(100, 10)
[1] 2
> exp(1)
[1] 2.718282
> exp(0.6931472)
[1] 2
absolute values
> abs(-0.2)
[1] 0.2
> abs(0.2)
[1] 0.2
3.1
•
•
•
•
I 3
2
4
4.1
•
• 0 1 0 1
•
=⇒
• R
4.2 R mode
• logical : TRUE FALSE
T F
• numeric : R numeric
• complex : i
• character :
mode() mode mode()
> mode(TRUE)
[1] "logical"
> mode(FALSE)
[1] "logical"
> mode(pi) # pi
[1] "numeric"
> mode(2.0)
[1] "numeric"
> mode(2)
[1] "numeric"
> mode(2+2i)
[1] "complex"
> mode(" ")
[1] "character"
is. ()
I 4
4.3 2
> is.character(" ")
[1] TRUE
> is.numeric(" ")
[1] FALSE
> is.numeric(3.14)
[1] TRUE
> is.numeric(pi)
[1] TRUE
> is.logical(FALSE)
[1] TRUE
> is.logical(1)
[1] FALSE
4.3
’<-’
> x <- 3 # x 3
> x #
[1] 3
> is.numeric(x) # x
[1] TRUE
> y <- " "
> y
[1] " "
> is.character(y)
[1] TRUE
> is.numeric(x)
[1] TRUE
> mode(y)
[1] "character"
4.4 NULL
• 0 1 0
• R NULL
> x <- NULL # NULL
> x # x NULL
NULL
> is.numeric(x)
I 5
4.5 2
[1] FALSE
> is.null(x) # NULL
[1] TRUE
> mode(x) # NULL mode "NULL"
[1] "NULL"
> x <- FALSE # x
> is.null(x) # NULL
[1] FALSE
> is.logical(x)
[1] TRUE
> mode(x)
[1] "logical"
4.5
•
• mode
•
• logical numeric complex character
• mode()
• is. ()
•
• NULL
5
1
R
• vector : mode 1
1
• matrix : mode 2
• array : mode n
I 6
5.1 2
• list :
• data.frame : 2
mode
3
5.1
•
•
• vector, matrix, array, list
•
6
6.1
c() c() combine 1
> c(1, 2, 3, 4) #
[1] 1 2 3 4
> c(1, 2, c(3, 4)) #
[1] 1 2 3 4
> v <- c("a", "b", "c") #
> v # v
[1] "a" "b" "c"
> c(v, v, c(1, 2, 3)) #
[1] "a" "b" "c" "a" "b" "c" "1" "2" "3"
6.2
replicate rep(x, times) x times
I 7
6.3 2
> rep(1, 5)
[1] 1 1 1 1 1
> rep(" ", 3)
[1] " " " " " "
> rep(TRUE, 3)
[1] TRUE TRUE TRUE
> rep(c(1, 2), 3) #
[1] 1 2 1 2 1 2
rep()
sequence seq(from, to, by) from to by
by 1
> seq(1, 10)
[1] 1 2 3 4 5 6 7 8 9 10
> seq(1, 10, 2) # 2
[1] 1 3 5 7 9
> seq(10, 1)
[1] 10 9 8 7 6 5 4 3 2 1
> seq(10, 1, -2)
[1] 10 8 6 4 2
6.3
[1]
> seq(1, 50)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
> 1
[1] 1
1 1
[]
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> x[1]
[1] 1
> x[2]
[1] 2
I 8
6.4 2
> x[10]
[1] 10
[]
> days <- c(" ", " ", " ", " ", " ", " ", " ")
> days
[1] " " " " " " " " " " " " " "
> days[3]
[1] " "
> days[c(1, 2, 3)]
[1] " " " " " "
> days[1:3]
[1] " " " " " "
> days[seq(2, 7, 2)] # 2 1 1
[1] " " " " " "
> days[-3] # 3
[1] " " " " " " " " " " " "
> days[-1:-3] # 1 3
[1] " " " " " " " "
> days[-seq(2, 7, 2)] # seq(2,7,2) c(2,4,6)
[1] " " " " " " " "
length()
> length(days)
[1] 7
> length(x)
[1] 10
6.4
1 1 R
1 50 :
1:50 seq(1,50) 1
> x <- 1:50 # seq(1, 50)
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
I 9
6.5 2
[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
> y <- 50:1 # seq(50, 1)
> y
[1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24
[28] 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
> x * 2 # 2
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
[21] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
[41] 82 84 86 88 90 92 94 96 98 100
> x / 2 # 2
[1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
[17] 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
[33] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
[49] 24.5 25.0
> x + 100 # 100
[1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
[21] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
[41] 141 142 143 144 145 146 147 148 149 150
> x + y # x y
[1] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
[28] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
> log(1:5) # log(c(1, 2, 3, 4, 5)) log
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
> (1:5)^2 # c(1, 2, 3, 4, 5)^2
[1] 1 4 9 16 25
(1:5)^2 1:5
2 1:5^2 1 52
= 25
> 1:5^2 # 1:25
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
6.5
• :
• c() rep() seq()
•
• length()
I 10
2
7
rep()
> help(rep)
standard deviation help.search()
> help.serach("standard deviation")
stats::sd stats
sd() help(sd)
R
source
R source
help.search()
7.1
• help()
• help.search()
•
• sd()
8
(1) 2, 4, 6, 8, 10 10
[1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
[26] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(2) 2, 4, 6, 8, 10 100
(3) sd() 2
I 11

More Related Content

What's hot

第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう
Wataru Shito
 
第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)
Wataru Shito
 
第8回 大規模データを用いたデータフレーム操作実習(2)
第8回 大規模データを用いたデータフレーム操作実習(2)第8回 大規模データを用いたデータフレーム操作実習(2)
第8回 大規模データを用いたデータフレーム操作実習(2)
Wataru Shito
 
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
Dr. Johnson Satya
 
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర .pdf
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర  .pdfఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర  .pdf
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర .pdf
GOSPEL WORLD
 
పరిశుద్ధాత్మ దేవుడు
పరిశుద్ధాత్మ దేవుడు పరిశుద్ధాత్మ దేవుడు
పరిశుద్ధాత్మ దేవుడు
Dr. Johnson Satya
 
పాల్ vs పేతురు
పాల్ vs పేతురుపాల్ vs పేతురు
పాల్ vs పేతురు
Dr. Johnson Satya
 
నహూము గ్రంథ ధ్యానములు
నహూము గ్రంథ ధ్యానములు నహూము గ్రంథ ధ్యానములు
నహూము గ్రంథ ధ్యానములు
Dr. Johnson Satya
 
JORNADA 14 LIGA MURO 2023.pdf
JORNADA 14 LIGA MURO 2023.pdfJORNADA 14 LIGA MURO 2023.pdf
JORNADA 14 LIGA MURO 2023.pdf
Arturo Pacheco Alvarez
 
ఆదికాండము సర్వే.pdf
ఆదికాండము సర్వే.pdfఆదికాండము సర్వే.pdf
ఆదికాండము సర్వే.pdf
Dr. Johnson Satya
 
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
Dr. Johnson Satya
 
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలుTitles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
Shalem Arasavelli
 
PLU de Baie-Mahault - Orientations d'aménagement et de programmation
PLU de Baie-Mahault - Orientations d'aménagement et de programmationPLU de Baie-Mahault - Orientations d'aménagement et de programmation
PLU de Baie-Mahault - Orientations d'aménagement et de programmation
Mairie de Baie-Mahault / Direction de l'Urbanisme
 
JORNADA 16 LIGA MURO.pdf
JORNADA 16 LIGA MURO.pdfJORNADA 16 LIGA MURO.pdf
JORNADA 16 LIGA MURO.pdf
Arturo Pacheco Alvarez
 
SEMIFINALES 3 LIGA MURO 2023.pdf
SEMIFINALES 3 LIGA MURO 2023.pdfSEMIFINALES 3 LIGA MURO 2023.pdf
SEMIFINALES 3 LIGA MURO 2023.pdf
Arturo Pacheco Alvarez
 
Lluvia con nieve trompeta
Lluvia con nieve   trompetaLluvia con nieve   trompeta
Lluvia con nieve trompetaMarcos Burbano
 
JORNADA 9 LIGA MURO.pdf
JORNADA 9 LIGA MURO.pdfJORNADA 9 LIGA MURO.pdf
JORNADA 9 LIGA MURO.pdf
Arturo Pacheco Alvarez
 
JORNADA 10 LIGA MURO 2023.pdf
JORNADA 10 LIGA MURO 2023.pdfJORNADA 10 LIGA MURO 2023.pdf
JORNADA 10 LIGA MURO 2023.pdf
Arturo Pacheco Alvarez
 
FINALES LIGA MURO 2022.pdf
FINALES LIGA MURO 2022.pdfFINALES LIGA MURO 2022.pdf
FINALES LIGA MURO 2022.pdf
Arturo Pacheco Alvarez
 
Daniel 5 telugu pdf
Daniel 5 telugu pdfDaniel 5 telugu pdf
Daniel 5 telugu pdf
Dr. Johnson Satya
 

What's hot (20)

第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう第1回 Rプログラミングを始めよう
第1回 Rプログラミングを始めよう
 
第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)
 
第8回 大規模データを用いたデータフレーム操作実習(2)
第8回 大規模データを用いたデータフレーム操作実習(2)第8回 大規模データを用いたデータフレーム操作実習(2)
第8回 大規模データを用いたデータフレーム操作実習(2)
 
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
1వ యోహాను వ్రాసిన పత్రికా 1-john-.pdf
 
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర .pdf
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర  .pdfఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర  .pdf
ఇశ్రాయేలీయుల రాజైన యారొబాము చరిత్ర .pdf
 
పరిశుద్ధాత్మ దేవుడు
పరిశుద్ధాత్మ దేవుడు పరిశుద్ధాత్మ దేవుడు
పరిశుద్ధాత్మ దేవుడు
 
పాల్ vs పేతురు
పాల్ vs పేతురుపాల్ vs పేతురు
పాల్ vs పేతురు
 
నహూము గ్రంథ ధ్యానములు
నహూము గ్రంథ ధ్యానములు నహూము గ్రంథ ధ్యానములు
నహూము గ్రంథ ధ్యానములు
 
JORNADA 14 LIGA MURO 2023.pdf
JORNADA 14 LIGA MURO 2023.pdfJORNADA 14 LIGA MURO 2023.pdf
JORNADA 14 LIGA MURO 2023.pdf
 
ఆదికాండము సర్వే.pdf
ఆదికాండము సర్వే.pdfఆదికాండము సర్వే.pdf
ఆదికాండము సర్వే.pdf
 
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
ప్రభువు బల్ల - రొట్టె విరుచు క్రమము
 
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలుTitles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
Titles in the Book of Psalms - Telugu కీర్తనల గ్రంథంలో శీర్షికలు
 
PLU de Baie-Mahault - Orientations d'aménagement et de programmation
PLU de Baie-Mahault - Orientations d'aménagement et de programmationPLU de Baie-Mahault - Orientations d'aménagement et de programmation
PLU de Baie-Mahault - Orientations d'aménagement et de programmation
 
JORNADA 16 LIGA MURO.pdf
JORNADA 16 LIGA MURO.pdfJORNADA 16 LIGA MURO.pdf
JORNADA 16 LIGA MURO.pdf
 
SEMIFINALES 3 LIGA MURO 2023.pdf
SEMIFINALES 3 LIGA MURO 2023.pdfSEMIFINALES 3 LIGA MURO 2023.pdf
SEMIFINALES 3 LIGA MURO 2023.pdf
 
Lluvia con nieve trompeta
Lluvia con nieve   trompetaLluvia con nieve   trompeta
Lluvia con nieve trompeta
 
JORNADA 9 LIGA MURO.pdf
JORNADA 9 LIGA MURO.pdfJORNADA 9 LIGA MURO.pdf
JORNADA 9 LIGA MURO.pdf
 
JORNADA 10 LIGA MURO 2023.pdf
JORNADA 10 LIGA MURO 2023.pdfJORNADA 10 LIGA MURO 2023.pdf
JORNADA 10 LIGA MURO 2023.pdf
 
FINALES LIGA MURO 2022.pdf
FINALES LIGA MURO 2022.pdfFINALES LIGA MURO 2022.pdf
FINALES LIGA MURO 2022.pdf
 
Daniel 5 telugu pdf
Daniel 5 telugu pdfDaniel 5 telugu pdf
Daniel 5 telugu pdf
 

Similar to 第2回 基本演算,データ型の基礎,ベクトルの操作方法

Datamining r 1st
Datamining r 1stDatamining r 1st
Datamining r 1st
sesejun
 
PRE: Datamining 2nd R
PRE: Datamining 2nd RPRE: Datamining 2nd R
PRE: Datamining 2nd R
sesejun
 
Datamining R 1st
Datamining R 1stDatamining R 1st
Datamining R 1st
sesejun
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Jhonatan Minchán
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
Luis Perez Anampa
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
Mahrukh Khalid
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
Jeff Chasi
 
第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2
Wataru Shito
 
Solutions manual for business math 10th edition by cleaves
Solutions manual for business math 10th edition by cleavesSolutions manual for business math 10th edition by cleaves
Solutions manual for business math 10th edition by cleaves
CooKi5472
 
Algebra Lineal con geogebra.pdf
Algebra Lineal con geogebra.pdfAlgebra Lineal con geogebra.pdf
Algebra Lineal con geogebra.pdf
Jesus Fuentes
 
Tugas kalkulus
Tugas kalkulusTugas kalkulus
Tugas kalkulus
andekiorek
 
Tugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationTugas Kalkulus Diferentiation
Tugas Kalkulus Diferentiation
Sirilus Oki
 
Tugas Kalkulus
Tugas KalkulusTugas Kalkulus
Tugas Kalkulus
sitikecit
 
MATLAB ARRAYS
MATLAB ARRAYSMATLAB ARRAYS
MATLAB ARRAYS
Aditya Choudhury
 
basic mathematics practice of using R Tool
basic mathematics  practice of using R Toolbasic mathematics  practice of using R Tool
basic mathematics practice of using R Tool
SahilBhavsar5
 
Latihan 3.3
Latihan 3.3Latihan 3.3
Latihan 3.3
Rahmah Nadiyah
 
Números enteros
Números enterosNúmeros enteros
Números enteros
Daysi N
 
11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf
Anthimos Misailidis
 
الدوال
الدوالالدوال
الدوال
bsoma777
 

Similar to 第2回 基本演算,データ型の基礎,ベクトルの操作方法 (20)

Datamining r 1st
Datamining r 1stDatamining r 1st
Datamining r 1st
 
PRE: Datamining 2nd R
PRE: Datamining 2nd RPRE: Datamining 2nd R
PRE: Datamining 2nd R
 
Datamining R 1st
Datamining R 1stDatamining R 1st
Datamining R 1st
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
 
第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2第4回 データフレームの基本操作 その2
第4回 データフレームの基本操作 その2
 
Solutions manual for business math 10th edition by cleaves
Solutions manual for business math 10th edition by cleavesSolutions manual for business math 10th edition by cleaves
Solutions manual for business math 10th edition by cleaves
 
Algebra Lineal con geogebra.pdf
Algebra Lineal con geogebra.pdfAlgebra Lineal con geogebra.pdf
Algebra Lineal con geogebra.pdf
 
Tugas kalkulus
Tugas kalkulusTugas kalkulus
Tugas kalkulus
 
Tugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationTugas Kalkulus Diferentiation
Tugas Kalkulus Diferentiation
 
Tugas Kalkulus
Tugas KalkulusTugas Kalkulus
Tugas Kalkulus
 
MATLAB ARRAYS
MATLAB ARRAYSMATLAB ARRAYS
MATLAB ARRAYS
 
basic mathematics practice of using R Tool
basic mathematics  practice of using R Toolbasic mathematics  practice of using R Tool
basic mathematics practice of using R Tool
 
Latihan 3.3
Latihan 3.3Latihan 3.3
Latihan 3.3
 
Números enteros
Números enterosNúmeros enteros
Números enteros
 
11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf11o Φ.Α. 8.1.pdf
11o Φ.Α. 8.1.pdf
 
الدوال
الدوالالدوال
الدوال
 

More from Wataru Shito

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
Wataru Shito
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
Wataru Shito
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
Wataru Shito
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
Wataru Shito
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
Wataru Shito
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
Wataru Shito
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
Wataru Shito
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
Wataru Shito
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
Wataru Shito
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
Wataru Shito
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
Wataru Shito
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
Wataru Shito
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
Wataru Shito
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
Wataru Shito
 

More from Wataru Shito (20)

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
 

Recently uploaded

Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
jitskeb
 
My burning issue is homelessness K.C.M.O.
My burning issue is homelessness K.C.M.O.My burning issue is homelessness K.C.M.O.
My burning issue is homelessness K.C.M.O.
rwarrenll
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
AlessioFois2
 
Global Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headedGlobal Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headed
vikram sood
 
Analysis insight about a Flyball dog competition team's performance
Analysis insight about a Flyball dog competition team's performanceAnalysis insight about a Flyball dog competition team's performance
Analysis insight about a Flyball dog competition team's performance
roli9797
 
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
74nqk8xf
 
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data LakeViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
Walaa Eldin Moustafa
 
Influence of Marketing Strategy and Market Competition on Business Plan
Influence of Marketing Strategy and Market Competition on Business PlanInfluence of Marketing Strategy and Market Competition on Business Plan
Influence of Marketing Strategy and Market Competition on Business Plan
jerlynmaetalle
 
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
74nqk8xf
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
nyfuhyz
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
soxrziqu
 
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
nuttdpt
 
The Ipsos - AI - Monitor 2024 Report.pdf
The  Ipsos - AI - Monitor 2024 Report.pdfThe  Ipsos - AI - Monitor 2024 Report.pdf
The Ipsos - AI - Monitor 2024 Report.pdf
Social Samosa
 
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
g4dpvqap0
 
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
Timothy Spann
 
Palo Alto Cortex XDR presentation .......
Palo Alto Cortex XDR presentation .......Palo Alto Cortex XDR presentation .......
Palo Alto Cortex XDR presentation .......
Sachin Paul
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Kiwi Creative
 
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
nuttdpt
 
Population Growth in Bataan: The effects of population growth around rural pl...
Population Growth in Bataan: The effects of population growth around rural pl...Population Growth in Bataan: The effects of population growth around rural pl...
Population Growth in Bataan: The effects of population growth around rural pl...
Bill641377
 
Challenges of Nation Building-1.pptx with more important
Challenges of Nation Building-1.pptx with more importantChallenges of Nation Building-1.pptx with more important
Challenges of Nation Building-1.pptx with more important
Sm321
 

Recently uploaded (20)

Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
 
My burning issue is homelessness K.C.M.O.
My burning issue is homelessness K.C.M.O.My burning issue is homelessness K.C.M.O.
My burning issue is homelessness K.C.M.O.
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
 
Global Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headedGlobal Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headed
 
Analysis insight about a Flyball dog competition team's performance
Analysis insight about a Flyball dog competition team's performanceAnalysis insight about a Flyball dog competition team's performance
Analysis insight about a Flyball dog competition team's performance
 
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
一比一原版(Chester毕业证书)切斯特大学毕业证如何办理
 
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data LakeViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
 
Influence of Marketing Strategy and Market Competition on Business Plan
Influence of Marketing Strategy and Market Competition on Business PlanInfluence of Marketing Strategy and Market Competition on Business Plan
Influence of Marketing Strategy and Market Competition on Business Plan
 
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
一比一原版(牛布毕业证书)牛津布鲁克斯大学毕业证如何办理
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
 
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
 
The Ipsos - AI - Monitor 2024 Report.pdf
The  Ipsos - AI - Monitor 2024 Report.pdfThe  Ipsos - AI - Monitor 2024 Report.pdf
The Ipsos - AI - Monitor 2024 Report.pdf
 
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
 
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
 
Palo Alto Cortex XDR presentation .......
Palo Alto Cortex XDR presentation .......Palo Alto Cortex XDR presentation .......
Palo Alto Cortex XDR presentation .......
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
 
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
 
Population Growth in Bataan: The effects of population growth around rural pl...
Population Growth in Bataan: The effects of population growth around rural pl...Population Growth in Bataan: The effects of population growth around rural pl...
Population Growth in Bataan: The effects of population growth around rural pl...
 
Challenges of Nation Building-1.pptx with more important
Challenges of Nation Building-1.pptx with more importantChallenges of Nation Building-1.pptx with more important
Challenges of Nation Building-1.pptx with more important
 

第2回 基本演算,データ型の基礎,ベクトルの操作方法

  • 1. 2020 1 30 1 1 2 2 3 2 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 R mode . . . . . . . . . . . . . . . . . . . . . . . . 4 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.4 NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 6 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 7 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 11 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8 11 1 • 1
  • 2. 2 • • logical, numeric, complex, character • • • 2 R # # > ################# > ## > ################# > cat("ABC") # ABC 3 > 3 * 4 [1] 12 > 3 * 4 + 2 [1] 14 > 3 * (4 + 2) [1] 18 > 3/4 [1] 0.75 > -5 / -6 [1] 0.8333333 > (-5)/(-6) [1] 0.8333333 2 > 2^3 # ^ [1] 8 > 2**3 # * 2 [1] 8 > 2^3*4 # I 2
  • 3. 3.1 2 [1] 32 > 2^(3*4) [1] 4096 > 2**3*4 # ** * [1] 32 > 2**(3*4) [1] 4096 > sqrt(2) [1] 1.414214 > 2^(1/2) [1] 1.414214 log(2) log(2)= loge 2 = ln 2 log(100,10)= log10 100 > log(2) [1] 0.6931472 > log(100, 10) [1] 2 > exp(1) [1] 2.718282 > exp(0.6931472) [1] 2 absolute values > abs(-0.2) [1] 0.2 > abs(0.2) [1] 0.2 3.1 • • • • I 3
  • 4. 2 4 4.1 • • 0 1 0 1 • =⇒ • R 4.2 R mode • logical : TRUE FALSE T F • numeric : R numeric • complex : i • character : mode() mode mode() > mode(TRUE) [1] "logical" > mode(FALSE) [1] "logical" > mode(pi) # pi [1] "numeric" > mode(2.0) [1] "numeric" > mode(2) [1] "numeric" > mode(2+2i) [1] "complex" > mode(" ") [1] "character" is. () I 4
  • 5. 4.3 2 > is.character(" ") [1] TRUE > is.numeric(" ") [1] FALSE > is.numeric(3.14) [1] TRUE > is.numeric(pi) [1] TRUE > is.logical(FALSE) [1] TRUE > is.logical(1) [1] FALSE 4.3 ’<-’ > x <- 3 # x 3 > x # [1] 3 > is.numeric(x) # x [1] TRUE > y <- " " > y [1] " " > is.character(y) [1] TRUE > is.numeric(x) [1] TRUE > mode(y) [1] "character" 4.4 NULL • 0 1 0 • R NULL > x <- NULL # NULL > x # x NULL NULL > is.numeric(x) I 5
  • 6. 4.5 2 [1] FALSE > is.null(x) # NULL [1] TRUE > mode(x) # NULL mode "NULL" [1] "NULL" > x <- FALSE # x > is.null(x) # NULL [1] FALSE > is.logical(x) [1] TRUE > mode(x) [1] "logical" 4.5 • • mode • • logical numeric complex character • mode() • is. () • • NULL 5 1 R • vector : mode 1 1 • matrix : mode 2 • array : mode n I 6
  • 7. 5.1 2 • list : • data.frame : 2 mode 3 5.1 • • • vector, matrix, array, list • 6 6.1 c() c() combine 1 > c(1, 2, 3, 4) # [1] 1 2 3 4 > c(1, 2, c(3, 4)) # [1] 1 2 3 4 > v <- c("a", "b", "c") # > v # v [1] "a" "b" "c" > c(v, v, c(1, 2, 3)) # [1] "a" "b" "c" "a" "b" "c" "1" "2" "3" 6.2 replicate rep(x, times) x times I 7
  • 8. 6.3 2 > rep(1, 5) [1] 1 1 1 1 1 > rep(" ", 3) [1] " " " " " " > rep(TRUE, 3) [1] TRUE TRUE TRUE > rep(c(1, 2), 3) # [1] 1 2 1 2 1 2 rep() sequence seq(from, to, by) from to by by 1 > seq(1, 10) [1] 1 2 3 4 5 6 7 8 9 10 > seq(1, 10, 2) # 2 [1] 1 3 5 7 9 > seq(10, 1) [1] 10 9 8 7 6 5 4 3 2 1 > seq(10, 1, -2) [1] 10 8 6 4 2 6.3 [1] > seq(1, 50) [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > 1 [1] 1 1 1 [] > x <- 1:10 > x [1] 1 2 3 4 5 6 7 8 9 10 > x[1] [1] 1 > x[2] [1] 2 I 8
  • 9. 6.4 2 > x[10] [1] 10 [] > days <- c(" ", " ", " ", " ", " ", " ", " ") > days [1] " " " " " " " " " " " " " " > days[3] [1] " " > days[c(1, 2, 3)] [1] " " " " " " > days[1:3] [1] " " " " " " > days[seq(2, 7, 2)] # 2 1 1 [1] " " " " " " > days[-3] # 3 [1] " " " " " " " " " " " " > days[-1:-3] # 1 3 [1] " " " " " " " " > days[-seq(2, 7, 2)] # seq(2,7,2) c(2,4,6) [1] " " " " " " " " length() > length(days) [1] 7 > length(x) [1] 10 6.4 1 1 R 1 50 : 1:50 seq(1,50) 1 > x <- 1:50 # seq(1, 50) > x [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 I 9
  • 10. 6.5 2 [28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > y <- 50:1 # seq(50, 1) > y [1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 [28] 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 > x * 2 # 2 [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 [21] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 [41] 82 84 86 88 90 92 94 96 98 100 > x / 2 # 2 [1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 [17] 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 [33] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 [49] 24.5 25.0 > x + 100 # 100 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 [21] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [41] 141 142 143 144 145 146 147 148 149 150 > x + y # x y [1] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 [28] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 > log(1:5) # log(c(1, 2, 3, 4, 5)) log [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 > (1:5)^2 # c(1, 2, 3, 4, 5)^2 [1] 1 4 9 16 25 (1:5)^2 1:5 2 1:5^2 1 52 = 25 > 1:5^2 # 1:25 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6.5 • : • c() rep() seq() • • length() I 10
  • 11. 2 7 rep() > help(rep) standard deviation help.search() > help.serach("standard deviation") stats::sd stats sd() help(sd) R source R source help.search() 7.1 • help() • help.search() • • sd() 8 (1) 2, 4, 6, 8, 10 10 [1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 [26] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 (2) 2, 4, 6, 8, 10 100 (3) sd() 2 I 11