SlideShare a Scribd company logo
1 of 14
空気/体内伝導マイクロフォンを用いた
雑音環境下における
自己発声音強調/抑圧法
☆高田萌絵,関 翔悟,戸田智基
名古屋大学
2018/9/14 日本音響学会@大分大学 1
研究背景
小型高性能なウェアラブル音声収録機器の開発
手首や頭部まわりに装着
音情報処理の発展
音環境理解:周囲の状況把握や音イベントの検出
音声処理:音声認識,ライフログ
2018/9/14 日本音響学会@大分大学 2
ウェアラブルな音声インターフェースの実現へ
ウェアラブル機器で音声を収録
様々な音が混ざり合っている混合音
対象とする音を抽出する音源分離が有効
2018/9/14 日本音響学会@大分大学 3
ウェアラブル
システム
環境音
自分の声
(自己発声音)
環境音ログ
発話ログ
雑音環境下の自己発声音強調・抑圧処理に着目
従来の音源分離
通常発話の多チャネル空気伝導音に対して音源分離
2018/9/14 日本音響学会@大分大学 4
空気伝導音
劣決定
ブラインド音源分離
自己発声音
環境音
自己発声音の影響が大きく分離性能が落ちてしまう
空気伝導マイクロフォン
体内・空気伝導音用劣決定ブラインド音源分離
通常発話の空気・体内伝導音に対して音源分離
2018/9/14 日本音響学会@大分大学 5
空気伝導音 体内・空気伝導音用
劣決定
ブラインド音源分離
分離フィルタ
体内伝導音
体内伝導音の情報を利用して空気伝導音の分離フィルタを推定
 より高精度に自己発声音を強調・抑圧する
空気伝導マイクロフォン
NAMマイクロフォン
空気伝導音と体内伝導音
空気伝導マイクロフォンによる収録音
非可聴つぶやき(NAM)マイクロフォンによる収録音
周囲の環境音の混入を低減した音声を収録
自己発声音によって支配的に構成
音声の品質が劣化
2018/9/14 日本音響学会@大分大学 6
提案法の流れ
体内・空気伝導音を併用し従来法を応用した手法
2018/9/14 日本音響学会@大分大学 7
Independent
Low-Rank
Matrix Analysis
Wiener
filtering
Ambient environment
sound signal
Self-produced speech
signal
Self-produced
speech
discrimination
体内伝導音
独立低ランク
行列分析
自己発声音
判別
フィルタリング
周囲の音
自己発声音
空気伝導音
NMF
独立低ランク行列分析 [D. Kitamura+, 2016]
IVAの音源モデルにNMFを導入
線形分離フィルタと各音源の音源モデルを学習
2018/9/14 日本音響学会@大分大学 8
混合信号
自己発声音
環境音
線形分離
フィルタ
時間変動
周
波
数
パ
タ
ー
ン
時間変動
周
波
数
パ
タ
ー
ン
音源モデル
IVA
自己発声音判別
ILRMAにより推定された複数音源を持つ多チャネルの
分離信号を自己発声音と環境音に分ける
体内伝導音に相当するチャネルにおいて信号のパワー
が最大となる信号を自己発声音とする
2018/9/14 日本音響学会@大分大学 9
独
立
低
ラ
ン
ク
行
列
分
析
分離信号
プ
ロ
ジ
ェ
ク
シ
ョ
ン
バ
ッ
ク
[N. Murata+, 2001]
体内伝導 空気伝導1 空気伝導2
フィルタリング
ILRMAによる多チャネルの分離信号𝑦𝑖𝑗,𝑚
(s)
, 𝑦𝑖𝑗,𝑚
(n)
を用いて
各チャネルのシングルチャネルウィナーフィルタを推定
観測空気伝導音にウィナーフィルタを掛け合わせること
で自己発声音の強調・抑圧
劣決定音源分離など線形フィルタによって観測信号を
効果的に分離できない場合に高い分離精度を得ることが
可能
2018/9/14 日本音響学会@大分大学 10
𝐺𝑖𝑗,𝑚
(s)
=
𝑃 𝑦𝑖𝑗,𝑚
(s)
𝑃 𝑦𝑖𝑗,𝑚
(s)
+ 𝑃 𝑦𝑖𝑗,𝑚
(n)
𝐺𝑖𝑗,𝑚
(s)
:自己発声音強調フィルタ
𝑃(∙):パワー
𝑖: 周波数インデックス
𝑗: 時間インデックス
𝑚:チャネルインデックス
実験的評価
体内伝導音を利用する有効性を確認
音声データ
自己発声音と環境音の混合音
ネックバンド型のウェアラブルデバイスを使用
周囲に雑音源を等間隔に設置
評価値
SDR(分離信号の統合的な音質)を採用
2018/9/14 日本音響学会@大分大学 11
空気伝導マイクロフォン
NAMマイクロフォン
60°
実験条件
従来法:空気伝導音 5 ch
提案法:空気伝導音 4 ch + 体内伝導音 1 ch
2018/9/14 日本音響学会@大分大学 12
Evaluation data 18 sentences
Sampling frequency 48 kHz
Frame size 11.6 ms (512 pt)
Shift size 5.8 ms (256 pt)
Number of iteration 100
Number of basis vectors 200
Number of channels 5 ch
自己発声音に対応する音源数 (1src , 2src)
ウィナーフィルタを適用する効果
実験結果
2018/9/14 日本音響学会@大分大学 13
-1
0
1
2
3
4
5
2src w/ WF 1src w/ WF 1src w/o WF conventional
(1src w/ WF)
conventional
(1src w/o WF)
air- and body-conducted signals air-conducted signals
SDRimprovement[dB]
Speech
Environment
まとめ
環境音と自己発声音との分離における空気伝導音と
体内伝導音を用いて分離フィルタを推定するための手法
について提案
提案法による分離性能が向上を確認
1. 体内伝導音は強調・抑圧処理において有効であること
2. 線形分離フィルタとウィナーフィルタの組み合わせは提案法に
おいて有効でないこと
今後の方針
空気・体内伝導音のモデル化のためのより適切な混合過程を
検討
2018/9/14 日本音響学会@大分大学 14

More Related Content

What's hot

音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)Daichi Kitamura
 
深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討Kitamura Laboratory
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向Yuma Koizumi
 
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析Shinnosuke Takamichi
 
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...Daichi Kitamura
 
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離Kitamura Laboratory
 
深層学習を利用した音声強調
深層学習を利用した音声強調深層学習を利用した音声強調
深層学習を利用した音声強調Yuma Koizumi
 
深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術NU_I_TODALAB
 
環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類Keisuke Imoto
 
喉頭摘出者のための歌唱支援を目指した電気音声変換法
喉頭摘出者のための歌唱支援を目指した電気音声変換法喉頭摘出者のための歌唱支援を目指した電気音声変換法
喉頭摘出者のための歌唱支援を目指した電気音声変換法NU_I_TODALAB
 
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離Kitamura Laboratory
 
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3Naoya Takahashi
 
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法Shinnosuke Takamichi
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組みAtsushi_Ando
 
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクトCREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクトNU_I_TODALAB
 
End-to-End音声認識ためのMulti-Head Decoderネットワーク
End-to-End音声認識ためのMulti-Head DecoderネットワークEnd-to-End音声認識ためのMulti-Head Decoderネットワーク
End-to-End音声認識ためのMulti-Head DecoderネットワークNU_I_TODALAB
 
音素事後確率を利用した表現学習に基づく発話感情認識
音素事後確率を利用した表現学習に基づく発話感情認識音素事後確率を利用した表現学習に基づく発話感情認識
音素事後確率を利用した表現学習に基づく発話感情認識NU_I_TODALAB
 
深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理Yuma Koizumi
 

What's hot (20)

音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)
 
深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向
 
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
 
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
 
Slp201702
Slp201702Slp201702
Slp201702
 
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
 
深層学習を利用した音声強調
深層学習を利用した音声強調深層学習を利用した音声強調
深層学習を利用した音声強調
 
Kameoka2017 ieice03
Kameoka2017 ieice03Kameoka2017 ieice03
Kameoka2017 ieice03
 
深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術
 
環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類
 
喉頭摘出者のための歌唱支援を目指した電気音声変換法
喉頭摘出者のための歌唱支援を目指した電気音声変換法喉頭摘出者のための歌唱支援を目指した電気音声変換法
喉頭摘出者のための歌唱支援を目指した電気音声変換法
 
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離
調波打撃音分離の時間周波数マスクを用いた線形ブラインド音源分離
 
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
 
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み
 
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクトCREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
 
End-to-End音声認識ためのMulti-Head Decoderネットワーク
End-to-End音声認識ためのMulti-Head DecoderネットワークEnd-to-End音声認識ためのMulti-Head Decoderネットワーク
End-to-End音声認識ためのMulti-Head Decoderネットワーク
 
音素事後確率を利用した表現学習に基づく発話感情認識
音素事後確率を利用した表現学習に基づく発話感情認識音素事後確率を利用した表現学習に基づく発話感情認識
音素事後確率を利用した表現学習に基づく発話感情認識
 
深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理
 

More from NU_I_TODALAB

異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例NU_I_TODALAB
 
信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離NU_I_TODALAB
 
The VoiceMOS Challenge 2022
The VoiceMOS Challenge 2022The VoiceMOS Challenge 2022
The VoiceMOS Challenge 2022NU_I_TODALAB
 
敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワークNU_I_TODALAB
 
距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知NU_I_TODALAB
 
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...NU_I_TODALAB
 
Interactive voice conversion for augmented speech production
Interactive voice conversion for augmented speech productionInteractive voice conversion for augmented speech production
Interactive voice conversion for augmented speech productionNU_I_TODALAB
 
Recent progress on voice conversion: What is next?
Recent progress on voice conversion: What is next?Recent progress on voice conversion: What is next?
Recent progress on voice conversion: What is next?NU_I_TODALAB
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionNU_I_TODALAB
 
Statistical voice conversion with direct waveform modeling
Statistical voice conversion with direct waveform modelingStatistical voice conversion with direct waveform modeling
Statistical voice conversion with direct waveform modelingNU_I_TODALAB
 
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法NU_I_TODALAB
 
Hands on Voice Conversion
Hands on Voice ConversionHands on Voice Conversion
Hands on Voice ConversionNU_I_TODALAB
 
Advanced Voice Conversion
Advanced Voice ConversionAdvanced Voice Conversion
Advanced Voice ConversionNU_I_TODALAB
 
Deep Neural Networkに基づく日常生活行動認識における適応手法
Deep Neural Networkに基づく日常生活行動認識における適応手法Deep Neural Networkに基づく日常生活行動認識における適応手法
Deep Neural Networkに基づく日常生活行動認識における適応手法NU_I_TODALAB
 
CTCに基づく音響イベントからの擬音語表現への変換
CTCに基づく音響イベントからの擬音語表現への変換CTCに基づく音響イベントからの擬音語表現への変換
CTCに基づく音響イベントからの擬音語表現への変換NU_I_TODALAB
 
WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響NU_I_TODALAB
 
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...Missing Component Restoration for Masked Speech Signals based on Time-Domain ...
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...NU_I_TODALAB
 
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調NU_I_TODALAB
 
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離NU_I_TODALAB
 
音声信号の分析と加工 - 音声を自在に変換するには?
音声信号の分析と加工 - 音声を自在に変換するには?音声信号の分析と加工 - 音声を自在に変換するには?
音声信号の分析と加工 - 音声を自在に変換するには?NU_I_TODALAB
 

More from NU_I_TODALAB (20)

異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例
 
信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離
 
The VoiceMOS Challenge 2022
The VoiceMOS Challenge 2022The VoiceMOS Challenge 2022
The VoiceMOS Challenge 2022
 
敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク
 
距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知
 
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...
Investigation of Text-to-Speech based Synthetic Parallel Data for Sequence-to...
 
Interactive voice conversion for augmented speech production
Interactive voice conversion for augmented speech productionInteractive voice conversion for augmented speech production
Interactive voice conversion for augmented speech production
 
Recent progress on voice conversion: What is next?
Recent progress on voice conversion: What is next?Recent progress on voice conversion: What is next?
Recent progress on voice conversion: What is next?
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-Attention
 
Statistical voice conversion with direct waveform modeling
Statistical voice conversion with direct waveform modelingStatistical voice conversion with direct waveform modeling
Statistical voice conversion with direct waveform modeling
 
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
 
Hands on Voice Conversion
Hands on Voice ConversionHands on Voice Conversion
Hands on Voice Conversion
 
Advanced Voice Conversion
Advanced Voice ConversionAdvanced Voice Conversion
Advanced Voice Conversion
 
Deep Neural Networkに基づく日常生活行動認識における適応手法
Deep Neural Networkに基づく日常生活行動認識における適応手法Deep Neural Networkに基づく日常生活行動認識における適応手法
Deep Neural Networkに基づく日常生活行動認識における適応手法
 
CTCに基づく音響イベントからの擬音語表現への変換
CTCに基づく音響イベントからの擬音語表現への変換CTCに基づく音響イベントからの擬音語表現への変換
CTCに基づく音響イベントからの擬音語表現への変換
 
WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響
 
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...Missing Component Restoration for Masked Speech Signals based on Time-Domain ...
Missing Component Restoration for Masked Speech Signals based on Time-Domain ...
 
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調
実環境下におけるサイレント音声通話の実現に向けた雑音環境変動に頑健な非可聴つぶやき強調
 
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
 
音声信号の分析と加工 - 音声を自在に変換するには?
音声信号の分析と加工 - 音声を自在に変換するには?音声信号の分析と加工 - 音声を自在に変換するには?
音声信号の分析と加工 - 音声を自在に変換するには?
 

空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法