SlideShare a Scribd company logo
1 of 116
Download to read offline
Solar Domestic Hot Water Heating Systems
Design, Installation and Maintenance
Presented by:
Christopher A. Homola, PE
A Brief History of Solar Water Heating
Solar water heating has been around for many years because it is the
easiest way to use the sun to save energy and money. One of the earliest
documented cases of solar energy use involved pioneers moving west
after the Civil War. They would place a cooking pot filled with cold water in
the sun all day to have heated water in the evening.
The first solar water heater that resembles the concept still in use today
was a metal tank that was painted black and placed on the roof where it
was tilted toward the sun. The concept worked, but it usually took all day
for the water to heat, then, as soon as the sun went down, it cooled off
quickly because the tank was not insulated.
A Brief History of the American Solar Water Heating Industry
1890 to 1930's - the California Era
The first commercial solar water heater was introduced by Clarence Kemp in the
1890's in California. For a $25 investment, people could save about $9 a year in coal
costs. It was a simple batch type solar water heater that combined storage and
collector in one box.
The first thermosyphon systems with the tank on the roof and the collector below
were invented, patented, and marketed in California in the 1920's by William Bailey.
One of the largest commercial systems in California was installed for a resort in
Death Valley.
Natural gas was discovered in Southern California and cheap natural gas,
aggressively marketed by utility companies, ended the solar water heating market.
Patents were sold to a Florida company, owned by HM Carruthers in 1923 and the
solar hot water industry began in the coastal cities of central Florida and southern
Florida.
1930's to 1973 - the South Florida Era
Floridians purchased or shipped to the Caribbean more than 100,000
thermosyphon water heaters between 1930 and 1954 when the industry
collapsed. During the second World War (1942 to 1945) copper was
reserved for the military and the solar industry was not able to make solar
collectors.
After the war, the Florida industry boomed again for about six years. Half of
Miami homes had solar water heaters with over 80% of new homes having
them installed. In the early 1950's electricity became cheap in Florida and
utility companies gave away electric water heaters in an effort to eliminate
the solar water heating industry.
By 1973, there were only two full-time solar water heating companies left in
the United States both operating out of Miami, Florida.
1973 to 1986 - Oil Embargo and Tax Credits
The oil embargo of 1973 resulted in a rise in fuel prices. A few companies
started experimenting with solar water heaters and designing systems but there
were really no national solar collector manufacturers with widespread
distribution until the late seventies.
The federal government sponsored a few HUD Grants for domestic solar water
heaters in the period just before the start of the 40% Federal tax rebate in 1979.
The tax credit era, 1979 to 1986, started a nationwide boon in solar hot water
systems that resulted in hundreds of manufacturers and thousands of
contractors and distributors starting new businesses.
Equipment has improved since the 1980’s. Improvements were
precipitated by both certification design review and experienced
installers.
Today, more than 1.2 million buildings have solar water heating
systems in the United States. Japan has nearly 1.5 million buildings
with solar water heating. In Israel, 30 percent of the buildings use solar-
heated water. Greece and Australia are also leading users of solar
energy.
There is still a lot of room for expansion in the solar energy industry.
There are no geographical constraints. For colder climates,
manufacturers have designed systems that protect components from
freezing conditions. Wherever the sun shines, solar water heating
systems can work. The designs may be different from the early solar
pioneers, but the concept is the same.
Environmental Benefits
 Solar water heaters do not pollute. 
 Solar water heaters help to avoid carbon dioxide, nitrogen oxides, sulfur
dioxide, and the other air pollution and wastes created when the local utility
generates power or fuel is burned to heat domestic water. 
 When a solar water heater replaces an electric water heater, the electricity
displaced over 20 years represents more than 50 tons of avoided carbon
dioxide emissions alone. 
Long‐Term Benefits
 Solar water heaters offer long‐term benefits that go beyond simple
economics. 
In addition to having free hot water after the system has paid for itself in
reduced utility bills, owners could be cushioned from future fuel
shortages and price increases. 
 Solar water heaters can assist in reducing this country's dependence on
foreign oil. 
 It  is  estimated  that  adding  a  solar  water  heater  to  an  existing home 
raises
the resale value of the home by the entire cost of the system.
Homeowners may be able to recoup their entire investment they sell
their home.
Economic Benefits
Many  home  builders  choose  electric  water  heaters  because  they  are  easy  to 
install  and  relatively  inexpensive  to  purchase.  However,  research  shows  that  an 
average  household  with  an  electric  water  heater  spends  about  25% of  its  home 
energy costs on heating water.
It makes economic sense to think beyond the initial purchase price and consider 
lifetime energy costs, or how much you will spend on energy to use the appliance 
over its lifetime. The Florida Solar Energy Center studied the potential savings to 
Florida  homeowners  of  common  water‐heating  systems  compared  with  electric 
water  heaters.  It  found  that  solar  water  heaters  offered  the  largest  potential 
savings, with solar water‐heater owners saving as much as 50% to 85% annually on 
their utility bills over the cost of electric water heating.
Economic Benefits Continued
A solar hot water heater heats the same amount of water for a fraction of the
cost. A solar hot water heating system’s performance is dependent on the
intensity of the sun in its location. The initial expense of installing a solar hot
water  heater  ($3500  to  $5500)  tends  to  be  greater  than  installing  an  electric 
($450
to $650) or gas ($750 to $1000) water heater.
The costs vary from region to region. Depending on the price of fuel sources, the
solar water heater can be more economical over the lifetime of the system than
heating water with electricity, fuel oil, propane, or even natural gas because the
fuel (sunshine) is free.
Economic Benefits Continued
However,  at  the  current  low  prices  of  natural  gas,  solar  water  heaters 
cannot
compete with natural gas water heaters in most parts of the country except
in new home construction. Although you will still save energy costs with a
solar water heater because you won't be buying natural gas, it won't be
economical on a dollar‐for‐dollar basis.
Paybacks vary widely, but you can expect a simple payback of 4 to 8 years 
on
a well‐designed and properly installed solar water heater. You can expect
shorter paybacks in areas with higher energy costs. After the payback
period,  you  accrue  the  savings  over  the  life  of  the  system,  which  ranges 
from
15 to 40 years, depending on the system and how well it is maintained.
Economic Benefits Continued
You can determine the simple payback of a solar water heater by first
determining the net cost of the system. Net costs include the total installed
cost less any tax incentives or utility rebates.  After you calculate the net
cost of the system, calculate the annual fuel savings and divide the net
investment by this number to determine the simple payback.
An example: Your total utility bill averages $160 per month and your water
heating costs are average (25% of your total utility costs) at $40 per month.
If you purchase a solar water heater for $2,000 that provides an average of
60% of your hot water each year, that system will save you $24 per month
($40 x 0.60 = $24) or $288 per year (12 x $24 = $288). This system has a
simple payback of less than 7 years ($2,000 ÷ $288 = 6.9).
For the remainder of  the  life  of  the  solar  water  heater,  60%  of  the  hot 
water  will  be  free,  saving  $288  each  year.  You  will  need  to  account  for 
some operation and maintenance costs, which are estimated at $25 to $30 
a year. This is primarily to have the system checked every 3 years.
If you are building a new home or refinancing your present home to do a 
major  renovation,  the  economics  are  even  more  attractive.  The  cost  of 
including the price of a solar water heater in a new 30‐year mortgage is 
usually  between  $13  and  $20  per  month.  The  portion  of  the  federal 
income  tax  deduction  for  mortgage  interest  attributable  to  the  solar 
system  reduces  that  amount  by  about  $3  to  $5  per  month.  If  your  fuel 
savings are more than $15 per month, the investment in the solar water 
heater is profitable immediately.
Peak Power Benefit
A typical residential solar water heating system (SWHS) for a family of
four delivers 4 kilowatts of electrical equivalent thermal power when
under full sun and when the temperature of the water in the storage
tank is about the same as the air temperature. Such a system
typically has about 64 square feet of solar collector surface area and
produces approximately the same peak power as 400 square feet of
photovoltaic panels.
Production Capacity Benefit
Ratings of collectors and systems, along with other information
specific to the local area, can be used to calculate the specific
reduction in a utility’s peak demand. On average, for every solar
water heating system that is installed, 0.5 kilowatts of peak
demand is deferred from a utility’s load.
Energy Production Benefit
Because peak performance occurs infrequently, a more realistic
indication of solar thermal system performance is the rated daily
energy output of the collectors or system.
Using this method, a typical solar water heating system contributes
7 to 10 kilowatt-hours per day, depending on the solar resource and
type of collector.
Electric water heating for residential applications typically
consumes about 12 kilowatt-hours per day, depending on ground
water temperature.
Annual site-specific energy savings for domestic water heating
systems are available at www.solar-rating.org for all systems
certified by the Solar Rating and Certification Corporation (SRCC).
Using this data, a typical solar water heating system produces
about 3,400 kilowatt-hours per year, depending on local conditions
and type of collector.
•Atmosphere
•Angle of Incidence
•Geography
•Latitude and Season
•Air Pollution and Natural Haze
What Influences the Amount of Solar Radiation?
Atmosphere
The atmosphere absorbs certain wavelengths of light more than others. The exact spectral
distribution of light reaching the earth's surface depends on how much atmosphere the light
passes through, as well as the humidity of the atmosphere. In the morning and evening, the
sun is low in the sky and light waves pass through more atmosphere than at noon. The
winter sunlight also passes through more atmosphere versus summer. In addition, different
latitudes on the earth have different average “thicknesses” of atmosphere that sunlight must
penetrate. The figure below illustrates the atmospheric effects on solar energy reaching the
earth. Clouds, smoke and dust reflect some solar insolation back up into the atmosphere,
allowing less solar energy to fall on a terrestrial object. These conditions also diffuse or
scatter the amount of solar energy that does pass through.
Angle of Incidence
The sun’s electromagnetic energy travels in a straight line. The angle
at which these rays fall on an object is called the angle of incidence. A
flat surface receives more solar energy when the angle of incidence is
closer to zero (i.e. perpendicular) and therefore receives significantly
less in early morning and late evening. Because the angle of incidence
is so large in the morning and evening on earth, about six hours of
“usable” solar energy is available daily. This is called the “solar
window.”
Absorptance vs. Reflectance
Certain materials absorb more insolation than others. More absorptive
materials are generally dark with a matte finish, while more-reflective
materials are generally lighter colored with a smooth or shiny finish.
The materials used to absorb the sun's energy are selected for their
ability to absorb a high percentage of energy and to reflect a minimum
amount of energy. The solar collector's absorber and absorber coating
efficiency are determined by the rate of absorption versus the rate of
reflectance. This in turn, affects the absorber and absorber coating's
ability to retain heat and minimize emissivity and reradiation. High
absorptivity and low reflectivity improves the potential for collecting
solar energy.
Collecting and Converting Solar Energy
Solar collectors capture the sun’s electromagnetic energy and
convert it to heat energy. The efficiency of a solar collector
depends not only on its materials and design but also on its
size, orientation and tilt.
Available solar energy is at its maximum at noon, when the sun
is at its highest point in its daily arc across the sky. The sun's
daily motion across the sky has an impact on any solar
collector's efficiency and performance in the following ways.
1.Since the angle of incidence of the solar energy – measured
from the normal (right angle) surface of the receiving surface –
changes throughout the day, solar power is lower at dawn and
dusk. In reality, there are only about 6 hours of maximum
energy available daily.
2.The total energy received by a fixed surface during a given
period depends on its orientation and tilt and varies with weather
conditions, time of day and season.
Insolation
Insolation is the amount of the sun’s electromagnetic energy that
“falls” on any given object.
Simply put, when we are talking about solar radiation, we are
referring to insolation.
In Florida (at about sea level), an object will receive a maximum of
around 300 Btu/ft2hr (about 90 watts/ft2 or 950 watts/meter2) at high
noon on a horizontal surface under clear skies on June 21 (the day
of the summer equinox).
PV Solar Radiation (Flat Plate, Facing South,
Latitude Tilt)—Static Maps
These maps provide monthly average daily total
solar resource information on grid cells of
approximately 40 km by 40 km in size. The
insolation values represent the resource available
to a flat plate collector, such as a photovoltaic
panel, oriented due south at an angle from
horizontal to equal to the latitude of the collector
location.
Resource:
National Renewable Energy Laboratory
www.nrel.gov/gis/solar.html
Optimum Performance Considerations 
Optimum Tilt:
• To latitude for greatest performance or up to latitude minus 5 degrees.
• Optimum Summer Load:  Latitude minus 15 degrees (e.g. solar air conditioning).
• Optimum Winter Load:  Latitude plus 15 degrees (e.g. solar space heating).
Optimum Azimuth:
• Toward the equator (e.g. Facing south in northern hemisphere).
Figure 1. Sun Path Diagrams for 28º N. Latitude
Seasonal Variations
The dome of the sky and the sun’s path at various times of
the year are shown in Figure 1.
Figure 2a And 2b. Collected Energy Varies with Time of Year And Tilt
For many solar applications, we want maximum annual energy harvest. For others, maximum
winter energy (or summer energy) collection is important. To orient the flat-plate collector
properly, the application must be considered, since different angles will be “best” for each
different application.
Actual Collector Orientation Possibilities
Collector Orientation
Collectors work best when facing due south. If roof lines or other factors dictate
different orientations, a small penalty will be paid, as shown in Figure 3. As an
example: for an orientation 20 degrees east or west of due south, we must increase
the collector area to 1.06 times the size needed with due south orientation (dashed
line on Figure 3) to achieve the same energy output. The orientation angle away
from due south is called the azimuth and, in the Northern Hemisphere, is plus if the
collector faces toward the east and minus if toward the west.
Figure 3. Glazed Collector Orientations
Tilt Angle
The best tilt angle will vary not only with the collector’s
geographical location but also with seasonal function. Solar
water heating systems are designed to provide heat year-round.
In general:
A)Mounting at an angle equal to the latitude works best for year-
round energy use.
B)Latitude minus 15 degrees mounting is best for summer energy
collection.
C)Latitude plus 15 degrees mounting is best for winter energy
collection.
Various Collector Tilt Angles
Solar water heating systems include storage tanks and solar 
collectors.  
There are two types of solar water heating systems: Active, which 
have circulating pumps and controls, and Passive, which don’t.
Most solar water heaters require a well‐insulated storage tank.
 Solar storage tanks have an additional outlet and inlet connected 
to and from the solar collector.  
In two‐tank systems, the solar water heater preheats water 
before it enters the conventional water heater.  
In one‐tank systems, the back‐up heater is combined with the 
solar storage in one tank.
Solar Water Heating System Basics
Electric Back-Up
Solar systems with single tanks are designed to encourage
temperature stratification so that when water is drawn for service, it is
supplied from the hottest stratum in the tank (i.e. top of tank).
While a solar system tank in the United States normally contains a
heating element, the element is deliberately located in the upper third
of the tank.
The electric element functions as back-up when solar energy is not
available or when hot water demand exceeds the solar-heated supply.
Natural Gas Back-Up
Natural gas back-up systems may use passive (thermosyphon or
integral collector system) solar preheating plumbed in series for
proper operation.
Or two separate tanks may be used for active solar systems with
natural gas back-up heating systems.
The solar storage tank is piped in series to the auxiliary tank sending
the hottest solar preheated water to the gas back-up tank.
Solar Collectors
Four types of solar collectors are used for residential 
applications:
 Flat‐plate collector
Integral collector‐storage systems
 Batch system
Evacuated‐tube solar collectors
Flat‐Plate Collector
Flat plate collectors are designed to heat water to medium 
temperatures (approximately 140 degrees Fahrenheit). 
Flat plate collectors typically include the following components:
1.Enclosure: A box or frame that holds all the components together.
2.Glazing: A transparent cover over the enclosure that allows the sun’s rays to
pass through to the absorber. Most glazing is glass but some designs use clear
plastic.
3.Glazing Frame: Attaches the glazing to the enclosure. Glazing gaskets prevent
leakage around the glazing frame and allow for contraction and expansion.
4.Insulation: Material between the absorber and the surfaces it touches that
blocks heat loss by conduction thereby reducing the heat loss from the collector
enclosure.
5.Absorber: A flat, usually metal surface inside the enclosure that, because of its
physical properties, can absorb and transfer high levels of solar energy.
6.Flow Tubes: Highly conductive metal tubes across the absorber through which
fluid flows, transferring heat from the absorber to the fluid.
Integral Collector Storage (ICS) Systems
In other solar water heating systems the collector and storage
tank are separate components. In an integral collector storage
(ICS) system, both collection and solar storage are combined
within a single unit. Most ICS systems store potable water
inside several tanks within the collector unit. The entire unit is
exposed to solar energy throughout the day. The resulting
water is drawn off either directly to the service location or as
replacement hot water to an auxiliary storage tank as water is
drawn for use.
Cutaway of an ICS system
Batch solar water heater
Batch System
The simplest of all solar water heating systems is a
batch system.
It is simply one or several storage tanks coated with
black, solar-absorbing material in an enclosure with
glazing across the top and insulation around the other
sides.
It is the simplest solar system to make. When exposed
to sun during the day, the tank transfers the heat it
absorbs to the water it holds.
The heated water can be drawn directly from the tank
or it can replace hot water that is drawn from an interior
tank inside the building.
Evacuated Tube Solar Collectors
This type of system features parallel rows of transparent glass tubes.  
Each tube contains a glass outer tube and metal absorber tube attached 
to a fin.  The fin’s coating absorbs solar energy but inhibits radiative heat 
loss.  These collectors are used more frequently for commercial 
applications.
Evacuated-tube collectors generally have a smaller solar collecting surface
because this surface must be encased by an evacuated glass tube. They
are designed to deliver higher temperatures (approximately 300 degrees
Fahrenheit). The tubes themselves comprise the following elements:
1.Highly tempered glass vacuum tubes, which function as both glazing and
insulation.
2.An absorber surface inside the vacuum tube. The absorber is surrounded
by a vacuum that greatly reduces the heat loss.
Active Solar Water Heating Systems
There are two Solar Water Heating System types: Active and Passive
There are two types of Active Solar Water Heating Systems:
 Direct Circulation Systems
 Indirect Circulation Systems
Direct Circulation Systems
Pump  circulates  domestic  water  through  the  collector(s)  and  into the 
building.    This  type  of  system  works  well  in  climates  where  it  rarely 
freezes.
Direct Pumped System
Direct System with Photovoltaic‐Powered Pump
Direct System with Automatic Drain-down system configuration
The direct pumped system has one or more solar energy collectors installed on the roof and a 
storage tank located somewhere within the building.  A pump circulates the water from the 
tank up to the collector and back again.  This is called a direct (or open loop) system because 
the sun’s heat is transferred directly to the potable water circulating through the collector and 
storage tank.  Neither an anti‐freeze nor heat exchanger is involved.
This system has a differential controller that senses temperature differences between water 
leaving the solar collector and the coldest water in the storage tank.  When the water in the 
collector is about 15‐20°F warmer than the water in the storage tank, the pump is turned on by 
the controller.  When the temperature difference drops to about 3‐5°F, the pump is turned off.
In this way, the water always gains heat from the collector when the pump operates.
A  flush‐type  freeze  protection  valve  installed  near  the  collector  provides  freeze  protection.  
Whenever temperatures approach freezing, the valve opens to let warm water flow through 
the collector.
The collector should always allow for manual draining by closing the isolation valves (located 
above the storage tank) and opening the drain valves.
Automatic recirculation is another means of freeze protection.  When the water in the collector 
reaches a temperature near freezing, the controller turns the pump on for a few minutes to 
warm the collector with water from the storage tank.
Direct System Advantages
• Service water used directly from collector loop.
• No heat exchanger – more efficient heat transfer to storage.
• Circulation pump (if needed) needs only to overcome friction
losses – system pressurized.
Direct System Disadvantages
• Quality of service water must be good to prevent corrosion, scale
or deposits in components.
• Freeze protection depends on mechanical valves.
• Recommended in climates with minimal/no freeze potential, 
and good water quality.
Indirect Circulation Systems
Pump circulates a non‐freezing, heat transfer fluid through the collector(s) 
and a heat exchanger.  
This heats the water that then flows into the home.  
This type of system works well in climates prone to freezing temperatures.
Indirect Pumped System Using Anti‐Freeze Solution
This  system  design  is  common  in  northern  climates,  where  freezing  weather 
occurs more frequently.  An anti‐freeze solution circulates through the collector, 
and  a  heat  exchanger  transfers  the  heat  from  the  anti‐freeze  solution  to  the 
storage tank water.  When toxic heat exchanger fluids are used, a double‐walled 
exchanger  is  required.    Generally,  if  the  heat  exchanger  is  installed  in  the 
storage tank, it should be located in the lower half of the tank.
A heat transfer solution is pumped through the collector in a closed loop.  The 
loop includes the collector, connecting piping, the pump, an expansion tank and 
a heat exchanger.  A heat exchanger coil in the lower half of the storage tank 
transfers heat from the heat transfer solution to the potable water in the solar 
storage tank.  An alternative of this design is to wrap the heat exchanger around 
the tank.  This keeps it from contact with the potable water.
The differential controller, in conjunction with the collector and tank sensors, 
determines when the pump should be activated to direct the heat transfer fluid 
through the collector.  The photovoltaic panel located on the roof supplies the 
power to operate the circulating pump. 
Indirect Pumped System Using Anti‐Freeze Solution 
and Wrap Around Heat Exchanger
A fail‐safe method of ensuring that collectors and collector loop piping never freeze 
is to remove all the water from the collectors and piping when the system is not 
collecting heat.  This is a major feature of the drain back system.  Freeze protection 
is provided when the system is in the drain mode.   Water in the collectors and 
exposed piping drains into the insulated drain‐back reservoir tank each time the 
circulating pump shuts off.  A slight tilt of the collectors is required in order to allow 
complete drainage.  A sight glass attached to the drain‐back reservoir tank shows 
when the reservoir tank is full and the collector has been drained.
In this particular system, distilled water is recommended to be used as the collector 
loop fluid‐transfer solution.  Using distilled water increases the heat transfer 
characteristics and prevents possible mineral buildup of the transfer solution.
When the sun shines again, the circulating pump is activated by a differential 
controller.  Water is pumped from the reservoir to the collectors, allowing heat to 
be collected.  The water stored in the reservoir tank circulates in a closed loop 
through the collectors and a heat exchanger at the bottom of the storage tank.
The heat exchanger transfers heat from the collector loop fluid to the potable water 
located in the storage tank.
Indirect System Advantages
• Freeze protection provided by antifreeze fluid or drainback.
• Collector/piping protected from aggressive water.
Indirect System Disadvantages
• Must account for reduced heat transfer efficiency through heat exchanger.
• Added materials = added cost.
• If not using water, fluids require maintenance.
• Most designs require added pumping cost.
Passive Solar Water Heaters
Passive solar water heaters rely on gravity and the tendency for water
to naturally circulate as it is heated.
Passive solar water heater systems contain no electrical components,
are generally more reliable, easier to maintain, and possibly have a
longer work life than active solar water heater systems.
The two most popular types of passive solar water heater systems
are: Integral-Collector Storage (ICS) andThermosyphon systems.
Integral Collector Storage System
In an integral collector storage system, the hot water storage system is the collector.  
Cold water flows progressively through the collector where it is heated by the sun.  
Hot water is drawn from the top, which is the hottest, and replacement water flows 
into  the  bottom.    This  system  is  simple  because  pumps  and  controllers  are  not 
required.  
On  demand,  cold  water  from  the  building  flows  into  the  collector and  hot  water 
from the collector flows to a standard hot water auxiliary tank within the building.
A flush‐type freeze protection valve is installed in the top piping near the collector.  
As temperatures near freezing, this valve opens to allow relatively warm water to 
flow through the collect to prevent freezing.  
In  areas  of  the  country,  the  thermal  mass  of  the  large  water  volume  within  the 
integral collector storage collector provides a means of freeze protection.
Thermosyphon System
As the sun shines on the collector, the water inside the collector flow‐
tubes is heated.  As it heats,  this  water  expands  slightly  and  becomes 
lighter than the cold water in the solar storage tank mounted above the 
collector.  Gravity then pulls heavier, cold water down from the tank and 
into the collector inlet.  The cold water pushes the heated water through 
the collector outlet and into the top of the tank, thus heating the water 
in the tank.
In a thermosiphon system there is no need for a circulating pump and 
controller.  Potable water flows directly to the tank on the roof.  Solar 
heated water flows from the rooftop tank to the auxiliary tank installed 
at ground level whenever water is used with the building.
The  thermosiphon  system  features  a  thermally  operated  valve  that
protects  the  collector  from  freezing.    It  also  includes  isolation  valves, 
which allow the solar system to be manually drained in case of freezing 
conditions, or to be bypassed completely.
Typical Components of a Direct Flat Plate Collector System
AIR VENT
Allows air that has entered the system to escape, and in turn prevents air locks that would
restrict flow of the heat-transfer fluid. An air vent must be positioned vertically and is usually
installed at the uppermost part of the system. In active direct systems supplied by pressurized
water, an air vent should be installed anywhere air could be trapped in pipes or collectors.
Indirect systems that use glycol as the heat-transfer fluid use air vents to remove any dissolved
air left in the system after it has been pressurized or charged with the heat-transfer fluid. Once
the air has been purged in these indirect systems, the air vent mechanism is manually closed.
TEMPERATURE-PRESSURE RELIEF VALVE
Protects system components from excessive pressures and temperatures. A pressure-
temperature relief valve is always plumbed to the solar storage (as well as auxiliary) tank. In
thermosiphon and ICS systems, where the solar tanks are located on a roof, these tanks may
also be equipped with a temperature-pressure relief valve since they are in some jurisdictions
considered storage vessels. These valves are usually set by the manufacturer at 150 psi and
210° F. Since temperature pressure relief valves open at temperatures below typical collector
loop operating conditions, they are not commonly installed in collector loops.
PRESSURE RELIEF VALVE
Protects components from excessive pressures that may build up in system plumbing. In any
system where the collector loop can be isolated from the storage tank, a pressure relief valve
must be installed on the collector loop. The pressure rating of the valve (typically 125 psi) must
be lower than the pressure rating of all other system components, which it is installed to protect.
The pressure relief valve is usually installed at the collector.
PRESSURE GAUGE
Is used in indirect systems to monitor pressure within the fluid loop. In both direct and
indirect systems, such gauges can readily indicate if a leak has occurred in the system
plumbing.
VACUUM BREAKER
Admits atmospheric pressure into system piping, which allows the system to drain. This
valve is usually located at the collector outlet plumbing but also may be installed anywhere
on the collector return line. The vacuum breaker ensures proper drainage of the collector
loop plumbing when it is either manually or automatically drained. A valve that incorporates
both air vent and vacuum breaker capabilities is also available.
ISOLATION VALVES
These valves are used to manually isolate various subsystems. Their primary use is to
isolate the collectors or other components before servicing.
DRAIN VALVES
Used to drain the collector loop, the storage tank and, in some systems, the heat exchanger
or drain-back reservoir. In indirect systems, they are also used as fill valves. The most
common drain valve is the standard boiler drain or hose bib.
CHECK VALVES
Allow fluid to flow in only one direction. In solar systems, these valves prevent
thermosiphoning action in the system plumbing. Without a check valve, water that cools in the
elevated (roof-mounted) collector at night will fall by gravity to the storage tank, displacing
lighter, warmer water out of the storage tank and up to the collector. Once begun, this
thermosiphoning action can continue all night, continuously cooling all the water in the tank. In
many cases, it may lead to the activation of the back-up-heating element, thereby causing the
system to lose even more energy.
FREEZE-PROTECTION VALVES
Are set to open at near freezing temperatures, and are installed on the collector return line in
a location close to where the line penetrates the roof.
Warm water bleeds through the collector and out this valve to protect the collector and pipes
from freezing. A spring-loaded thermostat or a bimetallic switch may control the valve.
TEMPERATURE GAUGES
Provide an indication of system fluid temperatures.
A temperature gauge at the top of the storage tank indicates the temperature of the hottest
water available for use.
Temperature wells installed at several points in the system will allow the use of a single
gauge in evaluating system operation.
Selecting a Solar Water Heating System
Investigate local codes, covenants, and regulations. 
Consider the economics of a solar water heating system.
 Evaluate the site’s solar resource.
Determine the correct system size.
Estimate and compare system costs.
Building Codes, Covenants, and Regulations for
Solar Water Heating Systems
 Before installing a solar water heating system, you should investigate local building
codes, zoning ordinances, and subdivision covenants, as well as any special regulations
pertaining to the site. A building permit will probably be required to install a solar energy
system onto an existing building.
 Not every community or municipality initially welcomes renewable energy installations.
Although this is often due to ignorance or the comparative novelty of renewable energy
systems, compliance with existing building and permit procedures to install a system is
unavoidable.
 The matter of building code and zoning compliance for a solar system installation is
typically a local issue. Even if a statewide building code is in effect, it's usually enforced
locally by the city, county, or parish. Common problems owners have encountered with
building codes include the following:
Exceeding roof load
Unacceptable heat exchangers
Improper wiring
Unlawful tampering with potable water supplies.
 Potential zoning issues include the following:
Obstructing sideyards
Erecting unlawful protrusions on roofs
Siting the system too close to streets or lot boundaries.
 Special area regulations—such as local community, subdivision, or
homeowner's association covenants—also demand compliance. These
covenants, historic district regulations, and flood-plain provisions can
easily be overlooked.
Building Codes, Covenants, and Regulations for
Solar Water Heating Systems Continued
Renewable Energy Funding Sources
The Database of State Incentives for Renewables & Efficiency (DSIRE) is
a comprehensive source of information on state, local, utility, and federal
incentives that promote renewable energy and energy efficiency. The
website is http://www.dsireusa.org.
Federal Level Funding
Federal Incentives for Renewable Energy
 U.S. Department of Treasury - Renewable Energy Grants
Eligible Renewable Technologies:
Solar Water Heating, Solar Space Heating, & Photovoltaic Systems
 Energy Efficient Mortgages
Federal Housing Authority (FHA) & Veterans Affairs (VA) programs
Eligible Renewable Technologies:
Solar Water Heating, Solar Space Heating, & Photovoltaic Systems
State Level Funding
State of Ohio Incentives for Renewable Energy
 Ohio Department of Development - Advanced Energy Program Grants
- Multi-Family Residential Solar Thermal Incentive
Eligible Renewable Technologies:
Solar Water Heating & Solar Space Heating Systems
Applicable Sectors: Multi-Family Residential, Low-Income Residential
 Ohio Department of Development - Advanced Energy Program Grants
- Non-Residential Renewable Energy
Eligible Renewable Technologies:
Solar Water Heating, Wind, & Photovoltaic Systems
Applicable Sectors: Commercial, Industrial, Nonprofit, Schools, Local
Government, State Government, Agricultural, Institutional
Site Assessment
Solar Path Finder
http://www.solarpathfinder.com
Collector Positioning
Flat-plate collectors for solar water heating are generally mounted on a building or the ground in a fixed
position at prescribed angles. The angle will vary according to geographic location, collector type and use of
the absorbed heat.
Since residential hot water demand is generally greater in the winter than in the summer, the collector
ideally should be positioned to maximize wintertime energy collection, receiving sunshine during the middle
six to eight daylight hours of each day. Minimize shading from other buildings, trees or other collectors. Plan
for lengthening winter shadows, as the sun's path changes significantly with the seasons.
Ideally, the collector should face directly south in the northern
hemisphere and directly north in the southern hemisphere.
However, facing the collector within 30° to 45° either east or west of due
south or north reduces performance by only about 10 percent.
A compass may be used to determine true south or north.
The closer to the equator, the less the need to maintain the orientation
and direction of the collector, but be aware of the seasonal position of
the sun in the sky and how it may affect the seasonal performance of
the system.
The optimum tilt angle for the collector is about the same as the site's
latitude plus or minus 15°. An inexpensive inclinometer will aid in
determining tilt angles. If collectors will be mounted on a sloped roof,
check the roof's inclination to determine whether the collectors should be
mounted parallel to the roof or at a different tilt. In general, collectors
should be mounted parallel to the plane of a sloped roof unless the
performance penalty is more than 30 percent. The mounted collector
should not detract from the appearance of the roof.
Total length of piping from collector to storage should not exceed 100
feet. The longer the pipe run, the greater the heat loss. If a greater length
is necessary, an increase in piping diameter or pump size may be
required.
If the collectors will be roof-mounted, they should not block drainage or
keep the roof surface from properly shedding rain. Water should not
gather or pool around roof penetrations. Roof curbs may be require.
To Estimate Shading of a Rooftop/Pole Mount on the Future Site
To Estimate Needed Pole Height to Avoid Shading
To Estimate How Much to Crop Tree to Avoid Shading
During the site visit, the assessor should provide:
 A basic analysis of the project’s energy needs.
 Recommendations for energy efficiency in order to reduce the 
size and cost of the proposed renewable energy system.
 Provide an evaluation of the renewable energy resource at the 
site.
 Information regarding the best place to site the solar system.
 Additionally, the assessor should follow‐up with a written report 
detailing the site assessment information.
Site Assessment Benefits
A renewable energy site assessment conducted by a certified 
assessor provides an opportunity to discuss with an experienced,
objective third party about the characteristics of the property and 
learn about a variety of equipment and options. 
A site assessment is essential when considering a solar project.
The site assessors report can be used to present a summary of 
information and options to decision makers for their approval.
Cost of a Renewable Energy Site Assessment
Certified assessors establish their own fees for their services.
On average, the full cost of an assessment is between $300 and 
$500.  The cost varies depending on the number of technologies 
being assessed and the complexity of the system, as well as the 
assessor’s travel costs.  
When arranging for a site assessment,  discuss with the assessor 
your  expectations  so  that  you  can  receive  an  accurate  cost 
estimate.
Sizing the Solar Hot Water Heating System
Just as you have to choose a 30‐, 40‐, or 50‐gallon conventional water heater, you 
need to determine the right size solar water heater to install. Sizing a solar water 
heater  involves  determining  the  total  collector  area  and  the  storage  volume 
required to provide 100% of your household's hot water during the summer. Solar‐
equipment experts use worksheets or special computer programs to assist you in 
determining how large a system you need.
Solar storage tanks are usually 50‐, 60‐, 80‐, or 120‐gallon capacity. A small (50 to 60 
gallon)  system  is  sufficient  for  1  to  3  people,  a  medium  (80‐gallon)  system  is 
adequate  for  a  3‐ or  4‐person  household,  and  a  large  (120‐gallon)  system  is 
appropriate for 4 to 6 people.
A rule of thumb for sizing collectors: allow about 20 square feet of collector area for 
each of the first two family members and 8 square feet for each additional family 
member if you live in the Sun Belt. Allow 12 to 14 additional square feet per person 
if you live in the northern United States.
Sizing the Solar Hot Water Heating System Continued
A ratio of at least 1.5 gallons of storage capacity to 1 square foot of collector area 
prevents the system from overheating when the demand for hot water is low. 
In very warm, sunny climates,  experts suggest that the ratio  should  be  at  least  2 
gallons of storage to 1 square foot of collector area. 
For example, a family of four in a northern climate would need between 64 and 68 
square feet of collector area and a 96‐ to 102‐gallon storage tank.
(This assumes 20 square feet of collector area for the first person, 20 for the second 
person, 12 to 14 for the third person, and 12 to 14 for the fourth person. 
This equals 64 to 68 square feet, multiplied by 1.5 gallons of storage capacity, which 
equals 96 to 102 gallons of storage.) 
Because you might not be able to find a 96‐gallon tank, you may want to get a 120‐
gallon tank to be sure to meet your hot water needs.
Resources
Analysis Tools
Preliminary  Screening: To  determine  if  a  project  is  a  possible 
candidate for solar hot water heating, try using the Federal Renewable 
Energy Screening Assistant (FRESA) software.  This is a windows based 
software tool which screens projects for economic feasibility.  It is able 
to  evaluate  many  renewable  technologies  including  solar  hot  water, 
photovoltaics, and wind.
Another  and  somewhat  more  detailed  screening  tool,  Retscreen,  is
provided  by  Natural  Resources  Canada.  Go  to 
http://www.retscreen.net/ to download the simulation software.
Resources Continued
 Analysis Tools
Detailed  Performance: Once  preliminary  viability  has  been  established,  it  will 
eventually be  necessary  to  evaluate  system  performance  to  generate  more  precise 
engineering data and economic analysis.  This can be accomplished based upon hourly 
simulation software or by hand correlation methods based on the results of hourly 
simulations.  Two software programs which are available include:
FCHART, a correlation method available from the University of Wisconsin.  Go to 
http://www.fchart.com/ to download the simulation software.
TRNSYS, software available from the University of Wisconsin.  Go to 
http://sel.me.wisc.edu/trnsys/ to download the simulation software.
FCHART can be used with the following:
Collector Types
Flat-Plates
Evacuated Types
Integral Collectors
System Types
Water Storage Heating
Building Storage Heating
Domestic Water Heating
Integral Collector-Storage DHW
Indoor and Outdoor Pool Heating
Features
Life-cycle economics with cash flow
Weather data for over 300 locations
Weather data can be added
Monthly parameter variation
2-D incidence angle modifiers
English and SI units
Approved for use in California
Versions for Mac, DOS, and Windows
F-Chart
Example Input
Parameter Input Screen for Flat-Plate Collector
F-Chart
Example Input
Parameter Input Screen for General Solar Heating System
F-Chart
Example Output
F-Chart
Example Output
Graphical Output Screen showing Solar vs. Month
Installation
Installation of the Solar Hot Water System
The proper installation of solar water heating systems depends on many 
factors.  
These factors include solar resource, climate, local building code requirements, 
and safety issues. 
Wind Loading
A mounted collector is exposed not only to sunlight and the rigors of ultraviolet light
but also to wind forces. For example, in parts of the world that are vulnerable to
hurricanes or extreme wind storms, the collector and its mounting structure need to
be able to withstand intermittent wind loads up to 146 miles per hour. This
corresponds to a pressure of about 75 pounds per square foot. Winds, and thermal
contraction and expansion may cause improperly installed bolts and roof seals to
loosen over time. As always, follow local code requirements for wind loading.
Example of a Collector mounted down from
roof ridge to reduce wind loading and heat losses
Roof Mounting Considerations
Do not mount collectors near the ridge of a roof or other places where the wind
load may be unusually high. The figure below shows a desirable location for a
roof-mounted collector. Mounting collectors parallel to the roof plane helps
reduce wind loads and heat loss.
Ground Mounting
In an alternative to roof mounting, the collector for a solar water
heating system may be mounted at ground level. The lower edge of
the collector should be at least one foot above the ground so it will
not be obstructed by vegetation or soaked by standing water.
Example of a Rack-mounted collector
Roof Mounted Collectors
There are four ways to mount flat-plate collectors on roofs:
1. Rack Mounting. This method is used on homes with flat roofs. Collectors are
mounted at the prescribed angle on a structural frame. The structural connection
between the collector and frame and between the frame and building, or site must
be adequate to resist maximum potential wind loads.
Example of a Standoff-mounted collector
2. Standoff Mounting. Standoffs separate the collector from the finished roof
surface; they allow air and rainwater to pass under the collector and minimize
problems of mildew and water retention. Standoffs must have adequate
structural properties. They are sometimes used to support collectors at slopes
that differ from that of the roof angle. This is the most common mounting
method used.
Example of a Direct- or flush-mounted collector
3. Direct Mounting. Collectors can be mounted directly on the roof
surface. Generally, they are placed on a waterproof membrane covering
the roof sheathing. Then the finished roof surface, the collector's structural
attachments, and waterproof flashing are built up around the collector. A
weatherproof seal must be maintained between the collector and the roof
to avoid leaks, mildew and rotting.
Example of an Integral-mounted collector
4. Integral Mounting. Integral mounting places the collector within the roof
construction itself. The collector is attached to and supported by the structural
framing members. The top of the collector serves as the finished roof surface.
Weather tightness is crucial in avoiding water damage and mildew. Only collectors
designed by the manufacturer to be integrated into the roof should be installed as the
water/moisture barrier of buildings. The roofing materials and solar collectors expand
and contract at different rates and have the potential for leaks. A well sealed flashing
material allows the expansion and contraction of the materials to maintain a water
seal.
Roof Work Considerations
The most demanding aspects of installing roof-mounted collectors are
the actual mounting and roof penetrations. Standards and codes are
sometimes ambiguous about what can and cannot be done to a roof.
Always follow accepted roofing practices, be familiar with local building
codes, and communicate with the local building inspector. These are
prime roof work considerations:
1. Perform the installation in a safe manner.
2. Take precautions to avoid (or minimize) damage to the roof area.
3. Position collectors for the maximum performance compatible with
acceptable mounting practices.
4. Seal and flash pipe and sensor penetrations in accordance with good
roofing practices. Use permanent sealants such as silicone, urethane or
butyl rubber.
5. Locate collectors so they are accessible for needed maintenance.
Maintenance
Maintenance
Regular  maintenance  on  simple  systems  can  be  as  infrequent  as  every  3‐5 
years, preferably by a qualified contractor with experience and knowledge of 
solar hot water heating systems.  Systems with electrical components usually 
require a replacement part or two after 10 years.
Corrosion and Scaling in Solar Water Heating Systems
The two major factors affecting the performance of properly sited and installed solar 
water heating systems include scaling and corrosion.
Corrosion
Most  well‐designed  solar  systems  experience  minimal  corrosion.  When  they  do,  it  is 
usually  galvanic  corrosion,  an  electrolytic  process  caused  by  two  dissimilar  metals 
coming into contact with each other. One metal has a stronger positive electrical charge 
and pulls electrons from the other, causing one of the metals to corrode. 
The  heat‐transfer  fluid  in  some  solar  energy  systems  sometimes  provides  the  bridge 
over which this exchange of electrons occurs.
Oxygen  entering  into  an  open  loop  solar  system  will  cause  rust  in  any  iron  or  steel 
component.  Such  systems  should  have  copper,  bronze,  brass,  stainless  steel,  plastic, 
rubber components in the plumbing loop, and plastic or glass lined storage tanks.
Scaling
Domestic water that is high in mineral content ("hard water") may cause the buildup or 
scaling  of  mineral  (calcium)  deposits  in  solar  heating  systems.  Scale  buildup  reduces 
system performance in a number of ways. If the system uses domestic water as the heat 
transfer fluid, scaling can occur in the collector, distribution piping, and heat exchanger. 
In systems that use other types of heat‐transfer fluids (such as glycol), scaling can occur 
on the surface of the heat exchanger that transfers heat from the solar collector to the 
domestic water. Scaling may also cause valve and pump failures on the domestic water 
loop.
Scaling  can  be  avoided  by  using  a  water  softener(s)  or  by  circulating  a  mild  acidic 
solution (such as vinegar) through the collector or domestic water loop every 3–5 years, 
or as necessary depending on water conditions. 
There may be the need to carefully clean heat exchanger surfaces with medium‐grain 
sandpaper.  A  "wrap‐around"  external  heat  exchanger  is  an  alternative  to  a  heat 
exchanger located inside a storage tank.
Periodic Inspection List
The following are some suggested inspections of solar system components.
Collector shading
Visually check for shading of the collectors during the day (mid‐morning, noon, 
and  mid‐afternoon)  on  an  annual  basis.  Shading  can  greatly  affect  the 
performance  of  solar  collectors.  Vegetation  growth  over  time  or  new 
construction  on  the  building  or  adjacent  property  may  produce  shading  that 
wasn't there when the collector(s) were installed. 
Collector soiling
Dusty  or  soiled  collectors  will  perform  poorly.  Periodic  cleaning  may  be 
necessary in dry, dusty climates. 
Collector glazing and seals
Look  for  cracks  in  the  collector  glazing,  and  check  to  see  if  seals  are  in  good 
condition. Plastic glazing, if excessively yellowed, may need to be replaced.
Piping and wiring connections
Look for fluid leaks at pipe connections. All wiring connections should be tight.
Piping and wiring insulation
Look for damage or degradation of insulation covering pipes and wiring.
Roof penetrations
Flashing and sealant around roof penetrations should be in good condition.
Support structures
Check all nuts and bolts attaching the collectors to any support structures for 
tightness.
Pressure relief valve (on liquid solar heating collectors)
Make sure the valve is not stuck open or closed.
Pumps
Verify that distribution pump(s) are operating. Check to see if they come on 
when the sun is shining on the collectors after mid‐morning. If the pump is 
not operating, then either the controller or pump has malfunctioned.
Heat transfer fluids
Antifreeze  solutions  in  solar  heating  collectors  need  to  be  replaced 
periodically.  If  water  with  a  high  mineral  content  (i.e.,  hard  water)  is 
circulated  in  the  collectors,  mineral  buildup  in  the  piping  may  need  to  be 
removed by adding a de‐scaling or mild acidic solution to the water  every 
few years.
Storage systems
Check storage tanks, etc., for cracks, leaks, rust, or other signs of corrosion.
Manufacturers
 ACR Solar International Corporation http://www.solarroofs.com
 FAFCO, Inc. http://www.fafco.com
 Velux America http://www.veluxusa.com
 Heliodyne, Inc. http://www.heliodyne.com
 Silicon Solar Inc. http://sunmaxxsolar.com
 Solarhart http://www.solarhart.com
 SunEarth, Inc. http://www.sunearthinc.com
 Solene, LLC http://www.solene‐usa.com
 Thermo Technologies http://www.thermomax.com
Trade Associations
 American Solar Energy Society (ASES) http://www.ases.org
 Florida Solar Energy Center (FSEC)  http://www.fsec.ucf.edu
 Solar Energy Industries Association (SEIA) http://www.seia.org
 Solar Rating & Certification Corporation (SRCC) http://www.solar‐rating.org
About the American Solar Energy Society
Established in 1954, the American Solar Energy Society (ASES)
is the nonprofit organization dedicated to increasing the use of
solar energy, energy efficiency, and other sustainable
technologies in the United States
About the Florida Solar Energy Center
The Florida Solar Energy Center (FSEC) was created by the Florida
Legislature in 1975 to serve as the state’s energy research institute.
The main responsibilities of the center are to conduct research, test
and certify solar systems and develop education programs.
About the Solar Energy Industries Association
Founded in 1974, the Solar Energy Industries Association (SEIA) is
the leading national trade association for the solar energy industry.
The mission of the Solar Energy Industries Association is to expand
markets, strengthen research and development, remove market
barriers and improve education and outreach for solar energy
professionals.
About the Solar Rating and Certification Corporation
In 1980 the Solar Rating and Certification Corporation
(SRCC) was incorporated as a non-profit organization
whose primary purpose is the development and
implementation of certification programs and national rating
standards for solar energy equipment.
The End

More Related Content

What's hot

Hydro power plants and solar cooker
Hydro power plants and solar cookerHydro power plants and solar cooker
Hydro power plants and solar cookerManaal Shams
 
Chapter 2 solar energy 2021 part 1
Chapter 2 solar energy 2021 part 1Chapter 2 solar energy 2021 part 1
Chapter 2 solar energy 2021 part 1Prof . Ghada Amer
 
Solar Refergerator
Solar RefergeratorSolar Refergerator
Solar RefergeratorKushal Shah
 
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)Asian Paint Bangladesh Ltd
 
Know about solar thermal energy
Know about solar thermal energyKnow about solar thermal energy
Know about solar thermal energyRachel Pinhard
 
Solar Thermal Energy By Trigg Ruehle
Solar Thermal Energy By Trigg Ruehle Solar Thermal Energy By Trigg Ruehle
Solar Thermal Energy By Trigg Ruehle Trigg Ruehle
 
How Can We Save Energy? - by Damian Flori
How Can We Save Energy? - by Damian FloriHow Can We Save Energy? - by Damian Flori
How Can We Save Energy? - by Damian FloriIoana Stancut
 
How Can We Save Energy? - by Raluca Andronoiu
How Can We Save Energy? - by Raluca Andronoiu How Can We Save Energy? - by Raluca Andronoiu
How Can We Save Energy? - by Raluca Andronoiu Ioana Stancut
 
Solar Thermal Energy Isabel
Solar Thermal Energy IsabelSolar Thermal Energy Isabel
Solar Thermal Energy IsabelRosalmara
 
Solar power agriculture
Solar power agricultureSolar power agriculture
Solar power agricultureSunworks
 
Solar power 2019
Solar power 2019Solar power 2019
Solar power 2019ahmed zandi
 
Km89 dc powered solar cooler cum thermal fridge (wecompress)
Km89 dc powered solar cooler  cum thermal fridge (wecompress)Km89 dc powered solar cooler  cum thermal fridge (wecompress)
Km89 dc powered solar cooler cum thermal fridge (wecompress)1000kv technologies
 
Lect. no. 4 solar energy.
Lect. no. 4  solar energy.Lect. no. 4  solar energy.
Lect. no. 4 solar energy.NIDHIKUMARI177
 
Solar energy collectors
Solar energy collectorsSolar energy collectors
Solar energy collectorsKanav Sinhmar
 

What's hot (20)

Hydro power plants and solar cooker
Hydro power plants and solar cookerHydro power plants and solar cooker
Hydro power plants and solar cooker
 
Solar energy
Solar energy Solar energy
Solar energy
 
Chapter 2 solar energy 2021 part 1
Chapter 2 solar energy 2021 part 1Chapter 2 solar energy 2021 part 1
Chapter 2 solar energy 2021 part 1
 
Solar Refergerator
Solar RefergeratorSolar Refergerator
Solar Refergerator
 
Active solar energy
Active solar energyActive solar energy
Active solar energy
 
Solar pond
Solar pondSolar pond
Solar pond
 
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)
Solar energy presentation(sayef amin 01924122222/01614122222/04475122222)
 
Know about solar thermal energy
Know about solar thermal energyKnow about solar thermal energy
Know about solar thermal energy
 
Solar Thermal Energy By Trigg Ruehle
Solar Thermal Energy By Trigg Ruehle Solar Thermal Energy By Trigg Ruehle
Solar Thermal Energy By Trigg Ruehle
 
How Can We Save Energy? - by Damian Flori
How Can We Save Energy? - by Damian FloriHow Can We Save Energy? - by Damian Flori
How Can We Save Energy? - by Damian Flori
 
How Can We Save Energy? - by Raluca Andronoiu
How Can We Save Energy? - by Raluca Andronoiu How Can We Save Energy? - by Raluca Andronoiu
How Can We Save Energy? - by Raluca Andronoiu
 
Solar Thermal Energy Isabel
Solar Thermal Energy IsabelSolar Thermal Energy Isabel
Solar Thermal Energy Isabel
 
Alternative source of energy
Alternative source of energyAlternative source of energy
Alternative source of energy
 
Solar power agriculture
Solar power agricultureSolar power agriculture
Solar power agriculture
 
3 chapter 3 solar energy
3 chapter 3 solar energy 3 chapter 3 solar energy
3 chapter 3 solar energy
 
Solar power 2019
Solar power 2019Solar power 2019
Solar power 2019
 
Solar Energy Simplified
Solar Energy SimplifiedSolar Energy Simplified
Solar Energy Simplified
 
Km89 dc powered solar cooler cum thermal fridge (wecompress)
Km89 dc powered solar cooler  cum thermal fridge (wecompress)Km89 dc powered solar cooler  cum thermal fridge (wecompress)
Km89 dc powered solar cooler cum thermal fridge (wecompress)
 
Lect. no. 4 solar energy.
Lect. no. 4  solar energy.Lect. no. 4  solar energy.
Lect. no. 4 solar energy.
 
Solar energy collectors
Solar energy collectorsSolar energy collectors
Solar energy collectors
 

Similar to Solar Domestic Hot Water Systems History Benefits

Ess 116 Group Teaching Project Chapt 14
Ess 116 Group Teaching Project Chapt 14Ess 116 Group Teaching Project Chapt 14
Ess 116 Group Teaching Project Chapt 14Beth Theve
 
solar energy--the ultimate renewable resource
  solar energy--the ultimate  renewable resource  solar energy--the ultimate  renewable resource
solar energy--the ultimate renewable resourceGhassan Hadi
 
Solar Water Heater System
Solar Water Heater	SystemSolar Water Heater	System
Solar Water Heater SystemOwais Ahmad
 
Solar energy
Solar energySolar energy
Solar energySAMJESUS1
 
Solar-Energy-ppt.pptx
Solar-Energy-ppt.pptxSolar-Energy-ppt.pptx
Solar-Energy-ppt.pptxSumanPatra77
 
5 Reasons Your Home Should Have a Solar Water Heater
5 Reasons Your Home Should Have a Solar Water Heater5 Reasons Your Home Should Have a Solar Water Heater
5 Reasons Your Home Should Have a Solar Water HeaterEnerQuip Solar
 
Alternate Energy Sources
Alternate Energy SourcesAlternate Energy Sources
Alternate Energy SourcesUmer Khayam
 
Performance of solar water heater in akure, nigeria
Performance of solar water heater in akure, nigeriaPerformance of solar water heater in akure, nigeria
Performance of solar water heater in akure, nigeriaAlexander Decker
 

Similar to Solar Domestic Hot Water Systems History Benefits (20)

ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
Energy sources
Energy sourcesEnergy sources
Energy sources
 
Ess 116 Group Teaching Project Chapt 14
Ess 116 Group Teaching Project Chapt 14Ess 116 Group Teaching Project Chapt 14
Ess 116 Group Teaching Project Chapt 14
 
Presentation dubai REV2
Presentation dubai REV2Presentation dubai REV2
Presentation dubai REV2
 
Intbusiness
IntbusinessIntbusiness
Intbusiness
 
solar energy--the ultimate renewable resource
  solar energy--the ultimate  renewable resource  solar energy--the ultimate  renewable resource
solar energy--the ultimate renewable resource
 
Solar Water Heater System
Solar Water Heater	SystemSolar Water Heater	System
Solar Water Heater System
 
Alternate energysources
Alternate energysourcesAlternate energysources
Alternate energysources
 
Hitesh renuwel
Hitesh renuwelHitesh renuwel
Hitesh renuwel
 
Solar energy
Solar energySolar energy
Solar energy
 
Solar-Energy-ppt.pptx
Solar-Energy-ppt.pptxSolar-Energy-ppt.pptx
Solar-Energy-ppt.pptx
 
5 Reasons Your Home Should Have a Solar Water Heater
5 Reasons Your Home Should Have a Solar Water Heater5 Reasons Your Home Should Have a Solar Water Heater
5 Reasons Your Home Should Have a Solar Water Heater
 
sources of energy.
sources of energy.sources of energy.
sources of energy.
 
Sources of energy.
Sources of energy.Sources of energy.
Sources of energy.
 
140120119168 2181910
140120119168 2181910140120119168 2181910
140120119168 2181910
 
Alternate Energy Sources
Alternate Energy SourcesAlternate Energy Sources
Alternate Energy Sources
 
solar energy
solar energysolar energy
solar energy
 
Energy Resources
Energy ResourcesEnergy Resources
Energy Resources
 
Intbusiness
IntbusinessIntbusiness
Intbusiness
 
Performance of solar water heater in akure, nigeria
Performance of solar water heater in akure, nigeriaPerformance of solar water heater in akure, nigeria
Performance of solar water heater in akure, nigeria
 

More from H Janardan Prabhu (20)

Vishal Desh Federation
Vishal Desh FederationVishal Desh Federation
Vishal Desh Federation
 
Way of Peace
Way of PeaceWay of Peace
Way of Peace
 
Peace of mind
Peace of mindPeace of mind
Peace of mind
 
Solar PV Energy Principles
Solar PV Energy PrinciplesSolar PV Energy Principles
Solar PV Energy Principles
 
Coal gasify
Coal gasifyCoal gasify
Coal gasify
 
Petro refinery basics
Petro refinery basicsPetro refinery basics
Petro refinery basics
 
Renewable Energy
Renewable EnergyRenewable Energy
Renewable Energy
 
Future is not ours to see
Future is not ours to seeFuture is not ours to see
Future is not ours to see
 
Bihar Jano
Bihar JanoBihar Jano
Bihar Jano
 
Bihaar katha
Bihaar kathaBihaar katha
Bihaar katha
 
Mahaan Bharath Hamara
Mahaan Bharath HamaraMahaan Bharath Hamara
Mahaan Bharath Hamara
 
ABCs of Desalting of water to recover water as well as salt.
ABCs of Desalting of water to recover water as well as salt.ABCs of Desalting of water to recover water as well as salt.
ABCs of Desalting of water to recover water as well as salt.
 
Apna bharath
Apna bharathApna bharath
Apna bharath
 
India now
India nowIndia now
India now
 
History of World literature1
History of  World literature1History of  World literature1
History of World literature1
 
ENG LIT H-A-Beers
ENG LIT H-A-BeersENG LIT H-A-Beers
ENG LIT H-A-Beers
 
Remedy for Ganga Pollution 2017
Remedy for Ganga Pollution 2017Remedy for Ganga Pollution 2017
Remedy for Ganga Pollution 2017
 
Ganga Work - Namami Gange
Ganga Work - Namami GangeGanga Work - Namami Gange
Ganga Work - Namami Gange
 
Ganga Rejuvenate Project - 2016
Ganga Rejuvenate Project - 2016Ganga Rejuvenate Project - 2016
Ganga Rejuvenate Project - 2016
 
Ganga Action Plan - A 2007 Review
Ganga Action Plan - A 2007 Review Ganga Action Plan - A 2007 Review
Ganga Action Plan - A 2007 Review
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 

Recently uploaded (20)

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 

Solar Domestic Hot Water Systems History Benefits