This document discusses spoken language identification using i-vectors and x-vectors for feature extraction, and PLDA and logistic regression for classification. It examines extracting features from Javanese, Sundanese, and Minangkabau languages, then classifying the languages using various parameters. The study finds that x-vector outperforms i-vector when using PLDA classification, except when using logistic regression, where i-vector performs better. It tunes parameters for i-vector UBM size, i-vector dimension, x-vector max frame size, and num repeats, reporting equal error rates to evaluate performance on test segments of 3, 10 and 30 seconds.