Ocean Going Salvage Vessel
A 10,570 BHP Salvage Vessel Preliminary Design by:
Sea Tools Engineering
Prepared By:
Daniel Place - Alex Donaldson - Marc Woolliscroft - Jacob Trithart
Undergraduate Students, Department of Naval Architecture and Marine Engineering
The University of Michigan
Prepared For:
Matthew Collette
Professor, Department of Naval Architecture and Marine Engineering
Administrator
Administrator, U.S. Maritime Administration
Capt. Lawson Brigham, USCG (Ret), PhD
Deputy Director, U.S. Arctic Research Commission
Mr. R. Keith Michel
President, Society of Naval Architects and Marine Engineers
Mr. Ronald Kiss
Past President, Webb Institute
Pradeep Nayyar
Program Manager, Maritime Administration, U.S. Department of Transportation
Project Due Date:
April 21, 2010
2
Table of Contents
List of Tables.................................................................................................................................. 4
List of Figures ................................................................................................................................ 6
1.0 – Executive Summary............................................................................................................... 7
2.0 – Technical Summary ............................................................................................................... 9
2.1 – Introduction........................................................................................................................ 9
2.2 - Requirements...................................................................................................................... 9
2.3 – Principal Characteristics .................................................................................................... 9
2.4 – Hull Selection................................................................................................................... 10
2.5 – General Arrangements ..................................................................................................... 10
2.6 – Engine Selection .............................................................................................................. 11
2.7 – Generator Selection.......................................................................................................... 11
2.8 – Propulsion Design............................................................................................................ 12
2.9 – Weights Estimation.......................................................................................................... 12
2.10 – Floodable Length ........................................................................................................... 12
2.11 – Damage Stability............................................................................................................ 13
2.12 – Midship Analysis ........................................................................................................... 13
2.13 – Seakeeping Analysis...................................................................................................... 13
2.14 – Maneuvering Analysis ................................................................................................... 14
2.15 – Conclusion ..................................................................................................................... 14
3.0 – Introduction.......................................................................................................................... 15
3.1 – Requirements ................................................................................................................... 15
3.2 – Principal Characteristics .................................................................................................. 15
4.0 – Hull Form Design ................................................................................................................ 16
4.1 – Initial Point Design .......................................................................................................... 16
4.2 –Hull Selection and Optimization....................................................................................... 16
4.3 – Lines Drawing.................................................................................................................. 17
5.0 – Capabilities .......................................................................................................................... 19
5.1 – Salvage............................................................................................................................. 19
5.2 – Towing............................................................................................................................. 19
5.3 – Fire Fighting..................................................................................................................... 19
5.4 – Oil Recovery.................................................................................................................... 20
6.0 – General Arrangements ......................................................................................................... 21
6.1 – Bulkhead Placement......................................................................................................... 21
6.2 – Floodable Length ............................................................................................................. 22
6.3 Deck House......................................................................................................................... 22
7.0 – Propulsion and Powering..................................................................................................... 25
7.1 – Resistance ........................................................................................................................ 25
7.2 – Prime Mover Selection .................................................................................................... 26
7.2.1 – Initial Point Design and Selection............................................................................. 26
7.2.2 – Analysis of Selected Engines.................................................................................... 26
7.3 – Propulsion Design............................................................................................................ 28
7.4 – Towing and Bollard Pull.................................................................................................. 30
7.5 – Electrical Power Estimation............................................................................................. 31
7.6 – Generator Selection.......................................................................................................... 31
7.7 – One Line Diagram............................................................................................................ 31
8.0 – Intact and Damage Stability................................................................................................. 33
3
8.1 – Intact Stability.................................................................................................................. 33
8.1.1 – U.S. Coast Guard Wind Heel Requirements............................................................. 33
8.1.2 – Towing Stability Criteria .......................................................................................... 33
8.1.3 – Topside Icing ............................................................................................................ 33
8.1.4 – Cross Curves of Stability.......................................................................................... 34
8.1.5 – Bonjean Curves......................................................................................................... 34
8.2 – Damaged Stability............................................................................................................ 35
9.0 – Midship Analysis ................................................................................................................. 37
9.1 – ABS Regulations.............................................................................................................. 37
9.2 – Moment and Shear Diagram ............................................................................................ 37
9.3 – Midship Analysis ............................................................................................................. 38
10.0 Structural Analysis................................................................................................................ 39
10.1 Ice Strengthened Regions ................................................................................................. 39
10.2 Framing............................................................................................................................. 40
11.0 – Maneuvering Analysis ....................................................................................................... 42
11.1 – Initial Sizing................................................................................................................... 42
11.2 – Maneuvering Prediction Program.................................................................................. 42
11.3 – Bow Thruster ................................................................................................................. 42
12.0 – Seakeeping Analysis.......................................................................................................... 44
12.1 – Seakeeper Results .......................................................................................................... 44
12.2 – Natural Periods............................................................................................................... 47
12.3 – Working Condition Analysis ......................................................................................... 47
13.0 – Fleet Justification............................................................................................................... 49
14.0 Economic Analysis ............................................................................................................... 51
15.0 – Recommendations for Future Work................................................................................... 55
16.0 – Conclusion ......................................................................................................................... 56
Appendix A – Lines Drawing....................................................................................................... 57
Appendix B – Outboard & Inboard Profiles................................................................................. 58
Appendix C – General Arrangements........................................................................................... 59
Appendix D – Propeller Geometry ............................................................................................... 60
Appendix E – Structural Drawings............................................................................................... 61
Appendix F – Powering Specifications......................................................................................... 62
Appendix G – Machinery Specifications...................................................................................... 63
Appendix H – Maneuvering.......................................................................................................... 64
Appendix I – Floodable Length.................................................................................................... 65
Appendix J – Intact Stability......................................................................................................... 66
Appendix K – Damaged Stability................................................................................................. 67
Appendix L – Seakeeping Results ................................................................................................ 68
Appendix M – Structural Calculations ......................................................................................... 69
4
List of Tables
Table 1 – Principal Characteristics ................................................................................................. 7
Table 2 – General Engine Characteristics....................................................................................... 8
Table 3 – Propeller Characteristics................................................................................................. 8
Table 4 – Principal Characteristics ............................................................................................... 10
Table 5 – Engine Characteristics .................................................................................................. 11
Table 6 – Generator Characteristics.............................................................................................. 11
Table 7 – Propeller Optimization Characteristics......................................................................... 12
Table 8 – Intact Stability at Four Loading Conditions ................................................................. 12
Table 9 – Midship Analysis.......................................................................................................... 13
Table 10 – Seakeeping Analysis................................................................................................... 14
Table 11 – Maneuvering Analysis ................................................................................................ 14
Table 12 – Client Requirements ................................................................................................... 15
Table 13 – Principal Characteristics ............................................................................................. 15
Table 14 – Regression Analysis Results....................................................................................... 16
Table 15 – Principal Dimensions and Hydrostatics...................................................................... 17
Table 16 – Station Spacing ........................................................................................................... 18
Table 17 – Salvage Characteristics............................................................................................... 19
Table 18 – Firefighting Characteristics......................................................................................... 20
Table 19 – Bulkhead Locations .................................................................................................... 21
Table 20 - Deckhouse Accommodations...................................................................................... 23
Table 21 - Percentage of Total Drag............................................................................................. 25
Table 22 – 8 Cylinder Engine Characteristics .............................................................................. 27
Table 23 – 16 Cylinder Engine Characteristics ............................................................................ 27
Table 24 – Propeller Characteristics............................................................................................. 28
Table 25 – Generator Characteristics............................................................................................ 31
Table 26 - MARAD Design Letter 3 Damaged Stability Criterion.............................................. 35
Table 27 – Damage Stability Results............................................................................................ 36
Table 28 – ABS Longitudinal Strength Calculations ................................................................... 37
Table 29 - Maximum Bending Moments...................................................................................... 37
Table 30 – Midship Section Strength Properties .......................................................................... 38
Table 32 – Ice Belt Definitions..................................................................................................... 39
Table 31 – Plating Thicknesses..................................................................................................... 39
Table 33 – Required and Actual Section Moduli.......................................................................... 40
Table 34 – Stiffener Sizing ........................................................................................................... 40
Table 35 – Maneuvering Analysis ................................................................................................ 42
Table 36 - North Pacific Sea State Characteristics ....................................................................... 44
Table 37 - Natural Periods............................................................................................................ 47
Table 38 - Worst Cast MII Results ............................................................................................... 47
Table 39 – MII Risk Levels .......................................................................................................... 48
Table 40 - Incidents near the Aleutian Island ............................................................................... 49
Table 41 - Crew Cost Breakdown................................................................................................. 51
Table 42 - Build Cost Breakdown ................................................................................................ 51
Table 43 - Operational Cost Breakdown ...................................................................................... 51
Table 44 - 15 Year Expense Summary ......................................................................................... 51
Table 45 - Salvage Revenue ......................................................................................................... 52
5
Table 46 - Specific Fuel Consumption ......................................................................................... 52
Table 47 - Average Fuel Prices..................................................................................................... 52
Table 48 - Dutch Harbor Fuel Cost............................................................................................... 53
Table 49 - Seattle Fuel Cost.......................................................................................................... 53
Table 50 - Juneau Fuel Cost.......................................................................................................... 53
Table 51 - Required Returns......................................................................................................... 53
Table 52 - Towing Summary........................................................................................................ 54
Table 53 - Required Freight Rate.................................................................................................. 54
6
List of Figures
Figure 1 – Lines Drawing ............................................................................................................. 10
Figure 2 – Inboard Profile............................................................................................................. 11
Figure 3 – Floodable Length Diagram.......................................................................................... 13
Figure 4 - Double Hard Chine Hull Form – LOA = 44.2 m......................................................... 17
Figure 5 - Faired Hull Form –....................................................................................................... 17
Figure 6 - Fire Monitor Location.................................................................................................. 20
Figure 7 - Interior General Arrangements .................................................................................... 21
Figure 8 – Bulkhead Placement.................................................................................................... 21
Figure 9 – Floodable Length Analysis.......................................................................................... 22
Figure 10 – Propulsion System Rendering ................................................................................... 25
Figure 11 - Total Resistance and Delivered Thrust versus Speed ................................................ 26
Figure 12 - Engine Layout Rendering .......................................................................................... 28
Figure 13 - Propeller and Kort Nozzles........................................................................................ 29
Figure 14 - Cavitation versus Vessel Speed ................................................................................. 29
Figure 15 - Propeller Coefficients versus Vessel Speed............................................................... 30
Figure 16 - 12,000 mt Barge (380' x 100') with 11' Draft............................................................. 31
Figure 17 - One-Line Diagram ..................................................................................................... 32
Figure 18 - Towline Pull Criterion................................................................................................ 33
Figure 19 – GZ Curves ................................................................................................................. 34
Figure 20 – Bonjean Curves ......................................................................................................... 35
Figure 21 – Load Distribution for the Full Load Condition ......................................................... 38
Figure 22 - Bow Thruster Regression........................................................................................... 43
Figure 23 - 16 kn RAO, 0º............................................................................................................ 44
Figure 24 - 16 kn RAO, 30º.......................................................................................................... 44
Figure 25 - 16 kn RAO, 90º.......................................................................................................... 45
Figure 26 - 16 kn RAO, 140º........................................................................................................ 45
Figure 27 - 16 kn RAO, 180º........................................................................................................ 45
Figure 28 - Heave Response ......................................................................................................... 46
Figure 29 - Roll Response............................................................................................................. 46
Figure 30 - Pitch Response ........................................................................................................... 46
Figure 31 - Critical MII Locations................................................................................................ 47
Figure 32 - Tug Fleet Locations.................................................................................................... 50
7
1.0 – Executive Summary
The Maritime Administration (the Agency) and the Society for Naval Architects and Marine
Engineers (SNAME) have expressed a strong need for the capabilities of a 10,000 horsepower
ocean going salvage tug in the proximity of the Aleutian Islands. It was the task of Sea Tools
Engineering to develop a preliminary design for such a tug. The initial requirements set forth by
the Agency and SNAME included a minimum 10,000 hp installed power, ice strengthened for
operation in and around the Aleutian Islands, and commercial operations, other than salvage,
which would break even on the vessel’s operating cost and amortize the build cost after 15 years.
The vessel was also to have a region of operation that would allow efficient response to salvage
missions and operate in a safe, secure, and environmentally responsible manner.
Sea Tools Engineering has successfully designed a tug as desired by the Agency and SNAME.
The tug will be United States flagged and therefore comply with the American Bureau of
Shipping (ABS) classification rules, United States Coast Guard requirements, and the Code of
Federal Regulations. The Sea Tools tug satisfies all of the client requirements, exceeds
classification standards, and has several unique features which make it a feasible choice for
deployment in the Aleutian Islands. The principal dimensions for the tug were determined via a
regression analysis of similar existing ocean going salvage tugs. Unique and important features
of the tug include Fire Fighting II classification, oil recovery capabilities, safe conditions for the
crew to pilot the vessel and operate the winch in sea state six, and a variable propulsion system
that reduces fuel consumption if full power be unnecessary. An overview of the principal
characteristics for the Sea Tools design is listed in Table 1.
LOA (m) 66.8
LWL (m) 65.6
B (m) 15.0
D (m) 7.49
T (m) 5.63
C 0.52B
Design Speed (kn) 16
Displacement (MT) 2941
Endurance (nm) 2640
Installed Power (kW) 7882
Bollard Pull (tons-force) 129.7
Crew Capacity 30
Cost (millions USD) 26.8
Table 1 – Principal Characteristics
The floodable length and damaged stability characteristics of the Sea Tools tug are outstanding
and will survive a head on collision resulting in failure of the collision bulkhead. The powering
analysis and propeller optimization determined the tug has exceptional bollard pull and minimal
cavitation during the bollard pull condition. Powering characteristics are presented in Table 2
and propeller characteristics are presented in Table 3.
8
MCREngine 7,882 kW (10,570 BHP) @ 800 rpm(kW)
Engines 4
Brand ElectroMotive
Models EMD 8-710GC-T2 and EMD 16-710GC-T2
Table 2 – General Engine Characteristics
Characteristic Value
Quantity 2
DP 4.0 m
P controllable
AE/AO 0.85
RPM 188 rpm
Maximum Efficiency 46 %
Table 3 – Propeller Characteristics
The tug is economically viable and will break even after 15 years of operation. This will be
accomplished by performing towing operations between Seattle and Juneau in addition to
salvage missions. A fleet of three vessels will be utilized which will leave at least one tug on call
at all times for salvage missions. Each Sea Tools tug will require a crew of 12 and is prepared to
house 18 additional salvors. Each sailor has ample room in the deckhouse and will be
comfortable when performing extended length salvage missions.
This report is a preliminary design and contains details of the hull design and optimization,
propeller optimization and selection, weight estimation and weight centers, powering
calculations, damaged stability, structures, maneuvering and seakeeping predictions, and
economic analysis.
9
2.0 – Technical Summary
A summary of the technical aspects of the report are summarized in this section.
2.1 – Introduction
It has been indicated by the Society of Naval Architects and Marine Engineers, as well as the
United States Maritime Administration, that there is currently a strong need for powerful, 10,000
BHP, ocean going salvage vessels in and around the Aleutian Islands and Gulf of Alaska.
Because of this need, these organizations have put forth a design competition, in which we have
partaken, in order to fulfill this design need. Our preliminary design not only fulfills all
necessary salvage operations, but also implements several other commercial applications in order
pay for the costs of the vessel over a 15 year period. The remaining details of our vessel design
are presented in this report. Details include principal dimensions, hull regression and selection,
general arrangement, prime mover and machinery selections, propulsion design, weight and
centers estimation, ship intact and damage stability, floodable length, structural analysis of the
midship section, a seakeeping analysis, and a maneuvering estimation.
2.2 - Requirements
The requirements which governed the design of our vessel are listed below.
MARAD and SNAME Design Competition Requirements
• Location: Aleutian Islands Chain & Arctic Waters
• Power: Minimum of 10,000 HP (7,457 kW) installed
• Structure: Ice strengthened for Arctic waters
• Economic: Commercial applications other than salvaging
Break even with costs after 15 years of continuous operation
• Response: Fast response time from doing other commercial applications
• Operation: Safe, secure and environmentally responsible
Designer Specified Requirements
• Seakeeping: Operate safely in conditions up to sea state six
2.3 – Principal Characteristics
The principal dimensions for the salvage vessel were determined via a regression analysis of
similar existing containerships and iterated until the best solution was found. Developing a brand
new hull form can be a very expensive process and unnecessary if many similar vessels have
been previously contracted. Initial dimensions for the Sea Tools tug hull form were found
through a regression analysis of 28 previously constructed ocean going salvage tugs of similar
power and capabilities. Principal characteristics are listed in Table 4.
10
LOA (m) 66.8
LWL (m) 65.6
B (m) 15.0
D (m) 7.49
T (m) 5.63
C 0.52B
Design Speed (kn) 16
Displacement (MT) 2941
Endurance (nm) 2640
Installed Power (kW) 7882
Bollard Pull 129.7
Table 4 – Principal Characteristics
2.4 – Hull Selection
Maxsurf was utilized to digitize an existing body plan and lines drawing of a hard chine hull
form and parametrically transformed to the target dimensions found from the regression analysis.
The lines drawing for the salvage vessel can be found in Figure 1.
Figure 1 – Lines Drawing
2.5 – General Arrangements
The general arrangements for the salvage vessel were modeled in Rhinoceros NERBs software
and AutoCAD. The inboard profile arrangement can be seen in Figure 2.
11
Figure 2 – Inboard Profile
2.6 – Engine Selection
The selection of the engines to be installed aboard the salvage vessel was based on rigorous
research of similar existing vessels and research done on several manufacturers. It was
determined, based on this research, that ElectroMotive diesel engines would be installed aboard
the vessel. The prime mover’s primary characteristics can be seen in Table 5.
MCREngine 1,312 kW (1,760 BHP) @ 800 rpm(kW)
Cylinders 8
Fuel Consumption Rate (t/kW*hr) 0.00020438
Brand ElectroMotive
Model EMD 8-710GC-T2
MCREngine 2,629 kW (3,525 BHP) @ 800 rpm(kW)
Cylinders 16
Fuel Consumption Rate (t/kW*hr) 0.00019921
Brand ElectroMotive
Model EMD 16-710GC-T2
Table 5 – Engine Characteristics
2.7 – Generator Selection
The electrical load of the design is initially estimated as the sum of the following machinery and
controls plus a twenty percent preliminary design margin: crane, winch, hotel/deckhouse service,
fire monitor controls, machinery pumps and controls, bow thruster, etc. Sea Tools recommends
the installation of two 1,550 kW Caterpillar 3512C generators in order to design redundantly in
case of failure. Table 6 illustrates the required and installed power on the vessel design.
Required (kW) Installed (kW)
Average at Sea Service Load 750 3,100
Maximum at Sea Service Load 1,525 3,100
Emergency Power 153 158
Table 6 – Generator Characteristics
12
2.8 – Propulsion Design
The propeller design in the particular case of the tug style vessel was fairly difficult because it
was necessary to maximize thrust at low speeds while also maximizing over all vessel speed for
quick response time to salvage operations. This was done using NavCad 2007 and produced two
controllable pitch propellers housed within ka-19a Kort nozzles to maximize thrust. The
optimized propeller results are given in Table 7.
Characteristic Value
Quantity 2
DP 4.0 m
P controllable
AE/AO 0.85
RPM 188 rpm
Maximum Efficiency 46 %
Table 7 – Propeller Optimization Characteristics
2.9 – Weights Estimation
Four operating conditions were analyzed using the arrangements from the Rhino 3D model to
estimate the centers of all machinery, structure, plating, and design margins. These conditions
were used to analyze the maximum bending moment. Stability properties for each condition can
be found in Table 8.
GMT GM(m) L T(m) F T(m) A Trim (cm, + by stern)(m) KG (m)
Full Load Departure 3.19 76.5 5.63 5.63 0 4.9
50 % Fuel Remaining 3.14 78.4 4.99 5.86 87 5.1
10 % Fuel Remaining 3.19 76.5 5.50 5.74 24 4.9
Topside Icing 3.16 76.2 5.56 5.73 18 4.9
Table 8 – Intact Stability at Four Loading Conditions
2.10 – Floodable Length
A floodable length analysis was performed to determine if the bulkhead placement in the design
provided adequate number of watertight compartments to maintain a floating vessel in case of
damage. The vessel passes all single compartment flooding criteria as well as the two
compartment case for both forward-most compartments flooded. The test result diagram is
shown in Figure 3.
13
Figure 3 – Floodable Length Diagram
2.11 – Damage Stability
Requirements governing compartment flooding survival for uninspected tugs do not exist.
However, safe operation in damaged conditions was a primary concern for the Sea Tools tug.
One compartment flooding for all compartments was determined to be a necessary requirement
in addition to two compartment flooding in the two bow compartments. The MARAD Design
Letter 3 was used for damaged stability to determine if the Sea Tools tug would remain stable in
each damaged condition. These criteria were selected because they are relatively conservative
compared to other rule sets which could have been used for this vessel.
2.12 – Midship Analysis
ABS requirements specified strength requirements for our vessel design, which was verified by
analyzing the midship section and the winch location’s framing. The requirements and actual
values for our vessel design are listed in Table 9.
ABS Required Actual Units
SM deck 3202 29,220 cm2
-m
SM bottom 3202 16,390 cm2
-m
Table 9 – Midship Analysis
2.13 – Seakeeping Analysis
Maxsurf’s Seakeeper program was used to analyze the seakeeping properties of our design at Sea
States four, five, and six. The results from the seakeeping analysis are listed in Table 10, and
they represent, on average, how many interruptions a one will experience in one hour based on
the given sea state. These values are well within a reasonable realm for working in up to sea state
six at full speed.
14
Motion-Induced Interruptions per hour
SS4 SS5 SS6
Wheelhouse 5.6 18.0 16.5
Winch Controls 8.2 19.4 18.3
Table 10 – Seakeeping Analysis
2.14 – Maneuvering Analysis
The University of Michigan’s Maneuvering Prediction Program (MPP) was used to determine
the rudder area necessary to meet turning requirements. The required rudder area was calculated
to be 11.1 m2
Table 11. The maneuvering results from MPP are listed in .
Required Calculated
Advance (m) <295.2 852.95
Tactical Diameter (m) <328 312.8
Clarke’s Turning Index >0.4 11.3
Linear Dynamic Stability >0.0 0.00041
Table 11 – Maneuvering Analysis
2.15 – Conclusion
This proposed design is an ideal candidate for meeting all requirements set forth by
MARAD/SNAME and exceeds the minimum classification and safety requirements. The
proposed design has excellent stability properties at several loading conditions, a viable
efficiency, and an economically sound business model.
15
3.0 – Introduction
With the expansion of the oil industry, increased commercial shipping traffic, and a greater
knowledge of the effects of environmental safety, the need for high-powered salvage tugs near
the Aleutian Island Chain and the Gulf of Alaska is growing. The unpredictability of the need
for salvaging requires designs to be versatile in their capabilities. While not salvaging,
commercial operations act as a valuable source of additional income. However, during the event
of an emergency, a fast response time and the ability to abort commercial operations become
essential. The design enclosed fully meets these necessities as well as the requirements set forth
by the MARAD/SNAME student design competition.
3.1 – Requirements
The client requirements for the salvage tug are shown in Table 12.
Power Minimum of 10,000 HP (7,457 kW) installed
Location Aleutian Islands Chain & Arctic Waters
Economic
Commercial applications other than salvaging
Break even with costs after 15 years of continuous
operation
Structure Ice strengthened for Arctic waters
Response
Fast response time from doing other commercial
applications
Operation Safe, secure and environmentally responsible
Table 12 – Client Requirements
3.2 – Principal Characteristics
The principal characteristics of the salvage tug design are listed in Table 13.
LOA (m) 66.8
LWL (m) 65.6
B (m) 15.0
D (m) 7.49
T (m) 5.63
C 0.52B
Design Speed (kn) 16
Displacement (MT) 2,941
Endurance (nm) 2,640
Installed Power (kW) 7,882
Crew 12
Cost (millions USD) 26.8
Table 13 – Principal Characteristics
16
4.0 – Hull Form Design
Parametric transformation in Maxsurf was utilized to cater a parent hull to the final hull form for
the Sea Tools salvage tug. The hull form was designed with consideration for reducing the cost
and ease of construction while having favorable stability and seakeeping characteristics.
4.1 – Initial Point Design
Developing a brand new hull form can be a very expensive process and unnecessary if many
similar vessels have been previously contracted. Initial dimensions for the Sea Tools tug hull
form were found through a regression analysis of 28 previously constructed ocean going salvage
tugs of similar power and capabilities. The regressions performed utilized one linear term versus
installed power. The largest correlation coefficient (0.50) was obtained from the draft versus
installed power regression. This is a small correlation coefficient, but this can be attributed to
the small pool of tugs analyzed, and the fact that each tug included in the regression was
designed with certain requirements, which would over- or undersize certain characteristics.
However, the values produced from the regression analysis provided an initial starting point from
which to develop the principal dimensions for the Sea Tools tug. The results of the regression
analysis are tabulated in Table 14.
Regression Variables Result
LOA vs. Installed Power 71.5 m
LBP vs. Installed Power 59.8 m
B vs. Installed Power 15.0 m
T vs. Installed Power 6.0 m
D vs. Installed Power 7.5 m
Speed vs. Installed Power 16.1 kn
Bollard Pull vs. Installed Power 115 tons-force
Table 14 – Regression Analysis Results
These values were essential for developing the principal dimensions of AHAB but were not the
final dimensions used. These dimensions were used to initially transform a parent hull and
further analysis of the transformed hull form was required to finalize the hull dimensions.
4.2 –Hull Selection and Optimization
The hull forms of two previously constructed ocean going salvage tugs were considered to
become the parent hull for the Sea Tools tug. The first hull considered was a double hard chine
and ice strengthened tug seen in Figure 4. The advantage of choosing this design as the parent
hull was its use of hard chines which reduces build cost by not requiring excessive shell plate
bending. It was also initially thought that because the design was ice strengthened, using this
hull form would reduce hull modifications necessary for ice strengthening the Sea Tools tug.
This did not turn out to be true because ice strengthening the Sea Tools tug did not require hull
form modifications. The second hull form considered for a parent hull was a faired hull tug seen
in Figure 5. The advantage of choosing this form was that its dimensions were closer to the Sea
Tools tug target dimensions. This would reduce degradation of the hull form during parametric
transformation. Other advantages included favorable seakeeping characteristics and decreased
resistance at higher speeds.
17
Figure 4 - Double Hard Chine Hull Form – LOA
= 44.2 m
Figure 5 - Faired Hull Form –
LOA = 65.2 m
It was determined that the hard chine hull form was the best parent hull choice for the Sea Tools
tug. Breaking even financially after 15 years of operation was a driving requirement in our
design so a hull form which would reduce the initial build cost was an important factor in
choosing the hard chine hull. Also, most of the time, Sea Tools tugs will be towing at slower
speeds, so although the faired hull would reduce fuel costs by having decreased resistance at
higher speeds it was not a primary concern. Maxsurf was utilized to digitize the hard chine hull
form and parametrically transform it to the target dimensions found from the regression analysis.
For the capabilities the Sea Tools tug was going to be designed to perform, it was also
determined that the length of the work deck was too long and also that the displacement of the
hull at the design waterline was too large. The hull near the transom was truncated in order to
reduce the deck area and the displacement to just less than 3000 metric tons. The final hull form
has characteristics shown in Table 15.
Displacement (t) 2941
LOA (m) 66.8
LWL (m) 65.6
B (m) 15.0
D (m) 7.49
T (m) 5.63
C 0.52B
C 0.876X
C 0.836WP
LCB (m aft of FP) 49.93
LCF (m aft of FP) 35.99
KB (m) 3.55
Table 15 – Principal Dimensions and Hydrostatics
4.3 – Lines Drawing
The lines drawing for the Sea Tools tug hull form can be found in Appendix A. Station spacing
was decided and the lines plan was developed in Maxsurf. Table 16 contains the station spacing
used in the lines drawing.
18
Station Spacing (m) 5.14
Buttock Spacing (m) 1.08
Waterline Spacing (m) 2.95
Table 16 – Station Spacing
19
5.0 – Capabilities
The current design of the vessel is capable of undertaking many missions, ranging from routine
towing operations to oil recovery. The rules for specialized vessels under 90 meters in length
provided by the American Bureau of Shipping were considered when making all design
decisions. All machinery specifics are provided in Appendix G – Machinery Specifications.
5.1 – Salvage
The vessel was designed primarily to serve as a contract vessel for salvage missions. To be as
attractive a salvage vessel as possible, special attention was paid to the safe operation of the
vessel as well as cruising speed and machinery capabilities. Table 17 displays characteristics and
features of the vessel beneficial to salvage operations.
Speed 16 knots
Winch (aft) 208 mT
Winch (fore) 21.5 mT
Crane 35.7 mT
Table 17 – Salvage Characteristics
The capability of the vessel to cruise at 16 knots is a unique feature from other similar vessels
that enables the vessel to reach potential salvage sites quickly. An EBI Model TC-60 telescopic
boom crane will be installed just aft of the deckhouse on the starboard side of the vessel. In
addition to the characteristics listed in Table 17, weld and dive equipment will be stowed aboard
the vessel for use during salvage operations.
5.2 – Towing
The primary missions to be undertaken by the vessel will be barge towing, and as such the vessel
will be classified an A1 Towing Vessel by the American Bureau of Shipping. The characteristics
of the vessel at the target towing speeds of 3-7 knots were investigated and will be discussed in
detail later in this report. The specific winches selected were a 208 mT Markey TDSD-44, using
1018 m of 2.75 in thick wire rope for primary towing operations and a 21.5 mT Markey DEPC-
52, using 235 m of 10 in thick synthetic rope for ship assist situations. The TDSD-44 winch will
be located just aft of the deckhouse, and the DEPC-52 winch will be located on the forecastle
deck.
5.3 – Fire Fighting
Adequate fire fighting systems will be installed in the vessel to achieve A1 Fire Fighting Class 2
status from the American Bureau of Shipping. Four, Stang eight inch Electric Low Pro monitors
located on top of the deckhouse will be capable of 7200
𝑚𝑚3
ℎ𝑟𝑟
output as seen in Figure 6. In
addition to water dispensing capabilities, a foam mixing system will be utilized with the
minimum storage as listed below in Table 18. High expansion Silv-Ex Plus foam will be used in
cold weather fire fighting operations.
20
Figure 6 - Fire Monitor Location
Characteristic Proposed Design ABS Required
Number of Monitors 4 3 or 4
Discharge rate per Monitor 1800
𝑚𝑚3
ℎ𝑟𝑟
1,800
𝑚𝑚3
ℎ𝑟𝑟
Number of Pumps 2 2
Monitor Range 150 m 150
Monitor Height (at a distance 70 m from the vessel) 70 m 70 m
Foam Storage Capacity 6.35 m3
required
Table 18 – Firefighting Characteristics
5.4 – Oil Recovery
It was determined that instances in which oil pollution occurred were fairly common in the
operating region of the vessels. Currently the vessel is not planned to receive oil recovery
classification from the American Bureau of Shipping, yet oil recovery machinery will be
available in case of need. Two DESMI Tarantula oil skimmers with a capacity of 250
𝑚𝑚3
ℎ𝑟𝑟
as well
as two Canflex Sea Slug FCB-650CM towable bladders will be stowed below deck, accessible
with the crane. All machinery specification can be found in Appendix G – Machinery
Specifications.
21
6.0 – General Arrangements
The general arrangement for the salvage vessel was designed in Rhinoceros NERBs modeling
software, and the final result can be viewed in Figure 7. Its hull form was imported from
Maxsurf, and items were drawn such that dimensions, weight centers, and interferences could be
determined. The general arrangements can be found in Appendix C – General Arrangements.
Figure 7 - Interior General Arrangements
6.1 – Bulkhead Placement
The collision and after peak bulkheads were placed based on ABS under 90 m vessel
requirements. All bulkhead locations are presented in Table 19.
Station
(m)
Bulkhead Location
(m aft of FP)
Compartment
Length (m)
1 4.6 4.6
2 12.6 8.0
3 24.6 12.0
4 36.6 12.0
5 46.6 10.0
6 59.6 13.0
Table 19 – Bulkhead Locations
Figure 8 – Bulkhead Placement
22
6.2 – Floodable Length
The floodable length analysis performed on the Sea Tools tug ensured that the bulkheads placed
would permit one compartment flooding survival with a permeability of up to 0.95 while
remaining stable. There is no explicit governing criteria which specify compartment flooding for
uninspected tugs, however it was believed to be a smart design choice to pass one compartment
flooding. In addition to one compartment flooding, the front two compartments are capable of
being flooded without the vessel sinking. This was believed to be the most important two
compartment flooding case to be able to pass without adding an excessive amount of bulkheads
to the tug. The plotted results are presented in Figure 9 and in Appendix K.
Figure 9 – Floodable Length Analysis
6.3 Deck House
The arrangements of the tug were developed using the guidelines found within “Ship Manning
Trends in Northern Europe: Implications for American Shipowners and Naval Architects.”
Table 20 displays the requirements set forth by these guidelines and the actual accommodation
areas and characteristics. Some of the beneficial aspects of the vessel’s deckhouse are the use of
stairs only running fore and aft – conducive for periods of high roll motions – and
accommodations for the 12-man permanent crew, a 12-man salvaging crew, and 6 other
personnel if ever applicable.
23
Required Actual
Beds -- 30
Heads -- 24
Quarters 313.0 m
2
361.5 m
2
Galley 19.5 m
2
36.9 m
2
Dry Provision Stores 6.2 m
2
6.75 m
2
Refrigerated Stores 4.7 m
2
6.2 m
2
Mess Hall 26.4 m
2
32.2 m
2
Medical -- 27.9 m
2
Laundry 10.0 m
2
19.3 m
2
Workroom -- 52.1 m
2
Salvor Storage -- 27.9 m
2
Laboratory Space -- 51.3 m
2
Mapping/Charting 15.0 m
2
38.5 m
2
Wheelhouse 30.0 m
2
46.8 m
2
Table 20 - Deckhouse Accommodations
The lowest deck is positioned 2.69 meters above baseline. A drawing of this deck appears in
Appendix C – General Arrangements. On this deck all, main propulsion machinery, main
electrical powering machinery, and gearing can be accessed. The fuel tanks are located below
this deck while the potable and black/gray water tanks are situated on it. The bow thruster room
can also be accessed from this deck. The exhaust pipes from the engines and the fire monitor
pipes from fire pumps terminate, with only necessary jogs, above the deckhouse.
The deck 5.09 meters above baseline contains the lowest level of crew accommodations. Also
appearing on this deck is an HVAC/electrical cable trunk that terminates, without any jogs, in the
wheelhouse. A drawing of this deck appears in Appendix C – General Arrangements.
Main deck contains crew accommodations, workrooms, a salvor storage room, and a galley. The
workrooms are situated at the aft end of the deckhouse for the convenience of workers carrying
equipment inside from the work deck. Similarly, the medical center is located on main deck just
forward of the workrooms so an injured person can be moved from the work deck without
having to climb stairs. To minimize down-flooding points, the only door that can be used to
access the main deck portion of the deckhouse is situated on centerline. A drawing of main deck
appears in Appendix C – General Arrangements.
The 01 level houses officer accommodations, which are more spacious than the crew
accommodations. Exterior stairs can be used to access the 01 level from main deck. The crane
can also be accessed from the 01 level. The crane is used for lifting objects to and from docks
and deploying oil recovery equipment that is stored below main deck. While extended to 22.9
meters, the telescopic crane can lift 4.9 tons. The empty oil bladders onboard are 3.1 tons and
are held within the below deck storage 13 meters from the crane. Therefore, the crane can be
24
used to deploy the oil bladders. A drawing of the 01 level appears in Appendix C – General
Arrangements. The crane specifications appear in Appendix G – Machinery Specifications.
The 02 level holds laboratory space, which is used for analyzing oil samples and allows the
vessel to be used for research related missions in the future. Also appearing on the 02 level is a
space designated for charting and mapping. A drawing of the 02 level appears in Appendix C –
General Arrangements.
The wheelhouse is the highest enclosed deck of the deckhouse, and it contains navigational
equipment. The exhaust pipes terminate at the height of this deck, and the fire pipes continue to
the top of the deckhouse. A drawing of the wheelhouse appears in Appendix C – General
Arrangements.
25
7.0 – Propulsion and Powering
The rendering in Figure 10 – Propulsion System Rendering below illustrates the final design of the
propulsion system, hull form and all associated appendages on the vessel used in the following
section’s calculations.
Figure 10 – Propulsion System Rendering
7.1 – Resistance
The total vessel resistance was calculated in order to determine the resistive forces of the hull
and appendages at all plausible speeds. These values would later be used to calculate the speed
and available thrust of the vessel. Using HydroComp NavCad 2007, the vessel’s bare hull and
appendage drag were determined along with an eight percent preliminary design margin and
Table 21 illustrates the average percentage of drag associated with the hull and the appendages at
all speeds. NavCad allowed for all appendages to modeled, such as the skeg, Kort nozzles,
shafting, struts, bow thruster opening, ice knives and rudders. Predictive equations such as
Holtrop’s 1984 Method and the ITTC prediction line were also used. The plot in Figure 11
represents the total resistance and thrust of the vessel versus speed. The thrust of the vessel will
be further explained in the propulsion portion of this section. The intersection of the lines in this
plot indicates the operating point where vessel thrust equals vessel resistance and thus the
location of the vessel’s top speed of 16 knots.
Vessel Speed Bare Hull Drag (%) Appendage and Wind Drag (%)
2 - 16 knots 91% 9%
Table 21 - Percentage of Total Drag
26
Figure 11 - Total Resistance and Delivered Thrust versus Speed
7.2 – Prime Mover Selection
7.2.1 – Initial Point Design and Selection
The initial selection of the engines began with the owner’s requirement that a minimum of
10,000 hp be installed. Using this information, several engine manufacturers were investigated;
including Wärtsilä, Rolls Royce, and ElectroMotive. It was determined, based on our research,
that the ElectroMotive medium speed diesel engines were our best choice based on several
criteria. These criteria included the fact that they are two-cycle, easily maintained and reputable
engines that have been used on many tug boat applications. They currently retain an EPA tier
two marine certification and based on information received from a contact within EMD, it has
been indicated that with several easy, on board modifications that will soon be available, the
engines will be rated as tier three certified, which further increases the environmental
responsibility of the design. These engines also offer an instantaneous response in power when
altering throttle position, as well as a ten percent overload capability for two out of every twenty
four hours.
7.2.2 – Analysis of Selected Engines
Once the brand of engine was chosen, several configurations of engines were investigated in
order to meet the 10,000 hp minimum installed power. Everything from two large capacity
engines to four identical engines were investigated. The arrangement of one, sixteen and one,
eight cylinder ElectroMotive medium speed diesel engine per propeller shaft was selected,
27
delivering a total of 10,570 hp between all four engines. Table 22 and Table 23 illustrate the
characteristics of each selected engine. A detailed analysis of the fuel consumption of the
engines can be found in Appendix F – Powering Specifications. There is enough lube oil stored
on board to lubricate the prime movers for 3,360 hours of continuous operation in order to save
time at port when re-fueling the vessels.
MCREngine 1,312 kW (1,760 BHP) @ 800 rpm(kW)
Cylinders 8
Fuel Consumption Rate (t/kW*hr) 0.00020438
Brand ElectroMotive
Model EMD 8-710GC-T2
Table 22 – 8 Cylinder Engine Characteristics
MCREngine 2,629 kW (3,525 BHP) @ 800 rpm(kW)
Cylinders 16
Fuel Consumption Rate (t/kW*hr) 0.00019921
Brand ElectroMotive
Model EMD 16-710GC-T2
Table 23 – 16 Cylinder Engine Characteristics
Figure 12 illustrates the layout of the selected engines. The theory behind the layout displayed in
this rendered figure is so that the fire pumps can be powered mechanically with the two eight
cylinder engines, leaving the sixteen cylinder engines to provide propulsion power during fire
fighting exercises. Also, during towing of small barges or vessels or during general maneuvering
exercises where the entire 10,570 hp installed is not needed, the eight cylinders can be powered
down, reducing the overall fuel consumption and extending the life of the engines. This layout is
feasible by using a clutch system, along with the double input reduction gears going to the
propeller shafts, and the single reduction gears going to the fire pumps from the eight cylinder
engines. Appendix F – Powering Specifications contains more detailed information on these
engines.
28
Figure 12 - Engine Layout Rendering
7.3 – Propulsion Design
The propeller design in the particular case of a tug style vessel is fairly difficult because it is
necessary to maximize thrust at low speeds while also maximizing over all vessel speed for
quick response time to salvage operations. This was done using NavCad 2007 which led to the
design of two controllable pitch propellers housed within ka-19a Kort nozzles to maximize
thrust. Prediction equations such as Holtrop’s 1984 Method and Keller’s Cavitation equation
were utilized. The Kort nozzles and propeller shafting will be ice strengthened and protected by
ice knives on the back side for reverse conditions. The final characteristics of the counter rotating
propeller design are displayed in Table 24 and a rendering of the propeller design can be seen in
Figure 13.
Characteristic Value
Quantity 2
DP 4.0 m
P controllable
AE/AO 0.85
RPM 188 rpm
Maximum Efficiency 46 %
Table 24 – Propeller Characteristics
29
Figure 13 - Propeller and Kort Nozzles
The reason for the fairly low efficiency is due to the optimization of thrust and top speed. The
benefits of having one of these, causes downfalls to having the other. Figure 14 illustrates the
cavitation of the propeller blades at vessel speeds up to sixteen knots. It is relevant to note that at
low speed, towing and bollard pull condition, the cavitation is under 5%, thus lowering propeller
damage.
Figure 15 illustrates the propeller efficiency, torque and thrust coefficients. The propeller
efficiency is highest at thirteen knots, a typical port to port maneuvering speed.
Figure 14 - Cavitation versus Vessel Speed
30
Figure 15 - Propeller Coefficients versus Vessel Speed
7.4 – Towing and Bollard Pull
With the propulsion system preliminarily designed, its capabilities in towing and bollard pull
were explored in order to confirm that it was a feasible proposal. The missions of the tug, which
are reliant on the propulsion system, include salvage, barge towing and ship assist missions. It
was determined that our propulsion system delivered 129.7 tons force of bollard pull at the zero
speed condition, which was higher than the initial 115 tons force that was initially estimated.
To put this into a physical perspective, it was calculated that there was an available thrust of
roughly 789 kN at 7 knots. Analyzing the modern day 12,000 mT barge in Figure 16, with the
characteristics listed below, it was determined to have 615 kN of resistance from friction, wave
and wind drag terms. The available thrust is greater than the resistance of the barge, so Sea Tools
can confidently declare that this design is able to tow this typical barge with a 22% margin to
account for more adverse conditions. Appendix G – Machinery Specifications contains more
detailed information about this barge.
31
Figure 16 - 12,000 mt Barge (380' x 100') with 11' Draft
7.5 – Electrical Power Estimation
The electrical load of the design was initially estimated as the sum of the following machinery
and controls plus a twenty percent preliminary design margin: crane, winch, hotel/deckhouse
service, fire monitor controls, machinery pumps and controls, bow thruster, etc.
7.6 – Generator Selection
It is recommend that the installation of two 1,550 kW Caterpillar 3512C generators is reasonable
in order to design in redundancy in case of failure and to alternate between generators to increase
the life cycle of each. Also, these generators may both need to be used in situations involving
salvage operations and the use of the 500 kW bow thruster. The Caterpillar C6.6 ACERT
emergency generator was selected to ensure all communication and on board fire suppressant
systems are available in case of emergency or damage to the vessel or primary power generators.
The characteristics of the service loads versus installed generator power outputs are displayed in
Table 25. Appendix F – Powering Specifications contains more detailed information on these
generators.
Required (kW) Installed (kW)
Average at Sea Service Load 750 3,100
Maximum at Sea Service Load 1,525 3,100
Emergency Power 153 158
Table 25 – Generator Characteristics
7.7 – One Line Diagram
Figure 17 illustrates the electrical configuration on board the vessel and shows the availability of
440, 240 and 120 volt applications for select machinery and accommodations throughout the
vessel. This electrical design proposal allows for all current machinery to be operated efficiently,
as well as allowing for any future machinery additions to easily be installed. Appendix F –
Powering Specifications contains a larger detailed figure of the one line diagram.
32
Figure 17 - One-Line Diagram
33
8.0 – Intact and Damage Stability
Intact and damaged stability of the Sea Tools tug determined whether or not the ship was stable
enough to pass requirements set forth in the Code of Federal Regulations (CFR).
8.1 – Intact Stability
Intact stability of the vessel was analyzed using the HECSALV stability suite and compared to
CFR requirements.
8.1.1 – U.S. Coast Guard Wind Heel Requirements
The U.S. Coast Guard requires a minimum GMT based on a ship’s profile area above water on
which beam winds could act and heel the ship. The “USCG Wind Heel GMT” spreadsheet was
used to determine minimum value to be 0.62 m. The Sea Tools tug’s GMT is 3.19 m, which
clearly passes this requirement. The “USCG Wind Heel GMT” spreadsheet has been included in
Appendix J – Intact Stability.
8.1.2 – Towing Stability Criteria
The CFR mandates certain stability requirements in the towing condition. A choice is given in
the CFR of meeting a minimum metacentric height (GM) or passing requirements regarding the
heeling arm and righting arm curves. The GM height requirement was chosen as the towing
stability criterion the Sea Tools tug was to pass. The equation found in Figure 18 is provided and
the indicated inputs were used to calculate the minimum required GM. The equation derives
from the tug having its rudders full turned at full speed while not moving forward which creates
the largest heeling moment on the tug.
2
3
f
( )( ) ( )( )
( )B
N P D s h
GM
K
×
=
∆
N (number of propellers) 2
P (shaft power per shaft in kilowatts) 3941
D (propeller diameter in meters). 4.5
s (fraction of the propeller circle cylinder intercepted when rudder
turned 45 degrees from the vessel's centerline)
0.719857
h (vertical distance from propeller shaft centerline at rudder to
towing bitts in meters)
6.83
Δ (displacement in metric tons) 2936
f (minimum freeboard along the length of the vessel in meters) 1.859
B (molded beam in meters) 15
K=13.93 in metric units 13.93
Figure 18 - Towline Pull Criterion
The calculated minimum GM requirement for the Sea Tools tug was discovered to be 1.32 m.
The Sea Tools tug’s GMT of 3.19 m passes this requirement.
8.1.3 – Topside Icing
Specific requirements regarding icing of the topsides of an uninspected tug do not exist however
this was a case that Sea Tools wished to consider for the tug because of its Arctic operation. The
CFR topside icing requirements for fishing vessels was used to calculate the effects of icing on
the Sea Tools tug. The icing requirements are applicable for vessels operating between 42˚
34
North latitude and 66˚30’ North latitude between November 15 and April 15. 30 kg/m2
(corresponding to 1.3”) of ice and 15 kg/m2
(corresponding to 0.65”) of ice is to be used for
horizontally and vertically projected surfaces, respectively. This calculation indicated that full
topside icing would result in 15.7 mt of ice added to the vessel. Adding this mass to our weights
estimation and recalculating the hydrostatics determined that the GMT of the vessel reduces to
3.16 m, which still passes all of the CFR mandated requirements.
8.1.4 – Cross Curves of Stability
HECSALV was used to generate the cross curves of stability for the Sea Tools tug and then used
to create the GZ curves at the full load condition. The GZ curves are presented in Figure 19.
The max GZ of 1.22 m occurs at a heel angle of 34.9˚.
Figure 19 – GZ Curves
8.1.5 – Bonjean Curves
Bonjean curves present station areas at different mean drafts. HECSALV was used to generate
these curves and are presented in Figure 20.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0 20 40 60 80 100
GZ(m)
Heel Angle (deg)
GZ Curve Max GZ
35
Figure 20 – Bonjean Curves
8.2 – Damaged Stability
Requirements governing compartment flooding survival for uninspected tugs does not exist,
however safe operation in damaged conditions was a primary concern for the Sea Tools tug
design. One compartment flooding for all compartments was determined to be a necessary
requirement in addition to two compartment flooding in the two bow compartments. The
MARAD Design Letter 3 was used as damaged stability to determine if the Sea Tools tug would
remain stable in each damaged condition. These criteria were selected because they are
relatively conservative compared to other rule sets which could have been used for this vessel.
The rules are presented in Table 26.
GZ Max Heel GM
20˚ positive range, 0.1 m minimum 15˚ Positive
Table 26 - MARAD Design Letter 3 Damaged Stability Criterion
The Damaged Stability part of the HECSALV program suite was used to test eight different
compartment flooding cases. Initially, the tug failed when the engine room was flooded. The
bulkheads were re-spaced to decrease the volume of the engine room. Compartment one is the
forward most compartment on the vessel. A summary of each damage stability case is shown in
Table 27. All of the damaged cases with their complete results and diagrams are included in
Appendix K – Damaged Stability.
36
Damaged Equilibrium
# Draft Status Damage
AngMax
GZ (deg)
IntGM
(m)
Area
(m-rad)
LimitAngle
(deg)
AngE
(deg)
MaxGZ
M
Range
(deg)
Pass/Fail
1 1 1 1 15.3 0.308 0.0215 22.9 0 0.100 22.9 Pass
2 1 1 2 12.9 0.519 0.0231 21.4 0 0.100 21.4 Pass
3 1 1 4 10.8 0.792 0.0231 20.6 0 0.100 20.6 Pass
4 1 1 8 10.0 1.073 0.0288 20.0 0 0.134 20.0 Pass
5 1 1 10 9.9 1.296 0.0348 20.0 0 0.164 20.0 Pass
6 1 1 12 10.5 0.822 0.0234 20.0 0 0.107 20.0 Pass
7 1 1 13 14.7 0.343 0.0202 21.5 0 0.100 21.5 Pass
8 1 1 1,2 11.9 0.577 0.0226 20.7 0 0.100 20.7 Pass
Table 27 – Damage Stability Results
37
9.0 – Midship Analysis
The midship cross section of the vessel was structurally analyzed to determine if the ship passes
the regulations set forth by the American Bureau of Shipping (ABS).
9.1 – ABS Regulations
ABS regulations state that the section modulus of the midship section should be larger than the
greater result of equations one and three. The equations used to calculate the requirements are
provided below.
2
min 1 2 ( 0.7)bSM C C L B C= + Equation 1
1 0.0451 3.65C L= + Equation 2
2 0.01C = Equation 3
/t pSM M f= Equation 4
t SW WSM M M= + Equation 5
Maximum Still Water Bending MomentSWM = Equation 6
2 3
1 1 ( 0.7) 10WS bM k C L B C −
=− + ⋅ Equation 7
2 3
2 1 10WH bM k C L BC −
= ⋅ Equation 8
1 110k = Equation 9
2 190k = Equation 10
2
17.5 /pf t cm= Equation 11
The results from these calculations are listed in Table 28. These values were used in the analysis
of the midship section.
Variable Result Units
Mws -56,000 kN-m
Mwh 44,650 kN-m
Msw 31.41 kN-m
SMmin 3202.0 cm2
-m
SM 16,390 cm2
-m
Table 28 – ABS Longitudinal Strength Calculations
9.2 – Moment and Shear Diagram
The moment and shear diagrams were generated using Hydromax. The weights curves were used
in previously described calculations to confirm that the vessel adhered to ABS regulation. The
maximum bending moments are presented in Table 29.
Condition Max Moment
Full Departure 3689 mt-m
%50 Fuel 3110 mt-m
%10 Fuel 3270 mt-m
Table 29 - Maximum Bending Moments
38
The maximum bending moment was developed in the Full Departure condition and using
Hydromax, the net load, shear, and bending moment distributions were plotted. The complete
results from Hydromax are included in Appendix M – Structural Calculations as well as the
weights estimation spreadsheets.
Figure 21 – Load Distribution for the Full Load Condition
9.3 – Midship Analysis
The utilization of a midship section analysis spreadsheet was used in conjunction with the
section modulus and moment of inertia values calculated from the ABS requirements to
determine the characteristics of the vessel’s midship section. Because of how the vessel was
strengthened, the minimum SM requirement of 3,202 cm2
-m was met easily. This spreadsheet is
included in Appendix M – Structural Calculations and a table of the midship section properties is
included in Table 30.
ABS Required Actual Units
SM deck 3202 29,220 cm2
-m
SM bottom 3202 16,390 cm2
-m
Table 30 – Midship Section Strength Properties
39
10.0 Structural Analysis
The structural analysis of the vessel was performed considering two regulatory sources of input.
While the vessel will be classified by the American Bureau of Shipping, all Ice strengthening
aspects of the vessel were designed considering the “Finnish-Swedish Ice Class Rules”. These
rules were selected based on their relative strictness when compared to ABS, and the structural
safety they will provide. Rules from the American Bureau of Shipping found in “Rules for
Building and Classing Steel Vessel Under 90 Meters in Length” were referenced for all other
aspects of the design. A summary of plate thicknesses can be found below.
10.1 Ice Strengthened Regions
The Finnish-Swedish ice class rules designate four possible classification of ice class: 1C, 1B,
1A, and 1A super. The current design of the vessel adheres to rules for Ice Class 1A vessels. The
ice belt region of the vessel was determined using the following equation table the Finnish-
Swedish Ice Class rules.
Ice Class Extension Above LWL (m) Extension Below LWL (m)
1A Super 0.6 0.75
1A 0.5 0.6
1B 0.4 0.5
1C 0.4 0.5
Table 31 – Ice Belt Definitions
While the vessel is designed to meet Ice Class 1A requirements in the ice belt region, the ice belt
of the vessel extends 0.6 m above and 0.75 m below the design water line, which is only required
of Ice Class 1A Super vessels. The thickness of plate in the ice belt is higher (25.4 mm) than the
rest of the side shell (16 mm). Further ice strengthening measures were implemented in the
framing of the vessel.
Plate Location Thickness (mm)
Bottom Shell 16
Side Shell 16
Side Shell – Ice Belt 25.4
Bulwarks 16
Main Deck 25.4
Bulkheads 16
Deckhouse – Sides/Decks 8
Fuel Tank Tops/Below Decks 8
Table 32 – Plating Thicknesses
40
10.2 Framing
Transverse framing was selected for the vessel because of its relatively short length and the
simplicity of construction that transverse framing offers. Unless stated otherwise, all framing in
the vessel was spaced at 0.46 m. This section will discuss the structural members of each part of
the vessel. All structural calculations can be found in Appendix M – Structural Calculations.
Location
Classification
Society Used
Required SM
(m*cm2
)
Actual SM
(m*cm2
)
Bottom Frame ABS 1018 1140
Side Frame FIN 1133 1140
Deck Frames ABS 702 747
Deck Girders ABS 4162 4553
Bulkhead Girder ABS 69 87
Bulkhead Stiffener ABS 328 352
Superstructures - Side ABS 26 38
Superstructure – Deck Frames ABS 696 761
Superstructure – Deck Girder ABS 515 564
Table 33 – Required and Actual Section Moduli
Angle bars were used as stiffening members in all locations except the deckhouse. Angle bars
were selected over t-bars because of lower cost and ease of production. In the deckhouse of the
vessel it was feasible to select unobtrusive flat plate bars with an adequate section modulus. In
future design iterations the sizing of these bars will be investigated with special attention paid to
the weight of flat bar stiffeners and the space that could be saved if angle or t-bars were selected
instead.
Location L (cm) W (cm) t (cm) Steel Strength
Bottom Frame 20 20 3 Normal
Side Frame 20 20 3 High
Deck Frames 20 15 2.5 Normal
Deck Girders 71 56 2.5 Normal
Bulkhead Girder 8 8 1 Normal
Bulkhead Stiffener 15 15 1 Normal
Superstructures - Side 10 --- 1 Normal
Superstructure –Deck Frames 20 15 2 Normal
Superstructure –Deck Girder 40 --- 2.5 Normal
Table 34 – Stiffener Sizing
The bottom and side frames of the vessel have the largest required section moduli of all
structural members below deck. Because of the similar nature of the bottom and side framing
requirements, angle bars with identical geometry were selected for these structural members. It
should be noted that the side frame requirement assumes that the frames be constructed out of a
41
high strength steel of yield stress greater than 315
𝑁𝑁
𝑚𝑚 𝑚𝑚2
. Because the side frames of the vessel
will be constructed out of high strength steel, longitudinal strengthening members will not be
necessary on the side shell. Another benefit of using such structurally sound side frames is that
machinery stress, such as moments generated by the winches or crane, will not cause the failure
of any structural members.
The bulkheads of the vessel will also be structurally sound. All bulkheads will be constructed out
of 16 mm thick steel and fitted with vertical stiffeners sized to adequately strengthen the deepest
bulkhead of the vessel. Where necessary, a horizontal deck girder will be installed such that no
vertical span of length 4.5 m or more will be horizontally unsupported. The deep tank structural
requirements were also analyzed. It was determined that the existing bulkhead plating and
stiffeners would adequately strengthen the deep tanks, and that no additional structural members
would be required.
The deck of the vessel will be made out of inch thick steel and strengthened by both transverse
deck frames and two longitudinal deck girders spaced evenly across the deck. The high section
modulus requirement of the longitudinal deck girders is a result of the bulkhead spacing of the
vessel. Two deck girders were selected to reduce the sizing requirements of the transverse deck
frames. The size of the deckhouse necessitated that the transverse deck frames in the deckhouse
be sized similarly to the deck frames of the main deck. These deck frames were joined to
relatively small deckhouse side frames to complete the deckhouse framing system. As previously
discussed, a flat bar longitudinal deck girder was fitted below each deck level, and the geometry
of this girder will be investigated in the future.
42
11.0 – Maneuvering Analysis
The University of Michigan’s Maneuvering Prediction Program (MPP) was used to determine
the maneuvering characteristics of the Sea Tools tug and to size its rudders.
11.1 – Initial Sizing
MPP requires an initial guess for the size of the rudder and iterations must be performed to meet
IMO maneuvering regulations. The initial input for the size of one rudder was derived from the
equation below.
Equation 12
The estimated rudder area was calculated to be 8.5 m2
.
11.2 – Maneuvering Prediction Program
Several iterations were necessary to find an appropriate rudder size. The final rudder area was
determined to be 11.1 m2
. For a rudder turning ability of 35˚, a ship is specified to have an
advance of less than 4.5LBP, a tactical diameter of less than 5LBP, a Clarke’s turning index
greater than 0.4, and a Linear Dynamic Stability Criterion greater than zero. The maneuvering
requirements and results for the tug are presented in Table 35. Results from MPP are provided in
Appendix H – Maneuvering.
Required Calculated
Advance (m) <295.2 236.1
Tactical Diameter (m) <328 312.8
Clarke’s Turning Index >0.4 11.3
Linear Dynamic Stability >0.0 0.00041
Table 35 – Maneuvering Analysis
11.3 – Bow Thruster
The bow thruster for the Sea Tools tug was selected by performing a regression analysis on
similar tugs and their projected sail area (Figure 22). Based on the Sea Tools tug’s sail area of
325 m2
, it was determined that the bow thruster should have an installed power of 502 kW
(including a 20% margin). A 614 kW Wartsila and 530 kW Schottel bow thruster were both
examined for selection. The Schottel thruster was chosen because its power was closer to the
estimated power requirement and because of lower weight and therefore lower expected cost.
Thruster details are provided in Appendix H – Maneuvering.
2
1 25
100
r
LT B
A
L
  
= +     
43
Figure 22 - Bow Thruster Regression
y = 1.8373x - 178.64
R² = 0.9916
0
200
400
600
800
1000
1200
1400
1600
0 200 400 600 800 1000
TotalInstalledThrusterPower(kW)
Windage Area (m2)
Installed Thruster Power vs. Windage Area
44
12.0 – Seakeeping Analysis
Seakeeper was used to perform a seakeeping analysis on the Sea Tools tug in sea states four,
five, and six. The tug will be operating in the Bearing Sea, the Gulf of Alaska, and the western
coast of Canada and the USA thus an appropriate wave spectrum was selected to model the
conditions there. The ITTC 2 Parameter Bretschneider wave spectrum was used and the
characteristic conditions can be seen in Table 36.
Sea State Wave Height (m) Average Period (s) Wind Speed (kn) Probability (%)
4 1.88 8.80 19.00 31.6
5 3.25 9.70 24.00 20.94
6 5.00 12.40 37.50 15.03
Table 36 - North Pacific Sea State Characteristics
Wave headings from 0 to 180 degrees were examined in increments of 10 degrees. 180 degrees
represents waves following seas, 90 degrees represents beam seas, and 0 degrees represents head
seas. Speeds of 0 kn, 5 kn, 10 kn, and 16 kn were analyzed.
12.1 – Seakeeper Results
The first step in analyzing the seakeeping results from Seakeeper was to verify the response
amplitude operators (RAOs) were making sense for all specified headings and speeds. All we
checked and their shapes and amplitudes did make sense for all headings and speeds. A
sampling of the RAOs at 16 kn can be seen in Figure 23 - Figure 27. One interesting point that
would require additional investigation in further design iterations is the peak amplitude in heave
exceeding the pitch peak amplitude in Figure 25 - Figure 27. This was not expected and is only
seen at these headings at 16 kn and not at other headings or speeds. This is expected to be a
result of the tug’s hull having a low block coefficient while being a “beamy” ship (small L/B
ratio).
Figure 23 - 16 kn RAO, 0º Figure 24 - 16 kn RAO, 30º
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 1 2 3
RAO(TransferFunction)
Encounter Frequency (rad/s)
0˚ - Following Seas
Heave RAO Roll RAO Pitch RAO
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 1 2 3
RAO(TransferFunction)
Encounter Frequency (rad/s)
30˚
Heave RAO Roll RAO Pitch RAO
45
Figure 25 - 16 kn RAO, 90º Figure 26 - 16 kn RAO, 140º
Figure 27 - 16 kn RAO, 180º
The next step in analyzing the Seakeeper data was to examine the RMS values of heave, roll, and
pitch at all headings, speeds, and sea states. Plots of the RMS heave, roll, and pitch values at 16
kn are presented in Figure 28, Figure 29, and Figure 30. It was seen that the motions appear as
expected for the given sea state and heading and it should be noted that the consistency of data
was also verified at the other speeds analyzed. Subsequent design iterations should use an
alternative seakeeping analysis to verify the results found here. The complete Seakeeper results
are included in Appendix L – Seakeeping Results.
0
0.5
1
1.5
2
2.5
3
0 1 2 3
RAO(TransferFunction)
Encounter Frequency (rad/s)
90˚ - Beam Seas
Heave RAO Roll RAO Pitch RAO
0
0.5
1
1.5
2
0 1 2 3
RAO(TransferFunction)
Encounter Frequency (rad/s)
140˚
Heave RAO Roll RAO Pitch RAO
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0 1 2 3
RAO(TransferFunction)
Encounter Frequency (rad/s)
180˚ - Head Seas
Heave RAO Roll RAO Pitch RAO
46
Figure 28 - Heave Response
Figure 29 - Roll Response
Figure 30 - Pitch Response
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 50 100 150 200
HeaveAmplitude(m)
Heading (deg)
Heave RMS, 16 kts ss4 ss5 ss6
0
1
2
3
4
5
6
7
8
0 50 100 150 200
RollAmplitude(deg)
Heading (deg)
Roll RMS, 16 kts ss4 ss5 ss6
0
0.5
1
1.5
2
2.5
3
3.5
0 50 100 150 200
RollAmplitude(deg)
Heading (deg)
Pitch RMS, 16 kts ss4 ss5 ss6
47
12.2 – Natural Periods
The RAO graphs produced by Seakeeper were analyzed and the natural frequencies found for
each response. The natural periods for each response were then found and are listed in Table 37.
Degree of Freedom Natural Period (s)
Heave 5.7
Roll 6.3
Pitch 10.1
Table 37 - Natural Periods
12.3 – Working Condition Analysis
The specified owner’s requirements dictated that the tug be able to operate in sea state six and at
the full speed of 16 kn. In order to validate workable conditions on the tug boat, it was necessary
to look at the Motion Induced Interruptions (MIIs) occurring at critical locations on the vessel.
The red markers seen in Figure 31 show the two locations analyzed, the wheel house on
centerline and the tow winch controls, 3 m starboard of centerline.
Figure 31 - Critical MII Locations
Seakeeper calculates the accelerations at those locations and determines how many times per
hour a person would be interrupted during their work due to the local accelerations. All speeds
and headings were analyzed and the worst MII cases are shown in Table 38.
Motion-Induced Interruptions per hour
SS4 SS5 SS6
Wheelhouse 5.6 18.0 16.5
Work deck 8.2 19.4 18.3
Table 38 - Worst Cast MII Results
As highlighted in red, the maximum number of MIIs per hour is about 20, which falls between
the lowest two severity ranges shown in Table 39. From this analysis, it has been determined
48
that a salvage crew will have no problem operating the Sea Tools tug at full speed during sea
state six.
MII Risk Levels
Severity MII Risk Level MII per hour
1 Possible 6
2 Probable 30
3 Serious 90
4 Severe 180
5 Extreme 300
Table 39 – MII Risk Levels
The Motion Sickness Incidence analysis performed by Seakeeper did indicate that an untrained,
non-sailor would be subject to 10% probability of sea sickness in under 30 minutes during sea
states five and six at a full speed of 16 kn. However, contacts in the U.S. Coast Guard have
indicated that this will not be an issue for a seasoned salvage tug crew.
49
13.0 – Fleet Justification
A solution was sought for the owner’s requirements set forth by the MARAD/SNAME student
design competition. These requirements included operating near the Aleutian Island chain,
having the ability to perform salvaging operations, and possessing an expense break even period
of no more than 15 years.
First, the demand for a salvage tug operating near the Aleutian Islands was investigated. Data
collected from the USCG Marine Safety Management System and the Marine Information Safety
and Law Enforcement System were reviewed. These data included the vessel types involved in
incidents and the type of incident for accidents occurring near the Aleutian Islands from 1991-
2003. The per-year averages for types of incidents and types of vessels during this time period
were calculated. These averages are shown in Table 40.
Vessel Types Per Year Incident Types Per Year
Fishing Vessels 229 Pollution 113
Freight Ships 19 Person 94
Commercial Vessels 12 Vessel 59
OSVs 9 Facility 3
Table 40 - Incidents near the Aleutian Island
It was noted that fishing vessels and OSVs were comparable in size to the salvage tug to be
designed and therefore would not be an economically viable source . However, on average there
were over 30 incidents per year involving freight ships and commercial vessels. It was also
noted that pollution was the most frequently occurring incident type.
After verifying the demand for salvage support in the Aleutian Islands and Gulf of Alaska, a
mission model was devised. A fleet of three tugs was chosen to operate out of the cities of Dutch
Harbor, AK; Juneau, AK; and Seattle, WA. All vessels would have the same design and
capabilities. Dutch Harbor was chosen due to its proximity to the Unimak Pass – a waterway
passage heavy with commercial shipping traffic. The Dutch Harbor tug was designated as solely
a salvaging vessel. It was decided that the Juneau and Seattle tugs would perform towing
operations between the two cities as a commercial source of income. These two vessels would
alternate travelling from Seattle to Juneau. With one tug towing a barge and the other
commuting back to Seattle, a constant source of commercial income would be obtained while
still maintaining the ability to attend to salvaging incidents. Port Hardy, British Columbia and
Prince Rupert, British Columbia were ports chosen as barge drop off locations in the event that a
tug engaged in towing was called for emergency related operations.
The locations of the three tugs are shown in Figure 32. Also, with the possibility of response
time being key in an emergency, red and yellow circles are shown to indicate distances
accessible after 24 and 36 hours of travel at the design speed of 16 knots.
50
Figure 32 - Tug Fleet Locations
51
14.0 Economic Analysis
The economics of the tug fleet were analyzed and refined throughout the design of the vessel.
With the 15-year break even requirement driving the analysis, the expenses incurred from crew
costs, build costs, and operational costs were examined. Through a contact within the salvaging
industry, estimates for 12-man crew costs were provided. These crew costs appear in Table 41.
Crew Cost Per Day Crew Cost Per Year Crew Cost Over 15 years
Captain $650 $237,250 $3,558,750
Mates (3) $1,620 $591,300 $8,869,500
Chief Engineer $550 $200,750 $3,011,250
QMEDs (2) $800 $292,000 $4,380,000
AB Deckhands (5) $1,550 $565,750 $8,486,250
25% Payroll Tax $1,293 $471,763 $7,076,438
15% Admin Expense $776 $283,058 $4,245,863
Total Crew Costs $7,238 $2,641,870 $39,628,050
Table 41 - Crew Cost Breakdown
The contact also provided a build cost estimate of $20 million. To make this estimate more
conservative, it was increased to $25 million. In addition, an 80% loan with a 4% interest rate
compounded annually for 15 years was applied to the $25 million build cost estimate. These
figures, as well as the accumulated interest and total build cost, are presented in Table 42.
Build Cost
Build Cost $25,000,000
80% Build Cost Loan $20,000,000
Interest Rate 4%
Accumulated Interest $1,798,822
Total Build Cost $26,798,822
Table 42 - Build Cost Breakdown
Lastly, a preliminary estimate for the operational costs was provided by the industry contact.
These costs are displayed in Table 43.
Per Day Per Year Over 15 Years
Operational Costs $4,762 $1,738,130 $26,071,950
Table 43 - Operational Cost Breakdown
The total preliminary costs for the tug design and the three tug fleet over the first 15 years of
operation are presented in Table 44.
15 Year Expense Totals
15 Year Total Tug Expenses $92,498,822
15 Year Total Fleet Expenses $277,496,466
Table 44 - 15 Year Expense Summary
52
With the preliminary expenses established, estimates were made for the possible returns through
salvaging operations, fire fighting, and other emergency related missions. The industry contact
estimated that a gross income of $8 million can be received from a single large salvaging job. A
more conservative estimate of $5 million per salvage job each year per tug was used. Based off
of this estimate, the returns used for the preliminary economics of the tug fleet appear in Table
45.
Per Year Over 15 Years
Dutch Harbor $5 million $75 million
Juneau $5 million $75 million
Seattle $5 million $75 million
Total $15 million $225 million
Table 45 - Salvage Revenue
Throughout the design, as machinery was selected and the missions to be performed were
developed further, the economic analysis of the fleet was refined. The same estimates used for
the preliminary twelve man crew and build costs were used for the additional iterations of the
economic analysis. Using specific fuel consumptions, average fuel prices, and time at sea
estimates, the operational costs were updated. The specific fuel consumptions used appear in
Table 46, and the average fuel prices, collected by the Fisheries Economics Data Program, are
shown in Table 47.
8 Cylinder 16 Cylinder
SFC (lb/bhp-hr) 0.336 0.3275
Consumption Rate (lb/hr) 554.4 1195.4
Volume Consumption Rate (gal/day) 1874.03 4040.70
Table 46 - Specific Fuel Consumption
#2 Marine Diesel Fuel Prices
2010 Average Alaskan Port Fuel Prices $2.91
2010 Average Washington Port Fuel Prices $2.65
Average of 2010 Alaskan and Washington Port Fuel Prices $2.78
Table 47 - Average Fuel Prices
These data were combined with time at sea estimates. The time at sea estimates were developed
by considering that the Dutch Harbor tug would not tow and would, therefore, spend less time at
sea per year. While operating at sea, it was assumed that all four of a tug’s engines would be
operating at 850 rpm. In addition, the average 2010 port fuel prices for #2 marine diesel fuel in
Alaska and Washington were averaged for the Juneau and Seattle tugs. This was done because
the tugs would be towing between the two states and might refuel in either Alaska or
Washington. The fuel consumption summaries for each tug appear in Table 48, Table 49 and
Table 50.
53
Dutch Harbor
Time At Sea (Days) 28
Fuel Consumed Per Year (Gallons) 331,225.01
Fuel Cost Per Year $963,864.79
15 Year Fuel Cost Total $14,457,971.86
Table 48 - Dutch Harbor Fuel Cost
Seattle
Time At Sea (Days) 287
Fuel Consumed Per Year (Gallons) 3,395,056.39
Fuel Cost Per Year $9,438,256.78
15 Year Fuel Cost Total $141,573,851.65
Table 49 - Seattle Fuel Cost
Juneau
Time At Sea (Days) 287
Fuel Consumed Per Year (Gallons) 3,395,056.39
Fuel Cost Per Year $9,438,256.78
15 Year Fuel Cost Total $141,573,851.65
Table 50 - Juneau Fuel Cost
The refinement of the operational costs caused the total 15 year fleet cost to increase to
$496,886,291. Using the same salvaging and firefighting return estimates as the previous
economic iteration, it was calculated that the residual returns needed to be made from towing, in
order to break even within 15 years, was $271,886,291. These figures are displayed in Table 51.
15 Year Expense and Return Totals
Total 15 Year Fleet Expenses $496,886,291
Total 15 Year Salvaging Returns $225,000,000
Necessary 15 Year Towing Returns $271,886,291
Table 51 - Required Returns
The time necessary to tow a barge from Seattle to Juneau was investigated by determining how
quickly a barge could be towed and by determining how much time should be given to stay in
port for fuel, water, and provisions. The time required for a tug to make a roundtrip was
calculated by allowing one day for the vessel to prepare for the trip in Seattle, tow a barge at an
average of 6 knots to Juneau, spend one day idle in Juneau for fuel, water, and provisions, and
traverse back to Seattle at 16 knots. The total time required for this roundtrip is 9.4 days. The
total amount of trips possible over 15 years between two tugs was then calculated, followed by
the amount of money required to charge per tow to make approximately $272 million from
towing – the amount necessary for the fleet to make to break even within 15 years. These figures
are presented in Table 52.
54
Towing
Days Per Trip 9.4
Trips Per Year 39
Trips Over 15 Years (2 Tugs) 1165
Required Charge Per Tow $233,379
Total Towing Gains $271,886,291
Table 52 - Towing Summary
The required freight rates of a variety of barge sizes appear in Table 53. These rates are
required, in order to break even within 15 years of operating the fleet, due to losses incurred
from building, operating, and manning the tugs.
RFR 4000 ton barge $58.34/ton
RFR 6000 ton barge $38.90/ton
RFR 8000 ton barge $29.17/ton
RFR 10000 ton barge $23.34/ton
RFR 12000 ton barge $19.45/ton
RFR 14000 ton barge $16.67/ton
RFR 16000 ton barge $14.59/ton
Table 53 - Required Freight Rate
55
15.0 – Recommendations for Future Work
While all design decisions were well-informed and made with confidence, there are some areas
of the design that warrant future investigation. These areas are discussed in the body of the report
as they occur, and this section will detail recommendations for future work.
One area of potential concern is the ease of deep tank production. Future design iterations will
investigate alternate fuel tank arrangements that would allow for easier welding during
construction. The seakeeping analysis of the vessel is another area that deserves future
investigation. The data obtained from Seakeeper will need future validation by other methods,
and special attention will be paid to why the heave RAOs are dominating pitch RAOs at 16 knots
in sea state 6 at headings between head and beam seas. A seakeeping analysis with a towing
barge attached will also be necessary.
The propulsion system of the vessel could be improved in the future by performing more
iterations of the propeller design to maximize, thrust, speed, and efficiency. Once completed, the
system could be analyzed further and its capabilities in towing and bollard pull. It is in the
opinion of Sea Tools that these further iterations will decrease the preliminary design margins
and increase the towing ability of the vessel as well as the static bollard pull characteristics of the
vessel. Future design iterations should also address the piping and electrical requirements for all
areas of habitability. Adjustments to the arrangements may need to be made to minimize piping
and electrical material in these areas. Also, more detailed estimations should be found for the
returns to be made through salvaging, fire fighting, and other emergency missions. Lastly,
pricing of machinery and outfitting should be considered for a more accurate build cost.
56
16.0 – Conclusion
Not only does the Sea Tools tug design satisfy all of the MARAD/SNAME student design
competition requirements but also has a wide range of towing and rescue capabilities, making it a
versatile design. Sea Tools Engineering is confident that the design will satisfy the need for high
powered salvage tugs near the Aleutian Islands and the Gulf of Alaska. Key features of the
design include highly favorable seakeeping properties, fire fighting II capabilities, and an ice
strengthened hull, all of which allow the vessel to perform commercial and rescue missions in a
variety of arctic water conditions.
57
Appendix A – Lines Drawing 
Contents:
Lines Drawing........................................................................................................................A-1
58
Appendix B – Outboard & Inboard Profiles 
Contents:
Outboard Profile.....................................................................................................................B-1
Inboard Profile .......................................................................................................................B-2
59
Appendix C – General Arrangements 
Contents:
General Arrangements 1 ........................................................................................................C-1
General Arrangements 2 ........................................................................................................C-2
General Arrangements 3 ........................................................................................................C-3
General Arrangements 4 ........................................................................................................C-4
60
Appendix D – Propeller Geometry 
Contents:
Propeller.................................................................................................................................D-1
61
Appendix E – Structural Drawings 
Contents:
Deckhouse Section Layout ....................................................................................................E-1
Bulkhead Section Layout.......................................................................................................E-2
Midship Section Layout.........................................................................................................E-3
62
Appendix F – Powering Specifications 
Contents:
EMD Brochure.......................................................................................................................F-1
8 Cylinder Fuel Consumption................................................................................................F-2
16 Cylinder Fuel Consumption..............................................................................................F-3
Caterpillar 3512C Genset.......................................................................................................F-4
Caterpillar C6.6 ACERT Emergency Generator ...................................................................F-5
One Line Diagram..................................................................................................................F-6
C
M
Y
CM
MY
CY
CMY
K
PMI brochure_outside.pdf 9/10/07 10:09:15 AM
C
M
Y
CM
MY
CY
CMY
K
PMI brochure_inside.pdf 9/10/07 10:03:44 AM
C
M
Y
CM
MY
CY
CMY
K
PMI brochure_outside.pdf 9/10/07 10:09:15 AM
Fuel Consumption
Model: 8-710G7C-T2
Conditions: ISO 15550 & 3046-1 Standard Reference Operating Speed: Variable
Air In Temp: 77o
F (25o
C) Load: Variable
Barometer: 29.61 in Hg (100 kpa) Rated Speed: 900 RPM
Fuel S. G.: 0.855 (7.1 lbs/gal) Idle Speed: 350 RPM
Fuel LHV: 18360 btu/lb (42700 kJ/kg) ISO Continuous Power: 2000 BHP
Airbox Temp: 120o
F (49o
C) maximum ISO Overload Power: 2200 BHP
BSFC Tolerance: + 5% maximum Emissions: US EPA 40 CFR 94
Emissions Tier: 2
Application: Fixed Pitch Prop Propulsion EPA Duty Cycle Table: B-1
ISO Cycle: E3
Comments:
Engine mounted pumps included.
Horsepower / fuel consumption will vary with deviation from stated conditions.
Data is provided in accordance with ISO 3046-1:2002E conditions and associated tolerances, and is intended only
for purpose of comparison with competitive manufacturer engines.
Electro-Motive Diesel, Inc. maintains ISO9001:CURRENT REVISION registration for its engine manufacturing and
test facilities. Factory engine test data is recorded at observed site conditions in accordance with
ISO9001/QMS9000 procedures.
0.330
0.340
0.350
0.360
0.370
0.380
0.390
0.400
0.410
0.420
0.430
0.440
0.450
0.460
0.470
0.480
0.490
0.500
0.510
0.520
0.530
300 400 500 600 700 800 900
Engine Speed (rpm)
FuelConsumption(lb/bhp-hr)
100
300
500
700
900
1100
1300
1500
1700
1900
2100
EnginePower(bhp)
Commercial_8G7C-T2_VS9_VL_B-1_E3.xls
 
Marine Propulsion Engines
3500C
More available power over a wider
operating range
High power density for continuous applications with A and B
ratings at 1200, 1600, and 1800 rpm.
More sophisticated electronic
control system
Provides improved engine monitoring, communication, and
display capabilities. Results in easier integration with your
vessel’s systems.
More flexible cooling system
options
Separate Circuit Cooling for optimum cooling capabilities. Keel
cooled options are designed for high inlet water temperatures,
minimizing cooler size and installation costs.
Durable and reliable
The 3500 engine platform is a simple and proven design providing
industry-leading reliability and durability.
True technical sophistication
Delivers ease of maintenance and assembly/disassembly without
the need for expensive processes or tools.
Meets EPA Tier 2 Marine,
EU Stage IIIA and IMO
emissions regulations
the sophistication
of simplicity
New Diesel
Electric Propulsion
ratings available
2250 ekW 3516-HD @ 60Hz
2000 ekW 3516-HD @ 60Hz
More power with lower emissions
for your applications
Unrestricted Continuous A ratings of up to
2450 bhp (1825 bkW) providing 4900 bhp (3650 bkW) for
applications with twin engines.
Heavy Duty B ratings of up to 3005 bhp (2240 bkW) providing
6010 bhp (4480 bkW) for applications with twin engines.
Maximum Continuous C ratings of up to 3150 bhp (2350 bkW)
providing 6300 bhp (4700 bkW) for applications with twin engines.
Intermittent Duty D ratings of up to 3385 bhp
(2525 bkW) providing 6770 bhp (5050 bkW) for applications with
twin engines.
Outstanding fuel efficiency and lube
oil consumption
Standard or reverse rotation
options available
Long maintenance intervals
Worldwide parts and service
availability
When Caterpillar says it’s a continuous rating,
that means you can haul a drill rig from Seattle.
to Singapore at full throttle and full power.
3500C
ADEM™ A3 Electronic
Control Unit (ECU)
• One of the most advanced electronic
control systems available for Cat®
marine engines
• Faster, with more memory capability
• Compatible with several optional display
systems
• Does not require fuel cooling
• Enhanced input/output capacity
• Rugged marine design and IP66
connectors
• Award-winning circuitry design
Engine-Mounted
Instrument Panel
• Integrated MPD display for quick
response and effective local control
• Optional local speed control
• Optional individual cylinder exhaust
temperature scanner with data link for
remote mounting
• Local E-stop, warning indicators, horn
• Plug  Run connections allow mounting
on port or starboard side of engine
Marine Power Display
(MPD)
• Graphic display of engine operating
parameters in analog, digital, or bar-
chart format
• Rugged, weatherproof construction
• Fully user-configured display screens
• Marine classification society-type
approved
• Diagnostic messages and alarms
• Three-tier prioritization of events and
diagnostics
• Multilingual capability
• Night-mode LCD display
• ISO symbols for parameter identification
Caterpillar®
ACERT®
Technology uses advanced computer modeling to
optimize the combustion process within the piston crater.
Caterpillar®
ACERT®
Technology
• 3500C is the first marine large engine model to incorporate the
building blocks of ACERT®
Technology.
• ACERT Technology is the key enabler that allows us to meet
current emissions regulations.
3500C Engine Features
Improved performance and increased functionality
Modular Pulse Exhaust
Manifold
• Modular pulse-type exhaust system
designed to conserve exhaust pulse
energy for maximum thermal efficiency
at the turbochargers
• Highly efficient inlet and exhaust air flow
High Capacity, High
Efficiency Turbos
• Standard marine twin turbocharger
configuration
• More reserve power for superior part
load performance at continuous ratings
• Turbos tuned for high power and
excellent fuel consumption
Rigid Wiring Harness
• Highly durable: long service life
• Flexibility for custom wire additions
• Lined with fire retardant foam
• Marine classification society approved
Wastegate for
16-cylinder High
Power Ratings
• Provides excellent acceleration at low
and medium speeds
• Optimizes fuel consumption near cruise
Power Distribution Box
• Isolates “control power” from
alternator/starter/jacket water heater
power
• Mountable off engine
• Allows end user to choose up to three
independent power sources
• Has built-in circuit breakers and
switches for easy troubleshooting
Marine Classification
Society Approval
ABS / DNV / LR / GL / CCS / BV
Electronic Features
• 3D histogram data collection
• Load feedback signal for CPP operation
• Electronic torque limit for re-power and
torque limited application equipment
• Programmable droop
• Adjustable governor gains
• Condition-based maintenance
• Monitoring features
• Serial data bus communications
• Primary and secondary A3 controllers
on all propulsion engines
Cat®
Pilot House
Panels
• Cat pilot house panels with integrated
Marine Power Display (MPD)
• Easily connected to the engine
customer connector
• Ability to have full function helm panels
and reduced function wing panels
Unit Injectors
• Caterpillar designed and built system
• “Drop-in” installation
• No threaded fuel connections
• High pressure fuel contained inside the
injector
• Does not require double wall lines or
leak collection devices
Power Take-off
• Power take-off adapters available
• Auxiliary drives for power take-offs for
hydraulic pumps and compressors
Engine-Mounted
Gear-Driven Pumps
• Standard engine-mounted
aftercooler pump
• Standard engine-mounted jacket
water pump
• Optional engine-mounted, gear-driven,
super high capacity sea water pump
Engine Mounting
System
• Rigid mounting points
• Optional resilient mounting
In-Hull Overhaul
• Easily removable side covers
• Accessible bearing caps
3500C Engine Features
3500C Specifications
Bore — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170.0 (6.69)
Stroke — mm (in) . . . . . . . . . . . . . . . . . . . . . .  190, 215 (7.48, 8.46)
Rated Speed . . . . . . . . . . . . . . . . . . . . . . . . . 1200, 1600, 1800 rpm
Aspiration . . . . . . . . . . . . . . . . . Twin Turbocharged-Aftercooled
Governor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic
Cooling System . . . . . . . . . . . . .  Heat Exchanger or Keel Cooled
Rotation (from flywheel end) . . Clockwise or Counterclockwise
3516C Specifications
Displacement — L (cu in) . . . . . . . . . . . . . . . . 69-78 (4,210-4,766)
Flywheel  Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 00
Refill Capacity — L (gal)
	 Cooling System (engine only) . . . . . . . . . . . . . . . . . 233.2 (61.6)
	 Lube Oil System
		 A-C Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 (213.0)
		 D Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 (53)
Oil Change Interval (deep sump) . . . . . . . . . . . . . . .  1000 hours
3512C Specifications
Displacement — L (cu in) . . . . . . . . . . . . . 51.8-58.6 (3,161-3,576)
Flywheel  Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 00
Refill Capacity — L (gal)
	 Cooling System (engine only) . . . . . . . . . . . . . . . .  156.8 (41.4)
	 Lube Oil System
		 A-C Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 (165.0)
		 D Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 (40)
Oil Change Interval (deep sump) . . . . . . . . . . . . . . .  1000 hours
3508C Specifications
Displacement — L (cu in) . . . . . . . . . . . . . . . . . . . . . .  34.5 (2,107)
Flywheel  Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 0
Refill Capacity — L (gal)
	 Cooling System (engine only) . . . . . . . . . . . . . . . . . . 103 (27.1)
	 Lube Oil System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 (117.0)
Oil Change Interval (deep sump) . . . . . . . . . . . . . . . .  1000 hours
3516C
Length — mm (in) . . . . . . . . . . . . . . . 3083.7-3185.5 (121.5-125.5)
Width — mm (in) . . . . . . . . . . . . . . . . . . 2036.9-2142.1 (80.2-84.4)
Height — mm (in) . . . . . . . . . . . . . . . . . . 1967.0-2149.8 (77.5-85.0)
3512C
Length — mm (in) . . . . . . . . . . . . . . . 2564.6-2645.4 (101.0-104.2)
Width — mm (in) . . . . . . . . . . . . . . . . . . 2036.9-2142.1 (80.3-84.4)
Height — mm (in) . . . . . . . . . . . . . . . . . . 1947.4-2134.1 (76.7-84.1)
3508C
Length — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . .  2117.3 (83.4)
Width — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1703 (67.1)
Height — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1828.9 (72.1)
	
Technical Data
3500C Dimensions
MARINE PROPULSION ratings
	 Model	Rating	 rpm	 Power (bhp)	 POWER (kW
	 3508C	 A/B/C	 1200	 775/850/900	 578/634/671
	 3508C	 A/B/C	 1600	 1000/1050/1100	 746/783/820
	3512C-HD	 A/B/C	 1600	 1810/1911/2012	 1350/1425/1500
	 3512C	 A/B/C	 1800	 1500/1575/1650	 1120/1175/1230
	3512C-HD	 B/C/D	 1800	 2250/2365/2550	 1678/1765/1901	
	 3516C	 A/B/C	 1600	 2000/2100/2200	 1491/1566/1640
	3516C-HD	 A/B/C	 1600	 2450/2575/2682	 1825/1920/2000
	3516C-HD	 B/C/D	 1800	 3005/3250/3385	 2240/2350/2525
diesel electric propulsion ratings
	 Model	Rating	 rpm	 Power (ekW)
	 3516C-HD	 DEP	 1800	 2000/2250
LEDM6478-03
©2008 Caterpillar
All rights reserved.
Printed in U.S.A.
CAT, CATERPILLAR, their respective logos, Acert, ADEM,
“Caterpillar Yellow” and the power edge trade dress, as well
as corporate and product identity used herein, are trademarks
of Caterpillar and may not be used without permission.
Images may not reflect actual engine.
For most current information, please refer to TMI web.
Headquarters
Caterpillar Marine
Power Systems
Neumühlen 9
22763 Hamburg/Germany
Phone: +49 40 2380-3000
Telefax: +49 40 2380-3535
Europe, Africa,
Middle East
Caterpillar Marine
Power Systems
Neumühlen 9
22763 Hamburg/Germany
Phone: +49 40 2380-3000
Telefax: +49 40 2380-3535
Americas
Caterpillar Marine
Power Systems
3450 Executive Way
Miramar Park of Commerce
Miramar, FL. 33025/USA
Phone: +1 954 447 71 00
Telefax: +1 954 447 71 15
Asia-Pacific
Caterpillar Marine Trading
(Shanghai) Co., Ltd.
25/F, Caterpillar Marine
Center
1319, Yan’an West Road
200050 Shanghai, P.R. China
Phone: +86 21 62262200
Telefax: +86 21 62264500
Caterpillar Marine Asia
Pacific Pte Ltd
14 Tractor Road
Singapore 627973/
Singapore
Phone: +65 68287-600
Telefax: +65 68287-624
Caterpillar Marine Power Systems
For more information please visit http://marine.cat.com
Marine Generator Sets
C6.6 Acert
®
MCS Approved Packages
The C6.6 ACERT generator set is available direct from our factory in Marine
Classification Society (MCS) approved packages — with EPA Tier 2 emissions
compliance. These packages meet MCS requirements for manned and
unmanned engine rooms, including emergency applications, and come with
certification documentation. The single-source consistency and standardized
quality of the MCS program provides streamlined procurement, installation, and
servicing, with:
•	 Factory completion of torsional vibration calculations and installation of alarm,
shutdown, and all mechanical additions
•	 Complete factory testing
•	 Controlled packaging environment
•	 Easier shipyard installation with no re-packaging required
•	 Simplified servicing with established component and packaging standards
Standard Equipment
•	 Common rail fuel system
•	 Turbocharger
•	 Mounted air cleaner
•	 Fuel (primary and secondary) and oil filters
•	 Cold start aid — glow plugs
•	 12  24 volt starter motor and battery charging alternator
•	 EMCP3 control panel with remote monitoring capability
•	 Charge air cooler
•	 Primary fuel filter with water separator
•	 Duplex oil filter
MCS Control Panel
c6.6 acert generator sets
Optional Attachments
•	 On-board spars and tool kit
•	 Instrumentation
•	 Duplex primary or secondary fuel filter
•	 Governor droop kit (enables paralleling with appropriate
customer-supplied switch gear)
•	 Remote expansion tank kit
•	 Double wall fuel lines
•	 Space heater kit
•	 Air starter
•	 Jacket water heater
Cat®
power. No matter how far out you need to go, or how rough it gets,
power solutions from Caterpillar can drive your vessel — and your work — like
no other brand. When you take Cat engine expertise out to sea, you’ll never
be alone. You’ll have the most dependable power available, and the world’s
largest, most responsive support network with you every day, everywhere.
your most
valuable cargo
Saves space, saves stress
The C6.6 ACERT®
generator set is the latest in a line of innovative marine power products
from Caterpillar that pack big performance and efficiency advantages into amazingly
compact units. The C6.6 ACERT delivers up to 170 ekW, yet you’ll almost forget it’s even
on board. From easy installation; through clean, quiet, smooth operation; to long service
intervals… the C6.6 ACERT does its job so you can focus on yours.
Delivers more...
Power
The electronic control of the 6.6 liter engine with ACERT
Technology simultaneously optimizes fuel economy and
performance while meeting the most stringent emissions
standards. The electronic governor ensures power quality that’s
suitable for sophisticated equipment, such as computers and
other electronics.
Economy
Competitive pricing, outstanding fuel efficiency, extended service
intervals, and ultra long life, all contribute to the overall low
owning and operating costs of the C6.6 ACERT.
Environmental responsibility
The C6.6 ACERT is IMO emission-compliant; both 60 Hz and 50 Hz
meet EPA Tier II regulations.
Peace of mind
The Caterpillar 12-month warranty and available Extended
Service Coverage keep the C6.6 ACERT — and your operation —
on a smooth course.
Flexibility
C6.6 ACERT packages offer six ratings. Three standard cooling
options are also available: Sea water after cooling, keel cooling,
and radiator cooling. In addition, the C6.6 ACERT is compatible
with a variety of fuels, including kerosene, jet aviation fuel, and
20 percent bio-fuel.
Safety
Automatic safety shutdowns include low oil pressure, high water
temperature, and overspeed.
C6.6 ACERT®
MARINE generator set ratings
	cooling	cycles	 kVA	 ekW @ .8 pf
	 HEX	 60 Hz	 156	 125
	 HEX	 60 Hz	 187	 150
	 HEX	 60 Hz	 212	 170
	 HEX	 50 Hz	 125	 100
	 HEX	 50 Hz	 156	 125
	 HEX	 50 Hz	 178	 143
	 Radiator	 60 Hz	 150	 120
	 Radiator	 60 Hz	 175	 140
	 Radiator	 60 Hz	 200	 160
	 Radiator	 50 Hz	 125	 100
	 Radiator	 50 Hz	 150	 120
	 Radiator	 50 Hz	 169	 135
GEAR-DRIVEN SEA WATER AND JACKET
WATER PUMPS
improve durability (fail-safe operation)
500-HOUR SERVICE INTERVAL
reduces service costs
HIGH BLOCK LOADING CAPABILITY
300% SHORT CIRCUIT CURRENT
needed to start large loads like air conditioning units
CRANKCASE VENTILATION SYSTEM
eliminates crankcase fumes
ISO9001:2000 manufacturing facility
Environmentally friendly
Low emission, noise, and vibration levels
Heavy-duty air cleaner
for commercial applications
one source supply
for propulsion and generator set engines
features  benefits
Specifications
I-6, 4-Stroke-Cycle-Diesel
Displacement — L (cu in).................................................. 6.6 (403)
Bore — mm (in)................................................................. 105 (4.13)
Stroke — mm (in)................................................................ 127 (5.0)
Refill Capacity — L (U.S. gal)
	 Cooling system — heat exchanger cooled...................30 (7.9)
	 — radiator cooled................................ 36 (9.5)  
	 Lube oil system.............................................................17.5 (4.62)
Oil Change Interval.......................................................... 500 hours
Dimensions (HEX Only)
Open Minimum
	 Length — mm (in)....................................................... 1833 (72.2)
	 Width (with mounting brackets) — mm (in)............. 956 (37.7)
	 Height* — mm (in)...................................................... 1315 (51.8)
Open Maximum
	 Length — mm (in)....................................................... 2001 (78.8)
	 Width (with mounting brackets) — mm (in)............. 956 (37.7)
	 Height* — mm (in)...................................................... 1315 (51.8)
*Caterpillar height dimensions do not include remote-mounted air
filter or electronic control panel.
Dimensions
Front View
Right Side View
LEDM0005-00
©2008 Caterpillar
All rights reserved.
Printed in U.S.A.
CAT, CATERPILLAR, their respective logos, ACERT, “Caterpillar
Yellow” and the power edge trade dress, as well as corporate
and product identity used herein, are trademarks of Caterpillar
and may not be used without permission.
Learn more about bringing the Cat C6.6 ACERT generator set
aboard. Call your Cat dealer or visit marine.cat.com today.
This is a preliminary document, not to be used for installation design.
63
Appendix G – Machinery Specifications 
Contents:
Tugger Winch ........................................................................................................................G-1
Towing Winch .......................................................................................................................G-2
Fire Pumps .............................................................................................................................G-3
Crane......................................................................................................................................G-4
Oil Skimmers .........................................................................................................................G-5
Towable Oil Bladders ............................................................................................................G-6
Typical Towed Barge.............................................................................................................G-7
DEPC-52Electric Hawser Winch
Max. Drum Capacity: Over 770 feet of 9.5/10.0 circumference synthetic line (9 layers).
Rated Line-Pull: 47,300 lbs (near stall); 31,500 lbs rated line-pull at 67 feet per minute (barrel layer).
Electric Motor  Drive: 75HP marine-duty electric motor with AC-variable frequency drive.
Winch Braking: Total brake capacity of over 518,000 lbs at the second layer.
Air-set/release drum brake with joystick control, freewheel mode, and override lever.
Winch Control: Wheelhouse controls with on-deck emergency stop and freewheel pushbuttons.
Power Requirements: 460VAC 3 Phase, 60Hz. Other source voltage options available.
ApproximateWeight: 23,000 lbs.
Winch Dimensions: 88.8 H x 83.7 W x 110.5 D.
The DEPC-52 is a single-drum electric hawser winch featuring automatic tension-selectable
render-recovermode,highbrakingcapacities,andfastlinespeedsforescortandship-assist
vessels.All electrical components comply withABS, USCG, and IEEE-45 standards.
WINCH SYSTEM SPECIFICATIONS
Markey Machinery Company, Inc.
4634 East Marginal Way South, Suite C-140, Seattle, WA 98134
Phone: (206) 622-4697 Toll Free (800) 637-3430 Fax: (206) 623-9839
Email: info@markeymachinery.comRepresented by:
Griffin Associates - 355 GrowAvenue NW, Bainbridge Island, WA 98110 (USA) Phone:206-780-0509 Email:bagriffin@griffinassociates.com
JH Menge  Company, Inc - 5825 Plauche Street, New Orleans, LA 70123 (USA) Phone:504-733-4871 Email:fclatour@jhmenge.com
Markey's rugged hawser winches are built to the
highest quality workboat standards using materials
and processes providing maximum life and minimum
maintenance in marine and outdoor applications.
Markey DEPC-52 Winch
Innovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend on
Explosion-proof electric motor and intrinsically-safe controls
Digital/Analog Line Tension Display System
Multiple-station winch controls
Hydraulic power systems and winch-drives available
Models available with or without fairleader, and with or without warping head
Proportional brake control available
A variety of source power configurations can be accommodated
Electrical hooks in system box for ship's UPS
Performance ratings can be tailored to suit specific applications
Hawser Winch System Options
TDSD-44Diesel Towing Winch
Max. Drum Capacity: Port and Starboard Drums, 3,340 feet of 2.75 wire (each).
Rated Line-Pull: Maximum 460,000 lbs rated pull (stall) at barrel layer, in first gear.
Diesel Power Unit: Performance based on GM8V-92 Diesel and CRT-5633 Transmission.
Winch Brakes: Air-cylinder set and release (maximum 790,000 lbs), with handwheel for lock-down.
Winch Controls: Pneumatic / Electric.
Winch Dimensions: 108.5 H x 259.5 W x 227.0 D. Approximate Weight: 137,000 lbs.
The TDSD-44 is a reliable diesel-driven double-drum towing winch with high line-pull and
brakingcapacity,designedspecificallyforoffshoretowingoranchor-handlingapplications.
Ruggedly built to provide decades of high performance with low maintenance requirements,
the TDSD-44 is a proven industry workhorse suitable for even the most demanding jobs.
WINCH SYSTEM SPECIFICATIONS
Markey Machinery Company, Inc.
4634 East Marginal Way South, Suite C-140, Seattle, WA 98134
Phone: (206) 622-4697 Toll Free (800) 637-3430 Fax: (206) 623-9839
Email: info@markeymachinery.comRepresented by:
Griffin Associates - 355 GrowAvenue NW, Bainbridge Island, WA 98110 (USA) Phone:206-780-0509 Email:bagriffin@griffinassociates.com
JH Menge  Company, Inc - 5825 Plauche Street, New Orleans, LA 70123 (USA) Phone:504-733-4871 Email:fclatour@jhmenge.com
Markey's rugged towing winches are built to the
highest quality workboat standards using materials
and processes providing maximum life and minimum
maintenance in marine and outdoor applications.
Markey TDSD-44 Towing Winch
Innovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend on
Single  Double Drum configurations available
Dual fairleads available
Winch can be designed for chain-drive from Diesel Power Unit located below-deck or in the fidley
Winch can be designed for shaft-drive from Diesel Power Unit located in the fidley
Drum sizes can be changed to accomodate various rope capacity requirements
Auxiliary drum available to replace warping head
Diesel, hydraulic  electric drives available
Performance ratings can be tailored to suit specific applications
2nd and 3rd-station winch controls available
Marine-duty epoxy paint system
Towing Winch System Options
FiFi Class Compliance FiFi 2 FiFi 2 FiFi 1
FiFi 1/2
(No Int'l Class)
FiFi 1/2
(No Int'l Class)
FiFi 0
(No Int'l Class)
FiFi 0
(No Int'l Class)
Water Volume Delivery 7,200 m3
/h 7,200 m3
/h 2,400 m3
/h
Monitor Quantity Three to Four Three to Four Two Minimum
Water Throw
150 Meters
(500 Feet)
150 Meters
(500 Feet)
120 Meters
(400 Feet)
Water Height
70 Meters
(230 Feet)
70 Meters
(230 Feet)
45 Meters
(148 Feet)
Monitor Controls from Wheelhouse Remote, Electronic Remote, Electronic Remote, Electronic
MTT FIRE PUMP MODELS
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT *
Two (2) Units
Equal FiFi 2
Four (4) Units
Equal FiFi 2
One (1) Unit
Equals FiFi 1
One (1) Unit
Equals 1/2 FiFi
One (1) Unit
Equals 1/2 FiFi
One (1) Unit
Equals FiFi 0
One (1) Unit
Equals FiFi 0
FiFi Class Compliance FiFi 2 FiFi 2 FiFi 1 FiFi 1/2 FiFi 1/2 FiFi 0 FiFi 0
Water Volume Total Delivery Required
to Reach FiFi Class
7,200 m
3
/h 7,200 m
3
/h 2,400 m
3
/h 1,200 m
3
/h 1,200 m
3
/h 1,000 m
3
/h ~ 385 m
3
/h
Monitor Quantity Minimum Required to
Reach FiFi Class
Four Four Two One One One or Two Two to Four
Water Throw
150 Meters
(500 Feet)
150 Meters
(500 Feet)
120 Meters
(400 Feet)
120 Meters
(400 Feet)
120 Meters
(400 Feet)
117 Meters
(385 Feet)
85 Meters
(255 Feet)
Water Height
70 Meters
(230 Feet)
70 Meters
(230 Feet)
45 Meters
(148 Feet)
45 Meters
(148 Feet)
45 Meters
(148 Feet)
45 Meters
(148 Feet)
35 Meters
(105 Feet)
Monitor Controls from Wheelhouse Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Gas Turbine 2 ea. Lycoming T-53's 1 ea. Lycoming T-53 1 ea. Lycoming T-53 1 ea. Lycoming T-53 Walter 601 Walter 601 RR Allison C-20B
Horsepower at ISO 1,400 HP ea. 1,400 HP 1,400 HP 1.400 HP 600 HP 600 HP 420 HP
Engine to Pump Coupling - Falk a a a a a a a
Fuels - Diesel, Kerosene  Jet a a a a a a a
Air Cooled w/On-Board Oil Cooler a a a a a a a
Mechanical Fuel Pump a a a a a a a
12/24V Electrical w/Charger a a a a a a a
Oil, Fuel and Air Filtration a a a a a a a
Full Analog Gauge Package a a a a a a a
MTT Fire Pump Model Listings and Ratings
MTT Units Required to Meet FiFi
Class Compliance
Standard International Classifications for FiFi Fire Pump Units
Standard MTT Classifications for Fire Pump Units (FiFI Compliance)
Engine Configuration
High Temp  Low Oil Pres. Alarm a a a a a a a
Over-Speed Governor Control a a a a a a a
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Split Case Centrifugal with Cast Iron
Case
Aurora Pump
(or Equivalent)
Aurora Pump
(or Equivalent)
Aurora Pump
(or Equivalent)
Aurora Pump
(or Equivalent)
Aurora Pump
(or Equivalent)
Aurora Pump
(or Equivalent)
Flowserve
(or Equivalent)
Pump Quantity Required Per Unit Two (2) One (1) One (1) One (1) One (1) One (1) One (1)
Pump Flow and Pressure
3,634 m3
/h @
150 - 180 PSI
1,800 m3
/h @
150 - 180 PSI
2,400 m3
/h @
150 - 180 PSI
1.200 m3
/h @
150 - 180 PSI
1.200 m3
/h @
150 - 180 PSI
1,000 m3
/h @
150 - 180 PSI
~ 385 m3
/h @
150 - 180 PSI
Suction  Discharge
16 Suction,
10 Discharge
16 Suction,
10 Discharge
16 Suction,
10 Discharge
16 Suction,
10 Discharge
14 Suction,
10 Discharge
10 Suction,
8 Discharge
6 Suction,
Two 2.5 or Four 1.5
Discharge
Suction Manifold
One (1) ea.,
16 per Pump
Six (6) ea.,
Six Inch Flex Lines
Six (6) ea.,
Six Inch Flex Lines
Five (5) ea.,
Six Inch Flex Lines
Five (5) ea.,
Six Inch Flex Lines
Three (3) ea.,
Six Inch Flex Lines
One (1) ea.,
Six Inch Flex Line
Suction Configuration
Vertical, Above or Below
Deck
Horizontal, Deck
Mounted
Horizontal, Deck
Mounted
Horizontal, Deck
Mounted
Horizontal, Deck
Mounted
Horizontal, Deck
Mounted
Horizontal, Deck
Mounted
Foot Valves - As Required
a a a a a
Vacuum Pump with
Sea Strainers
Vacuum Pump with
Sea Strainers
Maximum Vertical Lift - Suction Entry
to Pump
4.5 Meters
(15 Feet)
4.5 Meters
(15 Feet)
4.5 Meters
(15 Feet)
4.5 Meters
(15 Feet)
4.5 Meters
(15 Feet)
4.5 Meters
(15 Feet)
N/A (Suction Lines 5'
from Waterline)
Speed
1,800 RPM,
Stainless Shaft
1,800 RPM,
Stainless Shaft
1,800 RPM,
Stainless Shaft
1,800 RPM,
Stainless Shaft
1,800 RPM,
Stainless Shaft
1,800 RPM,
Stainless Shaft
3,600 RPM,
Stainless Shaft
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Above Deck or Below Deck Both Both Both Both Above Above
Under  Above Deck
(Combo)
Skid Construction Heavy Duty Steel Heavy Duty Steel Heavy Duty Steel Heavy Duty Steel Aluminum Aluminum Aluminum
Engine Noise Attenuation a a a a a a a
Blast Proof Lighting and Circuitry a a a a a a a
Sealed Access Door a a a a a a a
Anti-Slip Surfaces a a a a N/A N/A N/A
Recessed Roof Ladder and Safety
Railings a a a a N/A N/A N/A
Air Inlet with Spray Deflectors a a a a a a a
Pump is Mounted to Engine Output
Shaft w/Flex Coupling / Drive Adapter a a a a a a a
Lifting Hooks at the Four Upper
Corners a a a a a a N/A
Milspec 12V Gel Batteries are Rack
Mount w/Perko Switch a a a a a a a
Watertight Breaker w/Ext. Resets a a a a a a a
Insulated Stainless Steel Exhaust
w/Roof Discharge  2 Insulated
Ceramic Blanket
a a a a a a N/A
Manual Roof Cover a a a a a a Not Applicable
Skid Configuration
Pump Configuration
Requires 480V, 3 Phase Power a a a a a a DC Power
Yellow Interior and Exterior Finish a a a a a a Custom Finish
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Fuel Tank (per Specific Application) Per Specific Application Per Specific Application
Per Specific
Application
Per Specific
Application
Per Specific
Application
Per Specific
Application
Per Specific
Application
Mechanical Fuel Pump for Turbine a a a a a a a
Electric Fuel Priming Pump a a a a a a a
1 Fuel Supply Line a a a a a a a
Fuel / Water Separation and Filtration a a a a a a a
Access Pipes for Supply Lines Located
in Side of Container a a a a a a a
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Water Delivery
3,634 m3
/h at 150
Meters (500 Ft)
1,800 m3
/h at 150
Meters (500 Ft)
2,400 m3
/h at 120
Meters (400 Ft)
1,200 m3
/h at 120
Meters (400 Ft)
1,200 m3
/h at 120
Meters (400 Ft)
1,000 m3
/h at 117
Meters (385 Feet)
~ 385 m3
/h at 85
Meters (255 Feet)
Control Cable for Engine / Monitor for
Remote Boxes
100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 25 Feet of Cable
Monitor QTY Required Per Unit Two (2) One (1) Two (2) One (1) One (1) One (1)
Two (2) to
Four (4) Nozzles
Monitor Type
Stang 8 Electric Super
Low Pro
Stang 8 Electric Super
Low Pro
Stang 8 Electric
Super Low Pro
Stang 6 Electric Super
Low Pro
Stang 6 Electric
Super Low Pro
Stang 6 Electric
Super Low Pro
Stang Low Pro
Foam Capabilities a a a a a a a
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
MTT Test Run Prior to Shipping a a a a a a a
MTT Provides a 2 Valve Inlet to Allow
Sea Water to Prime Pump a a a a Per Installation N/A N/A
MTT Provides ABS Statement of Fact a a a a a a a
MTT Provides Installation Services on
a Time and Materials Basis a a a a a a
MTT Installs at
Factory
Customer Supplies Mounting of Unit to
Vessel a a a a a a
MTT Installs at
Factory
Customer Supplies 480V, 3 Phase
Power to Unit a a a a a a
MTT Provides DC
Power
FOB MTT Facility - Franklin, LA a a a a a a a
Installation and Shipping
Monitors
Fuel System
Approximate Dimensions
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Length
2.54 Meters
(8 Feet, 4 Inches)
4.12 Meters
(13 Feet, 6 Inches)
4.12 Meters
(13.6 Feet)
4.12 Meters
(13 Feet, 6 Inches)
3.38 Meters
(11 Feet, 1 Inches)
2.9 Meters
(9 Feet, 6 Inches)
5.4 Meters
(18 Feet)
Width
2.90 Meters
(9 Feet, 6 Inches)
1.83 Meters
(6 Feet)
1.83 Meters
(6 Feet)
1.83 Meters
(6 Feet)
1.17 Meters
(3 Feet, 10 Inches)
1.22 Meters
(4 Feet)
2.44 Meters
(8 Feet)
Height
2.2 Meters
(7 Feet, 3 Inches)
3.66 Meters
(12 Feet)
3 Meters
(10 Feet)
3.0 Meters
(10 Feet)
2.16 Meters
(7 Feet, 1 Inch)
2.13 Meters
(7 Feet)
3.05 Meters
(10 Feet)
Weight Dry
6,803 Kilos
(15,000 lbs)
5,743 Kilos
(12,660 lbs)
6,804 Kilos
(15,000 lbs.)
5,216 Kilos
(11,500 lbs.)
1,878 Kilos
(4,140 lbs.)
2,322 Kilos
(5,120 lbs.)
6,82 Kilos
(1,500 lbs.)
Payment and Availability
MTT FP - 16000
(16,000 GPM)
FiFi 2
MTT FP - 8000
(8,000 GPM)
FiFi 2
MTT FP - 10600
(10,600 GPM)
FiFi 1
MTT FP - 5285
(5,285 GPM)
FiFi 1/2
MTT PFP - 5285
(5,285 GPM)
FiFi 1/2
PORTABLE
MTT FP - 4400
(4,400 GPM)
FiFi 0
PORTABLE
MTT ABFP - 1700
(1,700 GPM)
FiFi 0
AIRBOAT
Price Per Unit $ USD $ USD $ USD $ USD $ USD $ USD $ USD
Units Req'd to Reach FiFi Class
Two (2) Units
for FiFi 2
Four (4) Units
for FiFi 2
One (1) Unit
for FiFi 1
One (1) Unit
for 1/2 FiFi
One (1) Unit
for 1/2 FiFi
One (1) Unit
for 0 FiFi
One (1) Unit
for 0 FiFi
Total Price $ USD $ USD
Terms of Payment
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
50% at Order, 50%
When Shipped
Production Lead Time ARO 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks
MTT Substitution of Components
Allowed Prior to Order Acceptance a a a a a a a
Configuration Changes
Note: FiFi 2 Compliance Requirement if for DNV Regulations:
(1) Monitor Qty: Two. (2) Water Throw: 180 Meters (590 ft). (3) Water Height: 110 Meters (360 ft).
* New Generation Airboat under construction. All specifications and performance ratings are estimated at the current time.
The Above are MTT's Standard Configurations and are subject to change at any time. Any customer additions or deletions to the Specification will
require MTT engineering approval and a Price Adjustment.
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
Elevating Boats, LLC.
201 Dean Court, Houma LA --- 900 St. Bernard Pkwy, Braithwaite, LA
Servicing the oil field for over 50 years.
Manufacturer of:
Liftboats w Cranes w Gearboxes w Winches w Hydraulic Cylinders w Components
 
Home Liftboats Cranes
Cranes
Service
Construction Components Jobs FAQ
Contact
Us
Model TC60-43-73 EBI Telescopic Boom Cranes
 
STANDARD EQUIPMENT: 
EBI CRANES ARE MANUFACTURED IN ACCORDANCE
WITH API-2C SPECIFICATIONS.
EBI CRANES MEET ABS, USCG AND OSHA
REQUIREMENTS.
PLANETARY SWING MECHANISM WITH ADJUSTABLE
MOUNT, HIGH TORQUE MOTOR AND AUTOMATIC SPRING
APPLIED BRAKES.
DOUBLE HYDRAULIC SWIVEL FOR CONTINUOUS
ROTATION.
OPTIONAL EQUIPMENT:
EBI CRANE CONTROL LOCATIONS:
- PEDESTAL MOUNTED WALK-AROUND
- REMOTELY LOCATED
- VARIOUS PLATFORM CONFIGURATIONS
- CAB MOUNTED JOY STICK TYPE
SOLAR/BATTERY POWERED BOOM BEACONS.
BOOM LIGHTING.
COMPLETE HYDRAULIC SAFETY SYSTEM DETECTING
THE MOMENT INDUCED BY LOAD ON THE CRANE TO
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
INDUCTION HARDENED CHROME PLATED CYLINDER
RODS.
18 I.D. MANWAY WITH BOLTED COVER.
THREE COLOR, SAFE LOAD INDICATOR GAUGE.
RACK AND PINION TELESCOPING SYSTEM. THERE ARE
NO INTERNAL BOOM CYLINDERS.
LOAD LINE WINCH: 2 SPEED MOTOR.
THREE COAT MARINE PAINT SYSTEM.
ANTI-FRICTION BEARINGS IN THE SHEAVES.
BRONZE BUSHINGS ON ALL PIVOTING POINTS.
LOAD TEST AT TWICE API DYNAMIC LOAD BEFORE
SHIPPING.
HELP PREVENT OVERLOAD CONDITION.
POWER UNITS CAN BE CRANE MOUNTED OR REMOTELY
LOCATED.
POWER UNITS: ELECTRIC MOTOR, AIR MOTOR OR
DIESEL ENGINE (DETROIT DIESEL, CUMMINS,
CATERPILLAR, OR DEUTZ AIR-COOLED, ETC.)
DIESEL ENGINE STARTER SYSTEMS:  ELECTRIC, AIR OR
HYDRAULIC.
AIR/HYDRAULIC OIL HEAT EXCHANGER.
17-4PH STAINLESS STEEL, HEAT TREATED CHROME
PLATED CYLINDER RODS.
440C STAINLESS STEEL, HEAT TREATED PINS.
FAST LINE WINCH DESIGNED FOR PERSONNEL
HANDLING. WINCH CAPACITY IS 5000 LB. LINE PULL
(1000 LB. FOR PERSONNEL).
ANTI-TWO BLOCK SYSTEM.
EMERGENCY LOAD LOWERING SYSTEM.
 
MODEL TC60-43-73  43 FT.
RETRACTED
API LOAD CHART (U.S. CUSTOMARY
UNITS)
REACH
(FT.)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(LBS.)
STATIC
LOAD
(LBS.)
10 76 76300 78700
15 69 47950 72575
20 62 34300 52100
25 54 26400 40250
30 45 21200 32450
35 35 17850 27425
40 21 15100 23300
43 1 13800 21350
API PEDESTAL REACTIONS     
MAXIMUM OTM = 2,743,707 FT. LBS.
CORRESPONDING AXIAL FORCE = 94,164 LBS.
MAXIMUM AXIAL FORCE = 202,437 LBS.
CORRESPONDING OTM = 1,870,871 FT. LBS.
BASIC CRANE WEIGHT = 37,500 LBS.
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
(REACTIONS @ 3 X DYNAMIC RATED LOAD)
(OTM = OVERTURNING MOMENT)
MODEL TC60-43-73   53 FT. EXTENDED
API LOAD CHART (U.S. CUSTOMARY
UNITS)
REACH
(FT.)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(LBS.)
STATIC
LOAD
(LBS.)
10 79 55500 78500
15 73 45500 69000
20 68 33500 51000
25 62 26300 40200
30 56 21000 32300
35 49 17500 27000
40 42 15000 23300
45 32 12800 19900
50 20 11000 17300
53 1 10300 16200
 
MODEL TC60-43-73   65 FT. EXTENDED
API LOAD CHART (U.S. CUSTOMARY
UNITS)
REACH
(FT.)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(LBS.)
STATIC
LOAD
(LBS.)
10 81 42000 63800
15 76 33000 50300
20 71 27000 41300
25 67 23500 36000
30 62 20500 31500
35 56 17300 26700
40 51 14800 22900
45 45 12800 19900
50 38 11000 17300
55 30 9800 15400
60 18 8800 13900
65 1 7800 12400
 
MODEL TC60-43-73   73 FT. EXTENDED
API LOAD CHART (U.S. CUSTOMARY
UNITS)
REACH
(FT.)
BOOM
ANGLE
DYNAMIC
LOAD
STATIC
LOAD
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
(DEG.) (LBS.) (LBS.)
10 82 39000 59300
15 78 28500 43500
20 74 23500 36000
25 70 19900 30600
30 66 17300 26700
35 61 14800 22900
40 57 13300 20700
45 52 11800 18400
50 47 10700 16700
55 41 9500 15000
60 35 8800 13900
65 27 8000 12800
70 17 7000 11300
73 1 6800 10900
 
IN ACCORDANCE WITH API-2C, VALUES SHOWN ARE ACTUAL HOOK LOADS (WEIGHT OF BLOCK AND HOOK
EXCLUDED).
LOAD LINE BLOCK WEIGHT IS 1300 LBS.
LOAD LINE (4 PART LINE): 1 6x25 EIPS IWRC; 100,000 LB. BREAKING STRENGTH; 20,000 LB. WORKING STRENGTH.
FAST LINE BLOCK IS 110 LBS.
FAST LINE (1 PART LINE): 9/16 19x7 EIPS IWRC; 25,000 LB. BREAKING STRENGTH; 5000 LB. WORKING STRENGTH.
STATIC LOAD = 1.5 x DYNAMIC LOAD
PEDESTAL REACTIONS ARE BASED ON THREE TIMES THE DYNAMIC LOAD PLUS DEAD LOAD.
 
MODEL TC60-43-73  13.1 METERS RETRACTED
API LOAD CHART (INTERNATIONAL METRIC UNITS)
REACH
(METERS)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(KGS.)
STATIC
LOAD
(KGS.)
3.0 76 34610 35698
4.6 69 21750 32920
6.1 62 15558 23633
7.6 54 11975 18257
9.1 45 9616 14719
10.7 35 8097 12440
12.2 21 6849 10569
13.1 1 6260 9684
      BASIC CRANE WEIGHT = 17,010 KGS.
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
 
MODEL TC60-43-73  16.1 METERS EXTENDED
API LOAD CHART (INTERNATIONAL METRIC UNITS)
REACH
(METERS)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(KGS.)
STATIC
LOAD
(KGS.)
3.0 79 25175 35608
4.6 73 20639 31298
6.1 68 15196 23134
7.6 62 11930 18235
9.1 56 9526 14651
10.7 49 7938 12247
12.2 42 6804 10569
13.7 32 5806 9027
15.2 20 4990 7847
16.2 1 4672 7348
 
MODEL TC60-43-73  19.8 METERS EXTENDED
API LOAD CHART (INTERNATIONAL METRIC UNITS)
REACH
(METERS)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(KGS.)
STATIC
LOAD
(KGS.)
3.0 81 19051 28940
4.6 76 14969 22816
6.1 71 12247 18734
7.6 67 10660 16330
9.1 62 9300 14288
10.7 56 7847 12111
12.2 51 6713 10387
13.7 45 5806 9027
15.2 38 4990 7847
16.8 30 4445 6985
18.3 18 3992 6305
19.8 1 3538 5625
 
MODEL TC60-43-73  22.2 METERS EXTENDED
API LOAD CHART (INTERNATIONAL METRIC UNITS)
REACH
(METERS)
BOOM
ANGLE
(DEG.)
DYNAMIC
LOAD
(KGS.)
STATIC
LOAD
(KGS.)
3.0 82 17690 26898
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
4.6 78 12928 19732
6.1 74 10660 16330
7.6 70 9027 13880
9.1 66 7847 12111
10.7 61 6713 10387
12.2 57 6033 9390
13.7 52 5352 8346
15.2 47 4854 7575
16.8 41 4309 6804
18.3 35 3992 6305
19.8 27 3629 5806
21.3 17 3175 5126
22.9 1 3084 4944
 
IN ACCORDANCE WITH API-2C, VALUES SHOWN ARE ACTUAL HOOK LOADS (WEIGHT OF BLOCK AND HOOK
EXCLUDED).
LOAD LINE BLOCK WEIGHT IS 590 KGS.
LOAD LINE (4 PART LINE): 1 6x25 EIPS IWRC; 45,359 KGS. BREAKING STRENGTH; 9,072 KGS. WORKING STRENGTH.
FAST LINE BLOCK IS 50 KGS.
FAST LINE (1 PART LINE): 9/16 19x7 EIPS IWRC; 11,340 KGS. BREAKING STRENGTH; 2,268 KGS. WORKING STRENGTH.
STATIC LOAD = 1.5 x DYNAMIC LOAD
PEDESTAL REACTIONS ARE BASED ON THREE TIMES THE DYNAMIC LOAD PLUS DEAD LOAD.
 
Model TC60-43-73 Telescopic Boom Crane
 
Available Configurations
Elevating Boats, LLC.
http://www.ebi-inc.com/[4/10/2010 4:52:29 PM]
TAIL SWING CHART at 0 deg. BOOM ANGLE *
CONFIGURATION MAXIMUM TAIL SWING CONFIGURATION MAXIMUM TAIL SWING
1 4'-10 RADIUS 6
 
9'-3 RADIUS
2 5'-4 RADIUS 7
 
9'-3 RADIUS
3 7'-4 RADIUS 8 9'-8 RADIUS
4 7'-4 RADIUS 9 9'-8 RADIUS
5 7'-4 RADIUS 10 9'-8 RADIUS
*TAIL SWING VALUES MAY BE EXCEEDED DEPENDING UPON WINCH MOUNT OPTIONS.
 
The design of the DESMI TA-
RANTULA skimmer has ben-
efited from a continuing devel-
opment program over nearly
20 years. The resulting system
is the most versatile, powerful
and seaworthy unit in its class.
All components are manufac-
tured in marine grade alumin-
ium, stainless steel or polypro-
pylene.
Wireless remote control and
thruster system to allow re-
mote positioning of the skim-
mer head and operation of the
hose reel are available for the
DESMI TARANTULA.
The DESMI TARANTULA incor-
porates two powerful DESMI
DOP-250 DUAL screw pumps
that deliver a maximum total
capacity of 250m3
/h and can
develop discharge pressures
up to 10 bar while maintaining
nearly maximum flow.
The DESMI TARANTULA skim-
mer also has a self-adjusting
weir lip which is controlled by
the pumping rate. This enables
the skimmer to handle a wide
range of oils.
DESMI TARANTULA
- High capacity offshore skimmer
The DESMI TARANTULA
skimmer is the latest gen-
eration offshore skimmer
system from RO-CLEAN
DESMI, and is the largest
skimmer, ideal for offshore
situations.
DESMITARANTULA
Proven oil spill technology
Proven oil spill technology
Advantages of the DESMI TARAN-
TULA:
• Affordable high capacity
• Capable of recovering a wide
range of oils
• Self-adjusting weir
• Two independently controlled
DOP-250 DUAL pumps
• Cutting knives fitted to pumps
for trash handling
• Thrusters for remote positioning
of skimmer
• Hydraulic knuckle crane
matched with power pack
• Readily available parts
• Low maintenance
• The skimmer can also be fitted
with disc or brush modules
www.ro-cleandesmi.com
TECHNICAL DATA
Nameplate capacity:		 250 m³ per hour / 1100 US gpm
Inlet weir: 			 Self-adjusting, 1.36 m / 53 in diameter
Operating draught: 		 0.85 m / 33 in
Weight: 			 340 kg / 750 lbs
				 380 kg / 838 lbs with thrusters
Onboard pumps:		 2 x DOP-250 DUAL
Max discharge pressure: 	 10 bar / 145 psi
Max solids size: 		 50 mm / 2 in
Pump discharge: 		 6 in
Maximum hydraulic
demand: 		 	 320 litres per min / 84 US gpm
				 210 bar / 3,045 ps i
Power pack: 			 119 kW / 159 hp
Hydraulic hose connections
(pumps): 			 2 x 1 in, 1 x 3/8 in drain
				 plus thruster hoses (optional)
Dimensions: 			 2.35 x 2.35 x 1.25 m /
				 92 x 92 x 49 in
								
All information is subject to change, and pictures are for illustration purposes only, and not necessarily correct.
Issue no 1
DESMITARANTULA
- Contact one of the
offices below for further
information
Proven oil spill technology
Head Office
RO-CLEAN DESMI A/S
Hestehaven 61
DK-5260 Odense S
Phone: + 45 65 48 16 10
Fax: + 45 65 48 16 15
E-mail: Denmark.ro-clean@desmi.com
U.S.A. Office,
APPLIED FABRIC TECHNOLOGIES INC
PO Box 575,
227 Thorn Ave,
Orchard Park, NY 14127
Tel: +1 716 662 0632
Fax: +1 716 662 0306
E-mail: bestboom@afti.com
U.K. Office
RO-CLEAN DESMI LTD.
Unit 24, Shamrock Quay
William Street
Southampton, SO14 5QL
Tel. +44 23 80829751
Fax. +44 23 80339190
E-mail: uk.ro-clean@desmi.com
Asia Office
RO-CLEAN DESMI ASIA
50/F Menara BCA
Jl. MH. Thamrin No. 1
Jakarta 13010 Indonesia
Tel: +62 21 2358 4468
Fax: +62 21 2358 4401
E-mail: asia.ro-clean@desmi.com
Latin America Office
RO-CLEAN DESMI LATINOAMERICA S.A.
Calle Amagasí del Inca E14-68 y 2°
Transversal
Edificio RO-CLEAN DESMI - PB
Quito-Ecuador
Tel.: +593 2 326 1939
Fax: +593 2 326 4844
E-mail: Latinoamerica.ro-clean@desmi.com
Introduction
Canflex USA Inc. is a major U.S. Manufacturer of high frequency welded products made with special high strength
TPU/PVC blend or Urethane coated fabrics, such as polyester, nylon, and Kevlar®. All of our products are collaps-
ible and can be folded for easy storage and transportation. Our tanks can be used to transport or store a wide
variety of liquids including, but not limited to, potable water, oil, jet fuel, diesel fuel, waste water, sewage, oil spill
and ballast water. CANFLEX also offers custom products made from coated fabrics and complete systems including
off load pumps and power packs.
All fittings are made from cast anodized marine grade aluminum. Any nuts, bolts, or washers integral to the
fittings are made of stainless steel. All fittings are bolted through the main body of the tanks to a cast marine
grade aluminum backing plate. Each fitting is mounted on a patch that has a diameter greater than the fitting
outside diameter. Fill and discharge hose connections are generally cam-lock type connections with the size
depending on the users needs.
The following is a partial purchaser list of CANFLEX (USA) INC collapsible storage products: U.S Coast Guard,
Canadian Coast Guard, National Response Corporation, Alaska Clean Seas , Clean Caribbean and Americas, Seacor
Environmental, Petrobras-Brazil, Pemex-Mexico, PetroEcuador, Columbia Pipeline Company, Australian Maritime
Safety Authority (AMSA), New Zealand Maritime Safety Authority, South Africa Strategic Fuel, Clean Islands
Council-Hawaii, Alyeska Pipeline and many other companies.
CANFLEX MODEL
FCB-125“Sea Slug”
Canflex“Sea Slug”bladders are very rugged units with a cylindrical main body and matching conical ends giving
them great towing characteristics. The ends of the Sea Slug are constructed so the towing force is evenly distrib-
uted through the fabric panels of the product, rather than distributing the tow forces throughout the hardware
connecting the end fittings. This increases the product longevity. Canflex superior engineering design along
with the high strength coated fabrics used to manufacture the bladders allow them to be used safely for training
and practical applications over an unlimited time period. Their coated fabric materials are many times stronger
than materials used by other towable bladder manufacturers. This material strengh is critical for constructing a
safe ocean towable bladder that can be filled, towed and off loaded repeatedly.
CANFLEX“SEA SLUG”
Canflex“Sea Slug”Ocean Towable Bladders are normally used for Oil spill recovery and Temporary storage and
are primarily used on water, they are however strong enough to be used for liquid storage on land. Special mate-
rial coatings are available for these bladders to be used in many environments, such as storage and transport of
Drinking water, Fuels or Waste products.
CANFLEX MODEL
FCB-125“Sea Slug”
CANFLEX MODEL
FCB-60“Sea Slug”
CANFLEX MODEL
FCB-25“Sea Slug”
The Sea Slug is equipped with rectangular shaped flotation panels on each side. These floats are enclosed in water tight,
covered pockets that run the full length of the bladder along the upper sides. Each float consists of several air chambers
or closed cell foam, giving the float a low profile rectangular shape. Also, the use of multiple air chambers creates a high
safety margin in case of a puncture or damage causing air leak in one of the chambers. The streamline and inherent flota-
tion allow the Sea Slug to be used in ocean environments while filled with fluid, including high-density weathered oils.
The Sea Slug, inclined bow encloses an air inflatable bladder that ensures that the bow rides high in the water and
maintains a streamlined shape for the optimum towing speed of the bladder when loaded.
CANFLEX MODEL
FCB-250“Sea Slug”
Clip - Lok Box
CANFLEX (USA) INC offers a proven submersible pump off loading system for its“Sea Slug”ocean towable bladders.
In addition Canflex offers a manufactured top center off-load hatch assembly that allows the submersible pump to be
lowered into the center of the bladder . This top center hatch opening is available on the sizes of 25 m3 capacity and
larger “Sea Slugs”. This is a fast and efficient method of off loading and is achieved by simply lowering the pump with
the custom watertight cap with the pump attached into the Sea Slug. With the pump now locked inside the bladder all
hydraulic power hoses and off-load fluid connections can quickly be connected to external fittings on its pump
adaptation cap.
Canflex can offer positive displacement Archimedes screw pumps or Centrifugal screw submersible pumps with off load
capacities from 20m3/h to 170m3/h.These high capacity pumps driven by their respective diesel engine powered
hydraulic power packs will off-load a wide variety of fluids including high viscosity crude oils.Also available are non
submersible portable diesel engine powered type pumps with off-load capacities from 11m3/h to 600m3/h.
This type of pump can be connected to our stern off-load hose connection or at one of the top NPT flanged fittings.
The bladder high strength coated fabric material
allows the bladder to be either folded or rolled
into compact shape to fit into its custom
aluminum storage / shipping container.
The CANFLEX (USA) INC durable Marine Grade
aluminum shipping /storage containers are fork-
lift able from all sides, collapsible from one side,
and crane lift able.
The container has a lift off top cover and it is
equipped with two screened air vents for ventila-
tion. It also has a bottom drain and a replaceable
inner liner for storing oily debris during a spill
response, or for using the container or additional
liquid storage.
Two Aluminum Containers (1) showing replaceable in-
ner liner fitted (2) FCB-125, 50cu.m - 50 tonne (12,500
gallon) “Sea Slug” folded into cargo net and packed
inside.
Container Size: 100”-width x 75” - depth x 56” height
NOTES: (1) The Sea Slugs with 48 oz yd2
coated material are yellow color and the others are orange color. (2) All materials have a Bending Resistance of minimum 100.000 knits (DIN 53359). (3)
All materials have Ultra Violet resistance 7 of 8 Black color (8 of possible 8) (DIN 54404). (4) Canflex can supply Sea Slugs with Higher Density coated material (5) SERIES 3 * Special Order
CANFLEX (USA) INC 412-30th. Street-PO. Box 1014– ANACORTES, WASHINGTON 98221
TEL: (206) 282-8233 or (800) 544-8356 — FAX: (206) 282-5933 or (800) 635-8992 / canflex@direct.ca / www.canflexinc.com
SERIES1
canflex (USA), Inc.SERIES2SERIES3
CANFLEX (USA) INC “SEA SLUG” CHARACTERISTICS SUMMARY
MODEL
Capacity Lenght
(L)
Diam
(ø)
Auxiliary
Floatation
Dry Weight
with
accessories
Draft
(Full)
Shipping
Volume
with
accessories
POLYESTER FABRIC TPU/PVC Blended Coated “Oil  Fuel Resistant”
PROPERTIES
Weight
DIN 53853
Tensile
Strength
DIN 53354
Tear Strength
FTMS
191556
Cold Crack
DIN 53361
Heat Resistance
IVK Method
m3
m m Kg Kg m m3
g/ m3
N/5 cm N º C º C
USG ft ft lbs lbs ft ft3
oz/yd2
lbf/in lbf º F º F
FCB-12
5 6.2 1.1 168 68 0.98 0.9 1622 8090 1553 -30 -80
1,320 20 3.5 370 150 3.13 31 48 924 350 -22 +160
FCB-15
6 7.2 1.1 210 77 0.98 1 1622 8090 1553 -30 -80
1,585 23.7 3.5 464 170 3.13 35 48 924 350 -22 +160
FCB-21
8 8.5 1.3 230 136 1.16 1.1 1622 8090 1553 -30 -80
2,113 28 4.2 510 300 3.76 38 48 924 350 -22 +160
FCB-25
10 9.2 1.3 250 163 1.16 1.2 1622 8090 1553 -30 -80
2640 30 4.2 550 360 3.76 42 48 924 350 -22 +160
FCB-33
12.5 9.9 1.5 320 166 1.34 1.4 1622 8090 1553 -30 -80
3,300 32.5 4.9 705 365 4.38 49 48 924 350 -22 +160
FCB-40
15 8.7 1.7 226 168 1.52 1.8 1622 8090 1553 -30 -80
3,962 28.5 5.6 500 370 5.01 64 48 924 350 -22 +160
FCB-43
16 9.1 1.7 281 172 1.52 2.2 1622 8090 1553 -30 -80
4300 29.8 5.6 620 380 5.01 80 48 924 350 -22 +160
FCB-52
20 9.7 1.8 317 227 1.61 1.7 1884 11034 2406 -30 +80
5,285 32 5.9 700 500 5.28 60 56 1260 541 -22 +160
FCB-60
25 11.7 1.8 348 313 1.61 1.8 2278 13000 2942 -30 +80
6,600 38.5 5.9 767 690 5.28 64 67 1484 662 -22 +160
FCB-80
30 13.7 1.8 411 335 1.61 2.1 2278 13000 2942 -30 +80
7,925 44.9 5.9 906 740 5.28 74 67 1484 662 -22 +160
FCB-125
50 14.3 2.3 1012 818 2.06 6 3024 18000 2975 -30 +80
13,200 47 7.5 2230 1800 6.71 211 89 2057 669 -22 +160
FCB-250
100 20 2.8 1579 1088 2.50 6.8 3024 18000 2975 -30 +80
26,400 66 9.2 3480 2400 8.23 240 89 2057 669 -22 +160
FCB-400
150 20.4 3.50 1594 1150 3.13 7.6 3024 18000 2975 -30 +80
39,650 67 11.3 3515 2540 10.11 268 89 2057 669 -22 +160
FCB-500
200 22.6 3.70 1769 1270 3.31 8.4 3024 18000 2975 -30 +80
52,850 74.3 12.2 3900 2800 10.91 297 89 2057 669 -22 +160
FCB-650
250 27.1 3.70 2023 1470 3.31 9.2 3024 18000 2975 -30 +80
66,000 88.9 12.2 4460 3250 10.91 325 89 2057 669 -22 +160
*FCB-300CM
300 29.5 4.0 2429 2430 3.58 10 3024 18000 2975 -30 +80
79,250 96.6 13 5354 5350 11.63 353 89 2057 669 -22 +160
*FCB-400CM
400 31 4.5 2517 2520 4.03 11.6 3024 18000 2975 -30 +80
105,670 102 14.7 5550 5550 13.15 410 89 2057 669 -22 +160
*FCB-500CM
500 32 5.2 2530 2700 4.65 13.2 3024 18000 2975 -30 +80
132,000 105 17 5570 5950 15.21 466 89 2057 669 -22 +160
*FCB-600CM
600 35.2 5.2 2840 2840 4.65 14.8 3024 18000 2975 -30 +80
158,500 115.4 17 6260 6260 15.21 523 89 2057 669 -22 +160
*FCB-650CM
650 37.6 5.2 3080 3080 4.65 15.6 3024 18000 2975 -30 +80
171,700 123.5 17 6800 6800 15.21 551 89 2057 669 -22 +160
400 Series - 400’ x 99’6” x 20’
Specifications
Summer Load Line
Keel Draft 14' 2.75
Summer Load Line
Displacement 15,416 ST
Summer Load Line
Deadweight 12,035 ST
Lightship Draft 4' 0.5
Lightship
Displacement 3,380 ST
Lightship LCG 203.4 ft Forward of Transom
Lightship VCG 10.5 ft above Baseline
Draft Mark Locations
Fwd Marks 320 ft Forward of Transom
Aft Marks 50 ft Forward of Transom
Longitudinal Strength Data
Maximum Allowable Still Water Bending Moments
In Port 122,850 LT-ft
At Sea 57,950 LT-ft
Maximum Allowable Still Water Shear Force
In Port 4,083 LT
At Sea 1,897 LT
www.crowley.com
© Crowley Maritime Corporation, 2004 CROWLEY is a registered trademark of Crowley Maritime Corporation
Liner Shipping • Worldwide Logistics • Project Management • Ship Assist  Escort • Alaska Fuel Sales  Distribution •
Energy Support • Ocean Towing  Transportation • Salvage  Emergency Response • Petroleum  Chemical Transportation
CROWLEY
®
People Who Know™
Summary of Allowable Loads
Transverse Frames Transverse Bulkheads Longitudinal Bulkheads
Uniform Linear Load - 16,247 lb/ft Uniform Linear Load - 33148 lbf/ft2 Uniform Linear Load - 31131 lbf/ft2
Point Load - 162, - lbs Point Load - 331481lbf Point Load - 374192 lbf
(only over web frames) (only over web frames)
Nominal Overall Deck Load Rating Intersection of Structures
Counting Long'l Stiffeners - 1072 lbf/ft2 Transverse and Longitudinal Bulkheads - 449 Kips
Counting only Frames, - 1625 lbf/ft2 Transverse Bulkhead and Side Shell - 620 Kips
Rail Girders and Bhds Transverse Frame and Side Shell - 519 Kips
RC O LW E Y
BARGE 400
) ) ) ) ) ) ) ) ) ) ) )* * * * * *+ + +
A - Longitudinal Stiffeners B - Rail Girders C - Frame Stanchions
1102 S.W. Massachusetts Street • Seattle, Washington 98134 • (206) 332-8000
16701 Greenspoint Park Dr., Suite 195 • Houston, Texas 77060 • (281) 774-5400
64
Appendix H – Maneuvering 
Contents:
Maneuvering Prediction Output.............................................................................................H-1
Bow Thruster Specifications..................................................................................................H-2
   
file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM]
University of Michigan
Department of Naval Architecture and Marine Engineering
Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons
References: Clarke,D., Gedling,P., and Hine,G.,
The Application of Manoeuvring Criteria in Hull
Design using Linear Theory, Trans. RINA, 1983
Lyster, C., and Knights, H. L.,
Prediction Equations for Ships Turning Circles,
Trans. NECIES, 1978-1979
Run Identification: A
Input Verification:
Length of Waterline LWL (m) = 65.50
Maximum Beam on LWL (m) = 14.95
Mean Draft (m) = 5.63
Draft Forward (m) = 5.63
Draft Aft (m) = 5.63
Block Coefficient on LWL CB = 0.5210
Molded Volume (m^3) = 2872.98
Center of Gravity LCG (%LWL; + Fwd) = 51.4000
Center of Gravity LCG (m from FP) = -0.92
Midships to Rudder CE XR (%LWL; + Aft) = 49.0000
Rudder Center of Effort XR (m from FP) = 64.85
Initial Ship Speed (knots) = 16.00
Initial Ship Speed (m/s) = 8.2310
Water Type = Salt@15C
Water Density (kg/m^3) = 1025.87
Kinematic Viscosity (m^2/s) = 0.118831E-05
Yaw Radius of Gyration K33/LWL = 0.2500
Water Depth to Ship Draft Ratio H/T = 1000.00
Steering Gear Time Constant (s) = 2.50
Total Rudder Area - Fraction of LWL*T = 0.0298
file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM]
Number of Propellers = 2
Number of Rudders = 2
Submerged Bow Area - Fraction of LWL*T = 0.0000
University of Michigan
Department of Naval Architecture and Marine Engineering
Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons
*** Linear Maneuvering Criteria Option ***
Reference: Clarke,D., Gedling,P., and Hine,G.,
The Application of Manoeuvring Criteria in Hull
Design using Linear Theory, Trans. RINA, 1983
Run Identification: A
Linear Maneuvering Derivatives
Nondimensional Mass M prime = 0.020444
Nondimensional Mass Moment I sub zz = 0.001278
Sway Velocity Derivative Y sub v = -0.038365
Sway Acceleration Derivative Y sub v dot = -0.022187
Yaw Velocity Derivative N sub v = -0.015269
Yaw Acceleration Derivative N sub v dot = -0.003301
Sway Velocity Derivative Y sub r = 0.006011
Sway Acceleration Derivative Y sub r dot = -0.003010
Yaw Velocity Derivative N sub r = -0.005794
Yaw Acceleration Derivative N sub r dot = -0.000732
Sway Rudder Derivative Y sub delta = 0.007680
Yaw Rudder Derivative N sub delta = -0.003763
Time Constants and Gains for Nomotos Equation
Dominant Ship Time Constant T1 prime = 1.1259
Ship Time Constant T2 prime = -0.2215
file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM]
Numerator Time Constant T3 prime = 1.0185
Numerator Time Constant T4 prime = 0.3694
1st Order Eqn. Time Constant T prime = -0.1141
Rudder Gain Factor K prime = -0.6459
Rudder Gain Factor K sub v prime = 0.4432
Steering Gear Time Constant TE prime = 0.3141
Evaluation of Turning Ability and Stability
Inverse Time Constant 1/|T prime| = 8.7668
Inverse Gain Factor 1/|K prime| = 1.5481
Clarkes Turning Index P = 11.2914
Linear Dynamic Stability Criterion C = 0.0004051
Vessel is hydrodynamically open loop course stable
Closed Loop Phase Margin with Steering Engine = 84.2157 degrees
University of Michigan
Department of Naval Architecture and Marine Engineering
Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons
*** Turning Prediction Option ***
Reference: Lyster, C., and Knights, H. L.,
Prediction Equations for Ships Turning Circle,
Trans. NECIES, 1978-1979
Run Identification: A
Approach Speed = 16.00 knots
Rudder Angle = 30.00 degrees
Steady Turning Diameter = 312.83 meters
Tactical Diameter = 321.83 meters
Advance = 236.06 meters
Transfer = 147.96 meters
Steady Speed in Turn = 10.93 knots
65
 Appendix I – Floodable Length 
Contents:
Floodable Length Results ......................................................................................................I-1
66
Appendix J – Intact Stability 
Contents:
USCG Wind Heel Requirement Spreadsheet ........................................................................J-1
 
U.S. Coast Guard Wind Heel GMt (R2) [46CFR170.170]
Draft T 5.63 m input
Depth D 7.50 m
Length LOA 66.8 m output
Beam BOA 15 m
Displacement 2936 t
Freeboard F 1.87 m
number length height #h abv DWL Az
Lateral Areas # [m] h [m] A [m2
] z [m] moment
Main Deck 219.00 2.910 637.29
Deckhouse 76.00 8.160 620.16
Fly Bridge 72.00 15.100 1087.20
Aft Structure 117.00 1.940 226.98
Summation 484.00 5.313 2571.63
total area net z
h net z + T/2 = 8.128 m
P 0.05760 t/m2
min(14,atan(F/B)) 0.1240 radians 14 deg. = 0.2443 radians
GMt reqd 0.619 m
Note: these are the same deckhouse and superstructure profile view  x h areas
used in the Watson and Gilfillan structural weight modeling.
Units in tonnes and meters
67
Appendix K – Damaged Stability 
Contents:
HECSALV Damage Stability Results ...................................................................................K-1
   
68
Appendix L – Seakeeping Results 
Contents:
Seakeeper Results ..................................................................................................................L-1
 
0, 0 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 49.146 kN -- --
17 Heave motion 0.073 m^2 0.27 m 0.539 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.0007 rad^2 0.02637 rad 0.05275 rad
20 Heave velocity 0.039 m^2/s^2 0.197 m/s 0.394 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00046 (rad/s)^2 0.02139 rad/s 0.04278 rad/s
23 Heave acceleration 0.026 m^2/s^4 0.161 m/s^2 0.323 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00033 (rad/s/s)^2 0.01826 rad/s/s 0.03652 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.121 m^2 0.348 m 0.696 m
27 Wheelhouse: Rel. vert. motion 0.17 m^2 0.412 m 0.824 m
28 Wheelhouse: Abs. vert. velocity 0.08 m^2/s^2 0.284 m/s 0.567 m/s
29 Wheelhouse: Rel. vert. velocity 0.209 m^2/s^2 0.457 m/s 0.914 m/s
30 Wheelhouse: Abs. vert. accel 0.062 m^2/s^4 0.25 m/s^2 0.5 m/s^2
31 Wheelhouse: Rel. vert. accel 0.467 m^2/s^4 0.683 m/s^2 1.367 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.082 m^2 0.287 m 0.574 m
33 Wheelhouse: Long. (due to pitch) velocity 0.054 m^2/s^2 0.232 m/s 0.464 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.039 m^2/s^4 0.197 m/s^2 0.394 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.132 m^2 0.363 m 0.727 m
40 Workdeck: Rel. vert. motion 0.072 m^2 0.269 m 0.537 m
41 Workdeck: Abs. vert. velocity 0.073 m^2/s^2 0.27 m/s 0.539 m/s
42 Workdeck: Rel. vert. velocity 0.121 m^2/s^2 0.348 m/s 0.696 m/s
43 Workdeck: Abs. vert. accel 0.048 m^2/s^4 0.218 m/s^2 0.436 m/s^2
44 Workdeck: Rel. vert. accel 0.32 m^2/s^4 0.565 m/s^2 1.131 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.01 m^2 0.1 m 0.201 m
46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.081 m/s 0.162 m/s
47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.069 m/s^2 0.138 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 141.403 kN -- --
17 Heave motion 0.282 m^2 0.531 m 1.061 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00203 rad^2 0.04501 rad 0.09003 rad
20 Heave velocity 0.129 m^2/s^2 0.359 m/s 0.719 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00124 (rad/s)^2 0.0352 rad/s 0.07039 rad/s
23 Heave acceleration 0.074 m^2/s^4 0.272 m/s^2 0.545 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00085 (rad/s/s)^2 0.02919 rad/s/s 0.05839 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.39 m^2 0.625 m 1.25 m
27 Wheelhouse: Rel. vert. motion 0.407 m^2 0.638 m 1.275 m
28 Wheelhouse: Abs. vert. velocity 0.226 m^2/s^2 0.475 m/s 0.95 m/s
29 Wheelhouse: Rel. vert. velocity 0.468 m^2/s^2 0.684 m/s 1.368 m/s
30 Wheelhouse: Abs. vert. accel 0.159 m^2/s^4 0.398 m/s^2 0.797 m/s^2
31 Wheelhouse: Rel. vert. accel 0.985 m^2/s^4 0.992 m/s^2 1.985 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.241 m^2 0.491 m 0.983 m
33 Wheelhouse: Long. (due to pitch) velocity 0.146 m^2/s^2 0.382 m/s 0.765 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.1 m^2/s^4 0.316 m/s^2 0.632 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.473 m^2 0.687 m 1.375 m
40 Workdeck: Rel. vert. motion 0.157 m^2 0.397 m 0.794 m
41 Workdeck: Abs. vert. velocity 0.23 m^2/s^2 0.479 m/s 0.959 m/s
42 Workdeck: Rel. vert. velocity 0.258 m^2/s^2 0.508 m/s 1.015 m/s
43 Workdeck: Abs. vert. accel 0.134 m^2/s^4 0.365 m/s^2 0.731 m/s^2
44 Workdeck: Rel. vert. accel 0.664 m^2/s^4 0.815 m/s^2 1.629 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.172 m 0.344 m
46 Workdeck: Long. (due to pitch) velocity 0.018 m^2/s^2 0.134 m/s 0.267 m/s
47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.11 m/s^2 0.221 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 285.385 kN -- --
17 Heave motion 1.025 m^2 1.012 m 2.025 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00353 rad^2 0.05942 rad 0.11883 rad
20 Heave velocity 0.33 m^2/s^2 0.574 m/s 1.149 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00181 (rad/s)^2 0.04254 rad/s 0.08508 rad/s
23 Heave acceleration 0.135 m^2/s^4 0.367 m/s^2 0.734 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.0011 (rad/s/s)^2 0.03315 rad/s/s 0.0663 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.083 m^2 1.041 m 2.082 m
27 Wheelhouse: Rel. vert. motion 0.488 m^2 0.699 m 1.397 m
28 Wheelhouse: Abs. vert. velocity 0.42 m^2/s^2 0.648 m/s 1.296 m/s
29 Wheelhouse: Rel. vert. velocity 0.489 m^2/s^2 0.699 m/s 1.399 m/s
30 Wheelhouse: Abs. vert. accel 0.222 m^2/s^4 0.471 m/s^2 0.942 m/s^2
31 Wheelhouse: Rel. vert. accel 0.93 m^2/s^4 0.964 m/s^2 1.928 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.428 m^2 0.654 m 1.309 m
33 Wheelhouse: Long. (due to pitch) velocity 0.216 m^2/s^2 0.465 m/s 0.93 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.13 m^2/s^4 0.36 m/s^2 0.72 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.431 m^2 1.196 m 2.392 m
40 Workdeck: Rel. vert. motion 0.156 m^2 0.395 m 0.79 m
41 Workdeck: Abs. vert. velocity 0.505 m^2/s^2 0.711 m/s 1.421 m/s
42 Workdeck: Rel. vert. velocity 0.245 m^2/s^2 0.495 m/s 0.99 m/s
43 Workdeck: Abs. vert. accel 0.223 m^2/s^4 0.473 m/s^2 0.945 m/s^2
44 Workdeck: Rel. vert. accel 0.608 m^2/s^4 0.78 m/s^2 1.559 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.052 m^2 0.229 m 0.458 m
46 Workdeck: Long. (due to pitch) velocity 0.026 m^2/s^2 0.163 m/s 0.325 m/s
47 Workdeck: Long. (due to pitch) accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 50.304 kN -- --
17 Heave motion 0.094 m^2 0.307 m 0.614 m
18 Roll motion 0.00166 rad^2 0.04069 rad 0.08138 rad
19 Pitch motion 0.00067 rad^2 0.02584 rad 0.05168 rad
20 Heave velocity 0.052 m^2/s^2 0.227 m/s 0.454 m/s
21 Roll velocity 0.00196 (rad/s)^2 0.04425 rad/s 0.08849 rad/s
22 Pitch velocity 0.00046 (rad/s)^2 0.02147 rad/s 0.04295 rad/s
23 Heave acceleration 0.035 m^2/s^4 0.186 m/s^2 0.372 m/s^2
24 Roll acceleration 0.00349 (rad/s/s)^2 0.05905 rad/s/s 0.1181 rad/s/s)
25 Pitch acceleration 0.00035 (rad/s/s)^2 0.01884 rad/s/s 0.03767 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.117 m^2 0.342 m 0.684 m
27 Wheelhouse: Rel. vert. motion 0.137 m^2 0.371 m 0.741 m
28 Wheelhouse: Abs. vert. velocity 0.08 m^2/s^2 0.283 m/s 0.566 m/s
29 Wheelhouse: Rel. vert. velocity 0.181 m^2/s^2 0.425 m/s 0.85 m/s
30 Wheelhouse: Abs. vert. accel 0.065 m^2/s^4 0.255 m/s^2 0.511 m/s^2
31 Wheelhouse: Rel. vert. accel 0.446 m^2/s^4 0.668 m/s^2 1.336 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.079 m^2 0.281 m 0.563 m
33 Wheelhouse: Long. (due to pitch) velocity 0.054 m^2/s^2 0.233 m/s 0.466 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.042 m^2/s^4 0.204 m/s^2 0.408 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m
36 Wheelhouse: Lat. (due to roll) velocity 0.234 m^2/s^2 0.484 m/s 0.968 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.412 m^2/s^4 0.642 m/s^2 1.283 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.006 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.215 m^2 0.463 m 0.927 m
40 Workdeck: Rel. vert. motion 0.059 m^2 0.244 m 0.488 m
41 Workdeck: Abs. vert. velocity 0.129 m^2/s^2 0.359 m/s 0.719 m/s
42 Workdeck: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s
43 Workdeck: Abs. vert. accel 0.098 m^2/s^4 0.312 m/s^2 0.625 m/s^2
44 Workdeck: Rel. vert. accel 0.393 m^2/s^4 0.627 m/s^2 1.254 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.01 m^2 0.098 m 0.197 m
46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.082 m/s 0.163 m/s
47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.071 m/s^2 0.143 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.024 m^2 0.156 m 0.313 m
49 Workdeck: Lat. (due to roll) velocity 0.029 m^2/s^2 0.169 m/s 0.339 m/s
50 Workdeck: Lat. (due to roll) accel 0.05 m^2/s^4 0.224 m/s^2 0.449 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 144.239 kN -- --
17 Heave motion 0.348 m^2 0.59 m 1.18 m
18 Roll motion 0.00388 rad^2 0.06227 rad 0.12453 rad
19 Pitch motion 0.0019 rad^2 0.04354 rad 0.08709 rad
20 Heave velocity 0.166 m^2/s^2 0.407 m/s 0.815 m/s
21 Roll velocity 0.00437 (rad/s)^2 0.06611 rad/s 0.13222 rad/s
22 Pitch velocity 0.00122 (rad/s)^2 0.0349 rad/s 0.06979 rad/s
23 Heave acceleration 0.097 m^2/s^4 0.312 m/s^2 0.623 m/s^2
24 Roll acceleration 0.00744 (rad/s/s)^2 0.08625 rad/s/s 0.17249 rad/s/s)
25 Pitch acceleration 0.00089 (rad/s/s)^2 0.02977 rad/s/s 0.05954 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.374 m^2 0.612 m 1.223 m
27 Wheelhouse: Rel. vert. motion 0.325 m^2 0.57 m 1.139 m
28 Wheelhouse: Abs. vert. velocity 0.222 m^2/s^2 0.471 m/s 0.942 m/s
29 Wheelhouse: Rel. vert. velocity 0.4 m^2/s^2 0.632 m/s 1.265 m/s
30 Wheelhouse: Abs. vert. accel 0.163 m^2/s^4 0.404 m/s^2 0.808 m/s^2
31 Wheelhouse: Rel. vert. accel 0.935 m^2/s^4 0.967 m/s^2 1.934 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.226 m^2 0.476 m 0.952 m
33 Wheelhouse: Long. (due to pitch) velocity 0.144 m^2/s^2 0.38 m/s 0.759 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.104 m^2/s^4 0.323 m/s^2 0.645 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.469 m^2 0.685 m 1.37 m
36 Wheelhouse: Lat. (due to roll) velocity 0.524 m^2/s^2 0.724 m/s 1.447 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.879 m^2/s^4 0.938 m/s^2 1.875 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.668 MII/h 0.005 MII/h
39 Workdeck: Abs. vert. motion 0.706 m^2 0.84 m 1.68 m
40 Workdeck: Rel. vert. motion 0.133 m^2 0.365 m 0.73 m
41 Workdeck: Abs. vert. velocity 0.379 m^2/s^2 0.616 m/s 1.231 m/s
42 Workdeck: Rel. vert. velocity 0.26 m^2/s^2 0.51 m/s 1.019 m/s
43 Workdeck: Abs. vert. accel 0.256 m^2/s^4 0.506 m/s^2 1.011 m/s^2
44 Workdeck: Rel. vert. accel 0.809 m^2/s^4 0.899 m/s^2 1.799 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.028 m^2 0.166 m 0.333 m
46 Workdeck: Long. (due to pitch) velocity 0.018 m^2/s^2 0.133 m/s 0.266 m/s
47 Workdeck: Long. (due to pitch) accel 0.013 m^2/s^4 0.113 m/s^2 0.226 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.057 m^2 0.24 m 0.479 m
49 Workdeck: Lat. (due to roll) velocity 0.064 m^2/s^2 0.253 m/s 0.506 m/s
50 Workdeck: Lat. (due to roll) accel 0.108 m^2/s^4 0.328 m/s^2 0.656 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.015 MII/h 0 MII/h
0, 0 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 290.432 kN -- --
17 Heave motion 1.156 m^2 1.075 m 2.15 m
18 Roll motion 0.00441 rad^2 0.06644 rad 0.13288 rad
19 Pitch motion 0.00315 rad^2 0.05615 rad 0.11231 rad
20 Heave velocity 0.39 m^2/s^2 0.624 m/s 1.249 m/s
21 Roll velocity 0.00451 (rad/s)^2 0.06717 rad/s 0.13434 rad/s
22 Pitch velocity 0.0017 (rad/s)^2 0.04127 rad/s 0.08254 rad/s
23 Heave acceleration 0.167 m^2/s^4 0.409 m/s^2 0.818 m/s^2
24 Roll acceleration 0.00712 (rad/s/s)^2 0.0844 rad/s/s 0.1688 rad/s/s)
25 Pitch acceleration 0.0011 (rad/s/s)^2 0.03316 rad/s/s 0.06631 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.046 m^2 1.023 m 2.046 m
27 Wheelhouse: Rel. vert. motion 0.377 m^2 0.614 m 1.228 m
28 Wheelhouse: Abs. vert. velocity 0.408 m^2/s^2 0.639 m/s 1.278 m/s
29 Wheelhouse: Rel. vert. velocity 0.41 m^2/s^2 0.64 m/s 1.28 m/s
30 Wheelhouse: Abs. vert. accel 0.223 m^2/s^4 0.472 m/s^2 0.944 m/s^2
31 Wheelhouse: Rel. vert. accel 0.873 m^2/s^4 0.935 m/s^2 1.869 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.383 m^2 0.619 m 1.238 m
33 Wheelhouse: Long. (due to pitch) velocity 0.204 m^2/s^2 0.452 m/s 0.903 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.13 m^2/s^4 0.361 m/s^2 0.721 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.539 m^2 0.734 m 1.468 m
36 Wheelhouse: Lat. (due to roll) velocity 0.543 m^2/s^2 0.737 m/s 1.474 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.844 m^2/s^4 0.919 m/s^2 1.837 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.523 MII/h 0.003 MII/h
39 Workdeck: Abs. vert. motion 1.816 m^2 1.348 m 2.695 m
40 Workdeck: Rel. vert. motion 0.155 m^2 0.394 m 0.787 m
41 Workdeck: Abs. vert. velocity 0.713 m^2/s^2 0.845 m/s 1.689 m/s
42 Workdeck: Rel. vert. velocity 0.249 m^2/s^2 0.499 m/s 0.998 m/s
43 Workdeck: Abs. vert. accel 0.37 m^2/s^4 0.608 m/s^2 1.216 m/s^2
44 Workdeck: Rel. vert. accel 0.735 m^2/s^4 0.857 m/s^2 1.715 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.047 m^2 0.217 m 0.433 m
46 Workdeck: Long. (due to pitch) velocity 0.025 m^2/s^2 0.158 m/s 0.316 m/s
47 Workdeck: Long. (due to pitch) accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.066 m^2 0.257 m 0.513 m
49 Workdeck: Lat. (due to roll) velocity 0.066 m^2/s^2 0.258 m/s 0.515 m/s
50 Workdeck: Lat. (due to roll) accel 0.103 m^2/s^4 0.321 m/s^2 0.643 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.059 MII/h 0.001 MII/h
0, 0 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 45.402 kN -- --
17 Heave motion 0.279 m^2 0.529 m 1.057 m
18 Roll motion 0.00671 rad^2 0.08189 rad 0.16378 rad
19 Pitch motion 0.00016 rad^2 0.0125 rad 0.025 rad
20 Heave velocity 0.218 m^2/s^2 0.467 m/s 0.934 m/s
21 Roll velocity 0.00793 (rad/s)^2 0.08905 rad/s 0.1781 rad/s
22 Pitch velocity 0.00012 (rad/s)^2 0.01094 rad/s 0.02187 rad/s
23 Heave acceleration 0.21 m^2/s^4 0.458 m/s^2 0.917 m/s^2
24 Roll acceleration 0.01412 (rad/s/s)^2 0.11884 rad/s/s 0.23768 rad/s/s)
25 Pitch acceleration 0.00011 (rad/s/s)^2 0.01028 rad/s/s 0.02055 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.155 m^2 0.393 m 0.787 m
27 Wheelhouse: Rel. vert. motion 0.111 m^2 0.334 m 0.668 m
28 Wheelhouse: Abs. vert. velocity 0.134 m^2/s^2 0.365 m/s 0.731 m/s
29 Wheelhouse: Rel. vert. velocity 0.2 m^2/s^2 0.448 m/s 0.895 m/s
30 Wheelhouse: Abs. vert. accel 0.149 m^2/s^4 0.386 m/s^2 0.772 m/s^2
31 Wheelhouse: Rel. vert. accel 0.571 m^2/s^4 0.756 m/s^2 1.512 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.019 m^2 0.137 m 0.273 m
33 Wheelhouse: Long. (due to pitch) velocity 0.014 m^2/s^2 0.119 m/s 0.238 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.012 m^2/s^4 0.112 m/s^2 0.223 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.809 m^2 0.9 m 1.799 m
36 Wheelhouse: Lat. (due to roll) velocity 0.949 m^2/s^2 0.974 m/s 1.948 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.667 m^2/s^4 1.291 m/s^2 2.583 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.625 MII/h 0.436 MII/h
39 Workdeck: Abs. vert. motion 0.584 m^2 0.764 m 1.529 m
40 Workdeck: Rel. vert. motion 0.152 m^2 0.39 m 0.78 m
41 Workdeck: Abs. vert. velocity 0.511 m^2/s^2 0.715 m/s 1.429 m/s
42 Workdeck: Rel. vert. velocity 0.173 m^2/s^2 0.415 m/s 0.831 m/s
43 Workdeck: Abs. vert. accel 0.577 m^2/s^4 0.759 m/s^2 1.519 m/s^2
44 Workdeck: Rel. vert. accel 0.377 m^2/s^4 0.614 m/s^2 1.229 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.002 m^2 0.048 m 0.096 m
46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.042 m/s 0.083 m/s
47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.039 m/s^2 0.078 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.099 m^2 0.315 m 0.629 m
49 Workdeck: Lat. (due to roll) velocity 0.116 m^2/s^2 0.341 m/s 0.681 m/s
50 Workdeck: Lat. (due to roll) accel 0.204 m^2/s^4 0.452 m/s^2 0.903 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.264 MII/h 0.009 MII/h
0, 0 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 135.192 kN -- --
17 Heave motion 0.826 m^2 0.909 m 1.817 m
18 Roll motion 0.0157 rad^2 0.12531 rad 0.25063 rad
19 Pitch motion 0.00042 rad^2 0.02041 rad 0.04082 rad
20 Heave velocity 0.564 m^2/s^2 0.751 m/s 1.502 m/s
21 Roll velocity 0.0177 (rad/s)^2 0.13305 rad/s 0.2661 rad/s
22 Pitch velocity 0.0003 (rad/s)^2 0.01733 rad/s 0.03466 rad/s
23 Heave acceleration 0.497 m^2/s^4 0.705 m/s^2 1.41 m/s^2
24 Roll acceleration 0.03013 (rad/s/s)^2 0.17357 rad/s/s 0.34715 rad/s/s)
25 Pitch acceleration 0.00025 (rad/s/s)^2 0.01587 rad/s/s 0.03174 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.466 m^2 0.683 m 1.365 m
27 Wheelhouse: Rel. vert. motion 0.242 m^2 0.492 m 0.985 m
28 Wheelhouse: Abs. vert. velocity 0.339 m^2/s^2 0.582 m/s 1.164 m/s
29 Wheelhouse: Rel. vert. velocity 0.423 m^2/s^2 0.651 m/s 1.301 m/s
30 Wheelhouse: Abs. vert. accel 0.342 m^2/s^4 0.585 m/s^2 1.169 m/s^2
31 Wheelhouse: Rel. vert. accel 1.182 m^2/s^4 1.087 m/s^2 2.174 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.05 m^2 0.224 m 0.448 m
33 Wheelhouse: Long. (due to pitch) velocity 0.036 m^2/s^2 0.189 m/s 0.378 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.03 m^2/s^4 0.172 m/s^2 0.345 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.901 m^2 1.379 m 2.758 m
36 Wheelhouse: Lat. (due to roll) velocity 2.122 m^2/s^2 1.457 m/s 2.913 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.561 m^2/s^4 1.887 m/s^2 3.774 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 18.004 MII/h 5.173 MII/h
39 Workdeck: Abs. vert. motion 1.597 m^2 1.264 m 2.527 m
40 Workdeck: Rel. vert. motion 0.375 m^2 0.612 m 1.224 m
41 Workdeck: Abs. vert. velocity 1.252 m^2/s^2 1.119 m/s 2.238 m/s
42 Workdeck: Rel. vert. velocity 0.393 m^2/s^2 0.627 m/s 1.253 m/s
43 Workdeck: Abs. vert. accel 1.311 m^2/s^4 1.145 m/s^2 2.29 m/s^2
44 Workdeck: Rel. vert. accel 0.8 m^2/s^4 0.894 m/s^2 1.788 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.078 m 0.157 m
46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.066 m/s 0.132 m/s
47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.06 m/s^2 0.121 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.233 m^2 0.482 m 0.964 m
49 Workdeck: Lat. (due to roll) velocity 0.26 m^2/s^2 0.509 m/s 1.019 m/s
50 Workdeck: Lat. (due to roll) accel 0.436 m^2/s^4 0.66 m/s^2 1.32 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.967 MII/h 0.577 MII/h
0, 0 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 292.669 kN -- --
17 Heave motion 1.83 m^2 1.353 m 2.705 m
18 Roll motion 0.01788 rad^2 0.13372 rad 0.26744 rad
19 Pitch motion 0.00059 rad^2 0.02433 rad 0.04866 rad
20 Heave velocity 0.863 m^2/s^2 0.929 m/s 1.858 m/s
21 Roll velocity 0.01827 (rad/s)^2 0.13518 rad/s 0.27036 rad/s
22 Pitch velocity 0.00038 (rad/s)^2 0.0194 rad/s 0.0388 rad/s
23 Heave acceleration 0.594 m^2/s^4 0.771 m/s^2 1.542 m/s^2
24 Roll acceleration 0.02885 (rad/s/s)^2 0.16986 rad/s/s 0.33972 rad/s/s)
25 Pitch acceleration 0.00029 (rad/s/s)^2 0.01695 rad/s/s 0.0339 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.185 m^2 1.088 m 2.177 m
27 Wheelhouse: Rel. vert. motion 0.247 m^2 0.497 m 0.994 m
28 Wheelhouse: Abs. vert. velocity 0.534 m^2/s^2 0.731 m/s 1.462 m/s
29 Wheelhouse: Rel. vert. velocity 0.401 m^2/s^2 0.633 m/s 1.266 m/s
30 Wheelhouse: Abs. vert. accel 0.395 m^2/s^4 0.629 m/s^2 1.257 m/s^2
31 Wheelhouse: Rel. vert. accel 1.078 m^2/s^4 1.038 m/s^2 2.077 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.073 m^2 0.27 m 0.54 m
33 Wheelhouse: Long. (due to pitch) velocity 0.045 m^2/s^2 0.213 m/s 0.426 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.034 m^2/s^4 0.185 m/s^2 0.37 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 2.182 m^2 1.477 m 2.954 m
36 Wheelhouse: Lat. (due to roll) velocity 2.199 m^2/s^2 1.483 m/s 2.966 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.418 m^2/s^4 1.849 m/s^2 3.697 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.467 MII/h 4.448 MII/h
39 Workdeck: Abs. vert. motion 2.899 m^2 1.703 m 3.405 m
40 Workdeck: Rel. vert. motion 0.497 m^2 0.705 m 1.41 m
41 Workdeck: Abs. vert. velocity 1.657 m^2/s^2 1.287 m/s 2.575 m/s
42 Workdeck: Rel. vert. velocity 0.43 m^2/s^2 0.656 m/s 1.311 m/s
43 Workdeck: Abs. vert. accel 1.431 m^2/s^4 1.196 m/s^2 2.393 m/s^2
44 Workdeck: Rel. vert. accel 0.764 m^2/s^4 0.874 m/s^2 1.748 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.009 m^2 0.094 m 0.189 m
46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.075 m/s 0.149 m/s
47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.065 m/s^2 0.129 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.267 m^2 0.517 m 1.033 m
49 Workdeck: Lat. (due to roll) velocity 0.269 m^2/s^2 0.519 m/s 1.037 m/s
50 Workdeck: Lat. (due to roll) accel 0.418 m^2/s^4 0.647 m/s^2 1.293 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0.001 MII/h 3.831 MII/h 0.905 MII/h
0, 0 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 56.972 kN -- --
17 Heave motion 0.108 m^2 0.329 m 0.658 m
18 Roll motion 0.00279 rad^2 0.05285 rad 0.10571 rad
19 Pitch motion 0.00046 rad^2 0.02151 rad 0.04301 rad
20 Heave velocity 0.059 m^2/s^2 0.243 m/s 0.486 m/s
21 Roll velocity 0.0033 (rad/s)^2 0.05748 rad/s 0.11495 rad/s
22 Pitch velocity 0.00037 (rad/s)^2 0.01926 rad/s 0.03853 rad/s
23 Heave acceleration 0.037 m^2/s^4 0.192 m/s^2 0.383 m/s^2
24 Roll acceleration 0.00588 (rad/s/s)^2 0.0767 rad/s/s 0.15341 rad/s/s)
25 Pitch acceleration 0.00034 (rad/s/s)^2 0.01836 rad/s/s 0.03673 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.194 m^2 0.441 m 0.881 m
27 Wheelhouse: Rel. vert. motion 0.048 m^2 0.219 m 0.437 m
28 Wheelhouse: Abs. vert. velocity 0.126 m^2/s^2 0.355 m/s 0.709 m/s
29 Wheelhouse: Rel. vert. velocity 0.098 m^2/s^2 0.314 m/s 0.627 m/s
30 Wheelhouse: Abs. vert. accel 0.094 m^2/s^4 0.306 m/s^2 0.612 m/s^2
31 Wheelhouse: Rel. vert. accel 0.353 m^2/s^4 0.594 m/s^2 1.188 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.055 m^2 0.235 m 0.47 m
33 Wheelhouse: Long. (due to pitch) velocity 0.044 m^2/s^2 0.21 m/s 0.42 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.04 m^2/s^4 0.199 m/s^2 0.399 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.337 m^2 0.581 m 1.161 m
36 Wheelhouse: Lat. (due to roll) velocity 0.395 m^2/s^2 0.629 m/s 1.257 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.695 m^2/s^4 0.833 m/s^2 1.667 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.24 MII/h 0.001 MII/h
39 Workdeck: Abs. vert. motion 0.155 m^2 0.393 m 0.787 m
40 Workdeck: Rel. vert. motion 0.04 m^2 0.2 m 0.4 m
41 Workdeck: Abs. vert. velocity 0.1 m^2/s^2 0.316 m/s 0.633 m/s
42 Workdeck: Rel. vert. velocity 0.079 m^2/s^2 0.281 m/s 0.562 m/s
43 Workdeck: Abs. vert. accel 0.094 m^2/s^4 0.306 m/s^2 0.613 m/s^2
44 Workdeck: Rel. vert. accel 0.273 m^2/s^4 0.523 m/s^2 1.046 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.082 m 0.164 m
46 Workdeck: Long. (due to pitch) velocity 0.005 m^2/s^2 0.073 m/s 0.147 m/s
47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.07 m/s^2 0.14 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.041 m^2 0.203 m 0.406 m
49 Workdeck: Lat. (due to roll) velocity 0.048 m^2/s^2 0.22 m/s 0.44 m/s
50 Workdeck: Lat. (due to roll) accel 0.085 m^2/s^4 0.291 m/s^2 0.583 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 163.955 kN -- --
17 Heave motion 0.389 m^2 0.623 m 1.247 m
18 Roll motion 0.00654 rad^2 0.08088 rad 0.16176 rad
19 Pitch motion 0.00122 rad^2 0.035 rad 0.07 rad
20 Heave velocity 0.187 m^2/s^2 0.433 m/s 0.866 m/s
21 Roll velocity 0.00737 (rad/s)^2 0.08587 rad/s 0.17175 rad/s
22 Pitch velocity 0.00092 (rad/s)^2 0.0303 rad/s 0.0606 rad/s
23 Heave acceleration 0.105 m^2/s^4 0.324 m/s^2 0.648 m/s^2
24 Roll acceleration 0.01255 (rad/s/s)^2 0.11203 rad/s/s 0.22406 rad/s/s)
25 Pitch acceleration 0.00079 (rad/s/s)^2 0.02819 rad/s/s 0.05639 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.615 m^2 0.784 m 1.568 m
27 Wheelhouse: Rel. vert. motion 0.102 m^2 0.32 m 0.639 m
28 Wheelhouse: Abs. vert. velocity 0.353 m^2/s^2 0.595 m/s 1.189 m/s
29 Wheelhouse: Rel. vert. velocity 0.206 m^2/s^2 0.454 m/s 0.908 m/s
30 Wheelhouse: Abs. vert. accel 0.241 m^2/s^4 0.491 m/s^2 0.981 m/s^2
31 Wheelhouse: Rel. vert. accel 0.725 m^2/s^4 0.851 m/s^2 1.703 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.147 m^2 0.383 m 0.767 m
33 Wheelhouse: Long. (due to pitch) velocity 0.109 m^2/s^2 0.331 m/s 0.661 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.094 m^2/s^4 0.307 m/s^2 0.613 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.792 m^2 0.89 m 1.78 m
36 Wheelhouse: Lat. (due to roll) velocity 0.884 m^2/s^2 0.94 m/s 1.88 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.484 m^2/s^4 1.218 m/s^2 2.436 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 3.958 MII/h 0.207 MII/h
39 Workdeck: Abs. vert. motion 0.511 m^2 0.715 m 1.43 m
40 Workdeck: Rel. vert. motion 0.093 m^2 0.305 m 0.611 m
41 Workdeck: Abs. vert. velocity 0.287 m^2/s^2 0.536 m/s 1.071 m/s
42 Workdeck: Rel. vert. velocity 0.168 m^2/s^2 0.41 m/s 0.821 m/s
43 Workdeck: Abs. vert. accel 0.232 m^2/s^4 0.482 m/s^2 0.963 m/s^2
44 Workdeck: Rel. vert. accel 0.563 m^2/s^4 0.75 m/s^2 1.5 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.134 m 0.268 m
46 Workdeck: Long. (due to pitch) velocity 0.013 m^2/s^2 0.116 m/s 0.231 m/s
47 Workdeck: Long. (due to pitch) accel 0.011 m^2/s^4 0.107 m/s^2 0.214 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.097 m^2 0.311 m 0.623 m
49 Workdeck: Lat. (due to roll) velocity 0.108 m^2/s^2 0.329 m/s 0.658 m/s
50 Workdeck: Lat. (due to roll) accel 0.181 m^2/s^4 0.426 m/s^2 0.852 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.17 MII/h 0.002 MII/h
0, 0 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 326.228 kN -- --
17 Heave motion 1.217 m^2 1.103 m 2.207 m
18 Roll motion 0.00745 rad^2 0.08631 rad 0.17261 rad
19 Pitch motion 0.00181 rad^2 0.0425 rad 0.085 rad
20 Heave velocity 0.421 m^2/s^2 0.649 m/s 1.298 m/s
21 Roll velocity 0.00761 (rad/s)^2 0.08725 rad/s 0.1745 rad/s
22 Pitch velocity 0.00115 (rad/s)^2 0.03387 rad/s 0.06774 rad/s
23 Heave acceleration 0.181 m^2/s^4 0.425 m/s^2 0.85 m/s^2
24 Roll acceleration 0.01202 (rad/s/s)^2 0.10963 rad/s/s 0.21927 rad/s/s)
25 Pitch acceleration 0.00089 (rad/s/s)^2 0.02992 rad/s/s 0.05983 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.539 m^2 1.24 m 2.481 m
27 Wheelhouse: Rel. vert. motion 0.1 m^2 0.316 m 0.632 m
28 Wheelhouse: Abs. vert. velocity 0.628 m^2/s^2 0.792 m/s 1.584 m/s
29 Wheelhouse: Rel. vert. velocity 0.192 m^2/s^2 0.438 m/s 0.876 m/s
30 Wheelhouse: Abs. vert. accel 0.336 m^2/s^4 0.579 m/s^2 1.159 m/s^2
31 Wheelhouse: Rel. vert. accel 0.654 m^2/s^4 0.809 m/s^2 1.618 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.219 m^2 0.468 m 0.937 m
33 Wheelhouse: Long. (due to pitch) velocity 0.138 m^2/s^2 0.371 m/s 0.742 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.106 m^2/s^4 0.326 m/s^2 0.652 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.909 m^2 0.953 m 1.907 m
36 Wheelhouse: Lat. (due to roll) velocity 0.916 m^2/s^2 0.957 m/s 1.914 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.424 m^2/s^4 1.193 m/s^2 2.386 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 3.368 MII/h 0.161 MII/h
39 Workdeck: Abs. vert. motion 1.403 m^2 1.185 m 2.369 m
40 Workdeck: Rel. vert. motion 0.118 m^2 0.343 m 0.686 m
41 Workdeck: Abs. vert. velocity 0.544 m^2/s^2 0.737 m/s 1.475 m/s
42 Workdeck: Rel. vert. velocity 0.166 m^2/s^2 0.407 m/s 0.814 m/s
43 Workdeck: Abs. vert. accel 0.312 m^2/s^4 0.559 m/s^2 1.118 m/s^2
44 Workdeck: Rel. vert. accel 0.511 m^2/s^4 0.715 m/s^2 1.43 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.027 m^2 0.164 m 0.328 m
46 Workdeck: Long. (due to pitch) velocity 0.017 m^2/s^2 0.13 m/s 0.259 m/s
47 Workdeck: Long. (due to pitch) accel 0.013 m^2/s^4 0.114 m/s^2 0.228 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.111 m^2 0.333 m 0.667 m
49 Workdeck: Lat. (due to roll) velocity 0.112 m^2/s^2 0.335 m/s 0.669 m/s
50 Workdeck: Lat. (due to roll) accel 0.174 m^2/s^4 0.417 m/s^2 0.835 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.389 MII/h 0.014 MII/h
0, 0 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 50.195 kN -- --
17 Heave motion 0.069 m^2 0.263 m 0.525 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00036 rad^2 0.01886 rad 0.03771 rad
20 Heave velocity 0.035 m^2/s^2 0.188 m/s 0.376 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00024 (rad/s)^2 0.01544 rad/s 0.03088 rad/s
23 Heave acceleration 0.021 m^2/s^4 0.146 m/s^2 0.293 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00018 (rad/s/s)^2 0.01336 rad/s/s 0.02671 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.164 m^2 0.405 m 0.809 m
27 Wheelhouse: Rel. vert. motion 0.043 m^2 0.208 m 0.415 m
28 Wheelhouse: Abs. vert. velocity 0.099 m^2/s^2 0.314 m/s 0.628 m/s
29 Wheelhouse: Rel. vert. velocity 0.088 m^2/s^2 0.297 m/s 0.595 m/s
30 Wheelhouse: Abs. vert. accel 0.068 m^2/s^4 0.261 m/s^2 0.523 m/s^2
31 Wheelhouse: Rel. vert. accel 0.335 m^2/s^4 0.579 m/s^2 1.158 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.042 m^2 0.205 m 0.41 m
33 Wheelhouse: Long. (due to pitch) velocity 0.028 m^2/s^2 0.167 m/s 0.335 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.021 m^2/s^4 0.144 m/s^2 0.289 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.065 m^2 0.254 m 0.509 m
40 Workdeck: Rel. vert. motion 0.114 m^2 0.338 m 0.676 m
41 Workdeck: Abs. vert. velocity 0.032 m^2/s^2 0.18 m/s 0.36 m/s
42 Workdeck: Rel. vert. velocity 0.163 m^2/s^2 0.404 m/s 0.808 m/s
43 Workdeck: Abs. vert. accel 0.019 m^2/s^4 0.139 m/s^2 0.278 m/s^2
44 Workdeck: Rel. vert. accel 0.367 m^2/s^4 0.606 m/s^2 1.212 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.072 m 0.143 m
46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.059 m/s 0.117 m/s
47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.05 m/s^2 0.101 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 147.607 kN -- --
17 Heave motion 0.268 m^2 0.518 m 1.036 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00103 rad^2 0.03213 rad 0.06426 rad
20 Heave velocity 0.12 m^2/s^2 0.346 m/s 0.693 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00064 (rad/s)^2 0.02531 rad/s 0.05063 rad/s
23 Heave acceleration 0.064 m^2/s^4 0.252 m/s^2 0.505 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00045 (rad/s/s)^2 0.02125 rad/s/s 0.0425 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.545 m^2 0.738 m 1.476 m
27 Wheelhouse: Rel. vert. motion 0.094 m^2 0.307 m 0.615 m
28 Wheelhouse: Abs. vert. velocity 0.29 m^2/s^2 0.539 m/s 1.078 m/s
29 Wheelhouse: Rel. vert. velocity 0.186 m^2/s^2 0.431 m/s 0.863 m/s
30 Wheelhouse: Abs. vert. accel 0.183 m^2/s^4 0.428 m/s^2 0.855 m/s^2
31 Wheelhouse: Rel. vert. accel 0.688 m^2/s^4 0.829 m/s^2 1.659 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.123 m^2 0.35 m 0.701 m
33 Wheelhouse: Long. (due to pitch) velocity 0.076 m^2/s^2 0.275 m/s 0.55 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.053 m^2/s^4 0.23 m/s^2 0.46 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.256 m^2 0.506 m 1.012 m
40 Workdeck: Rel. vert. motion 0.259 m^2 0.509 m 1.019 m
41 Workdeck: Abs. vert. velocity 0.112 m^2/s^2 0.335 m/s 0.67 m/s
42 Workdeck: Rel. vert. velocity 0.354 m^2/s^2 0.595 m/s 1.191 m/s
43 Workdeck: Abs. vert. accel 0.058 m^2/s^4 0.242 m/s^2 0.483 m/s^2
44 Workdeck: Rel. vert. accel 0.77 m^2/s^4 0.877 m/s^2 1.755 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.015 m^2 0.123 m 0.245 m
46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.096 m/s 0.192 m/s
47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.08 m/s^2 0.161 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
0, 0 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 0 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 305.034 kN -- --
17 Heave motion 0.986 m^2 0.993 m 1.986 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00182 rad^2 0.04267 rad 0.08534 rad
20 Heave velocity 0.313 m^2/s^2 0.56 m/s 1.12 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00093 (rad/s)^2 0.03055 rad/s 0.06111 rad/s
23 Heave acceleration 0.123 m^2/s^4 0.35 m/s^2 0.7 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00058 (rad/s/s)^2 0.024 rad/s/s 0.04799 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.482 m^2 1.217 m 2.434 m
27 Wheelhouse: Rel. vert. motion 0.095 m^2 0.308 m 0.617 m
28 Wheelhouse: Abs. vert. velocity 0.564 m^2/s^2 0.751 m/s 1.503 m/s
29 Wheelhouse: Rel. vert. velocity 0.175 m^2/s^2 0.418 m/s 0.836 m/s
30 Wheelhouse: Abs. vert. accel 0.276 m^2/s^4 0.525 m/s^2 1.05 m/s^2
31 Wheelhouse: Rel. vert. accel 0.622 m^2/s^4 0.788 m/s^2 1.577 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.219 m^2 0.468 m 0.937 m
33 Wheelhouse: Long. (due to pitch) velocity 0.111 m^2/s^2 0.333 m/s 0.667 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.068 m^2/s^4 0.261 m/s^2 0.521 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.963 m^2 0.981 m 1.962 m
40 Workdeck: Rel. vert. motion 0.277 m^2 0.527 m 1.053 m
41 Workdeck: Abs. vert. velocity 0.302 m^2/s^2 0.55 m/s 1.099 m/s
42 Workdeck: Rel. vert. velocity 0.35 m^2/s^2 0.591 m/s 1.183 m/s
43 Workdeck: Abs. vert. accel 0.116 m^2/s^4 0.34 m/s^2 0.68 m/s^2
44 Workdeck: Rel. vert. accel 0.716 m^2/s^4 0.846 m/s^2 1.693 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.027 m^2 0.164 m 0.328 m
46 Workdeck: Long. (due to pitch) velocity 0.014 m^2/s^2 0.117 m/s 0.233 m/s
47 Workdeck: Long. (due to pitch) accel 0.008 m^2/s^4 0.091 m/s^2 0.182 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 54.237 kN -- --
17 Heave motion 0.054 m^2 0.232 m 0.464 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00053 rad^2 0.02307 rad 0.04615 rad
20 Heave velocity 0.017 m^2/s^2 0.131 m/s 0.262 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00021 (rad/s)^2 0.01443 rad/s 0.02887 rad/s
23 Heave acceleration 0.006 m^2/s^4 0.077 m/s^2 0.154 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00009 (rad/s/s)^2 0.00928 rad/s/s 0.01855 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.105 m^2 0.325 m 0.649 m
27 Wheelhouse: Rel. vert. motion 0.095 m^2 0.308 m 0.617 m
28 Wheelhouse: Abs. vert. velocity 0.039 m^2/s^2 0.198 m/s 0.397 m/s
29 Wheelhouse: Rel. vert. velocity 0.053 m^2/s^2 0.23 m/s 0.46 m/s
30 Wheelhouse: Abs. vert. accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2
31 Wheelhouse: Rel. vert. accel 0.033 m^2/s^4 0.181 m/s^2 0.361 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.059 m^2 0.243 m 0.485 m
33 Wheelhouse: Long. (due to pitch) velocity 0.023 m^2/s^2 0.15 m/s 0.301 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.009 m^2/s^4 0.096 m/s^2 0.192 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.088 m^2 0.297 m 0.593 m
40 Workdeck: Rel. vert. motion 0.091 m^2 0.302 m 0.604 m
41 Workdeck: Abs. vert. velocity 0.029 m^2/s^2 0.171 m/s 0.341 m/s
42 Workdeck: Rel. vert. velocity 0.058 m^2/s^2 0.242 m/s 0.483 m/s
43 Workdeck: Abs. vert. accel 0.01 m^2/s^4 0.102 m/s^2 0.203 m/s^2
44 Workdeck: Rel. vert. accel 0.039 m^2/s^4 0.198 m/s^2 0.397 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.085 m 0.17 m
46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.053 m/s 0.105 m/s
47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.067 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 151.219 kN -- --
17 Heave motion 0.219 m^2 0.468 m 0.936 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00159 rad^2 0.03989 rad 0.07977 rad
20 Heave velocity 0.063 m^2/s^2 0.251 m/s 0.501 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00059 (rad/s)^2 0.02421 rad/s 0.04842 rad/s
23 Heave acceleration 0.02 m^2/s^4 0.14 m/s^2 0.28 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00023 (rad/s/s)^2 0.01518 rad/s/s 0.03036 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.354 m^2 0.595 m 1.19 m
27 Wheelhouse: Rel. vert. motion 0.236 m^2 0.485 m 0.971 m
28 Wheelhouse: Abs. vert. velocity 0.12 m^2/s^2 0.346 m/s 0.692 m/s
29 Wheelhouse: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s
30 Wheelhouse: Abs. vert. accel 0.044 m^2/s^4 0.211 m/s^2 0.422 m/s^2
31 Wheelhouse: Rel. vert. accel 0.073 m^2/s^4 0.27 m/s^2 0.539 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.18 m^2 0.424 m 0.848 m
33 Wheelhouse: Long. (due to pitch) velocity 0.065 m^2/s^2 0.255 m/s 0.509 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.025 m^2/s^4 0.158 m/s^2 0.316 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.334 m^2 0.578 m 1.156 m
40 Workdeck: Rel. vert. motion 0.201 m^2 0.448 m 0.896 m
41 Workdeck: Abs. vert. velocity 0.1 m^2/s^2 0.317 m/s 0.634 m/s
42 Workdeck: Rel. vert. velocity 0.127 m^2/s^2 0.356 m/s 0.712 m/s
43 Workdeck: Abs. vert. accel 0.033 m^2/s^4 0.181 m/s^2 0.362 m/s^2
44 Workdeck: Rel. vert. accel 0.085 m^2/s^4 0.291 m/s^2 0.581 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.022 m^2 0.148 m 0.296 m
46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.089 m/s 0.178 m/s
47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.055 m/s^2 0.111 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m
16 Added resistance 290.941 kN -- --
17 Heave motion 0.88 m^2 0.938 m 1.877 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00293 rad^2 0.05417 rad 0.10835 rad
20 Heave velocity 0.192 m^2/s^2 0.438 m/s 0.876 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00093 (rad/s)^2 0.03048 rad/s 0.06096 rad/s
23 Heave acceleration 0.047 m^2/s^4 0.216 m/s^2 0.433 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00033 (rad/s/s)^2 0.01805 rad/s/s 0.03609 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.043 m^2 1.021 m 2.043 m
27 Wheelhouse: Rel. vert. motion 0.31 m^2 0.557 m 1.114 m
28 Wheelhouse: Abs. vert. velocity 0.261 m^2/s^2 0.51 m/s 1.021 m/s
29 Wheelhouse: Rel. vert. velocity 0.141 m^2/s^2 0.376 m/s 0.752 m/s
30 Wheelhouse: Abs. vert. accel 0.076 m^2/s^4 0.276 m/s^2 0.552 m/s^2
31 Wheelhouse: Rel. vert. accel 0.076 m^2/s^4 0.276 m/s^2 0.552 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.345 m^2 0.587 m 1.174 m
33 Wheelhouse: Long. (due to pitch) velocity 0.106 m^2/s^2 0.326 m/s 0.652 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.036 m^2/s^4 0.191 m/s^2 0.381 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.15 m^2 1.072 m 2.145 m
40 Workdeck: Rel. vert. motion 0.202 m^2 0.449 m 0.898 m
41 Workdeck: Abs. vert. velocity 0.265 m^2/s^2 0.515 m/s 1.031 m/s
42 Workdeck: Rel. vert. velocity 0.124 m^2/s^2 0.353 m/s 0.705 m/s
43 Workdeck: Abs. vert. accel 0.069 m^2/s^4 0.263 m/s^2 0.526 m/s^2
44 Workdeck: Rel. vert. accel 0.081 m^2/s^4 0.285 m/s^2 0.57 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.042 m^2 0.205 m 0.411 m
46 Workdeck: Long. (due to pitch) velocity 0.013 m^2/s^2 0.114 m/s 0.228 m/s
47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.067 m/s^2 0.133 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 54.636 kN -- --
17 Heave motion 0.069 m^2 0.263 m 0.526 m
18 Roll motion 0.00637 rad^2 0.07984 rad 0.15968 rad
19 Pitch motion 0.00054 rad^2 0.02316 rad 0.04632 rad
20 Heave velocity 0.024 m^2/s^2 0.156 m/s 0.312 m/s
21 Roll velocity 0.00576 (rad/s)^2 0.07589 rad/s 0.15177 rad/s
22 Pitch velocity 0.00023 (rad/s)^2 0.0153 rad/s 0.03061 rad/s
23 Heave acceleration 0.009 m^2/s^4 0.097 m/s^2 0.194 m/s^2
24 Roll acceleration 0.0057 (rad/s/s)^2 0.07552 rad/s/s 0.15103 rad/s/s)
25 Pitch acceleration 0.00011 (rad/s/s)^2 0.01045 rad/s/s 0.0209 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.106 m^2 0.326 m 0.651 m
27 Wheelhouse: Rel. vert. motion 0.082 m^2 0.286 m 0.571 m
28 Wheelhouse: Abs. vert. velocity 0.044 m^2/s^2 0.21 m/s 0.42 m/s
29 Wheelhouse: Rel. vert. velocity 0.052 m^2/s^2 0.228 m/s 0.455 m/s
30 Wheelhouse: Abs. vert. accel 0.02 m^2/s^4 0.142 m/s^2 0.284 m/s^2
31 Wheelhouse: Rel. vert. accel 0.038 m^2/s^4 0.196 m/s^2 0.391 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.06 m^2 0.245 m 0.491 m
33 Wheelhouse: Long. (due to pitch) velocity 0.026 m^2/s^2 0.161 m/s 0.321 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.012 m^2/s^4 0.109 m/s^2 0.218 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.778 m^2 0.882 m 1.764 m
36 Wheelhouse: Lat. (due to roll) velocity 0.7 m^2/s^2 0.837 m/s 1.674 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.692 m^2/s^4 0.832 m/s^2 1.664 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.186 m^2 0.431 m 0.862 m
40 Workdeck: Rel. vert. motion 0.089 m^2 0.298 m 0.596 m
41 Workdeck: Abs. vert. velocity 0.097 m^2/s^2 0.312 m/s 0.624 m/s
42 Workdeck: Rel. vert. velocity 0.081 m^2/s^2 0.285 m/s 0.57 m/s
43 Workdeck: Abs. vert. accel 0.068 m^2/s^4 0.261 m/s^2 0.521 m/s^2
44 Workdeck: Rel. vert. accel 0.081 m^2/s^4 0.285 m/s^2 0.57 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.086 m 0.172 m
46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.056 m/s 0.112 m/s
47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.038 m/s^2 0.076 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.095 m^2 0.308 m 0.617 m
49 Workdeck: Lat. (due to roll) velocity 0.086 m^2/s^2 0.293 m/s 0.585 m/s
50 Workdeck: Lat. (due to roll) accel 0.085 m^2/s^4 0.291 m/s^2 0.582 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.276 MII/h 0.002 MII/h
5, 5 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 152.617 kN -- --
17 Heave motion 0.268 m^2 0.518 m 1.035 m
18 Roll motion 0.01336 rad^2 0.11559 rad 0.23117 rad
19 Pitch motion 0.00156 rad^2 0.03947 rad 0.07894 rad
20 Heave velocity 0.085 m^2/s^2 0.291 m/s 0.582 m/s
21 Roll velocity 0.01193 (rad/s)^2 0.10922 rad/s 0.21843 rad/s
22 Pitch velocity 0.00064 (rad/s)^2 0.02528 rad/s 0.05056 rad/s
23 Heave acceleration 0.03 m^2/s^4 0.172 m/s^2 0.344 m/s^2
24 Roll acceleration 0.01174 (rad/s/s)^2 0.10833 rad/s/s 0.21666 rad/s/s)
25 Pitch acceleration 0.00028 (rad/s/s)^2 0.01683 rad/s/s 0.03366 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.35 m^2 0.591 m 1.183 m
27 Wheelhouse: Rel. vert. motion 0.201 m^2 0.449 m 0.898 m
28 Wheelhouse: Abs. vert. velocity 0.13 m^2/s^2 0.361 m/s 0.722 m/s
29 Wheelhouse: Rel. vert. velocity 0.12 m^2/s^2 0.346 m/s 0.692 m/s
30 Wheelhouse: Abs. vert. accel 0.055 m^2/s^4 0.234 m/s^2 0.467 m/s^2
31 Wheelhouse: Rel. vert. accel 0.084 m^2/s^4 0.29 m/s^2 0.581 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.178 m^2 0.422 m 0.844 m
33 Wheelhouse: Long. (due to pitch) velocity 0.072 m^2/s^2 0.267 m/s 0.535 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.031 m^2/s^4 0.176 m/s^2 0.353 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.633 m^2 1.278 m 2.556 m
36 Wheelhouse: Lat. (due to roll) velocity 1.452 m^2/s^2 1.205 m/s 2.41 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.425 m^2/s^4 1.194 m/s^2 2.387 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.002 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.581 m^2 0.763 m 1.525 m
40 Workdeck: Rel. vert. motion 0.189 m^2 0.435 m 0.869 m
41 Workdeck: Abs. vert. velocity 0.258 m^2/s^2 0.508 m/s 1.017 m/s
42 Workdeck: Rel. vert. velocity 0.169 m^2/s^2 0.411 m/s 0.822 m/s
43 Workdeck: Abs. vert. accel 0.158 m^2/s^4 0.397 m/s^2 0.794 m/s^2
44 Workdeck: Rel. vert. accel 0.167 m^2/s^4 0.409 m/s^2 0.818 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.022 m^2 0.148 m 0.295 m
46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.094 m/s 0.187 m/s
47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.062 m/s^2 0.123 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m
49 Workdeck: Lat. (due to roll) velocity 0.178 m^2/s^2 0.421 m/s 0.843 m/s
50 Workdeck: Lat. (due to roll) accel 0.174 m^2/s^4 0.417 m/s^2 0.835 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.808 MII/h 0.306 MII/h
5, 5 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m
16 Added resistance 294.492 kN -- --
17 Heave motion 0.985 m^2 0.992 m 1.985 m
18 Roll motion 0.01264 rad^2 0.11242 rad 0.22483 rad
19 Pitch motion 0.00272 rad^2 0.05217 rad 0.10434 rad
20 Heave velocity 0.233 m^2/s^2 0.483 m/s 0.966 m/s
21 Roll velocity 0.01096 (rad/s)^2 0.10471 rad/s 0.20941 rad/s
22 Pitch velocity 0.00096 (rad/s)^2 0.03094 rad/s 0.06189 rad/s
23 Heave acceleration 0.063 m^2/s^4 0.251 m/s^2 0.503 m/s^2
24 Roll acceleration 0.01065 (rad/s/s)^2 0.1032 rad/s/s 0.2064 rad/s/s)
25 Pitch acceleration 0.00038 (rad/s/s)^2 0.01946 rad/s/s 0.03892 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.017 m^2 1.008 m 2.017 m
27 Wheelhouse: Rel. vert. motion 0.26 m^2 0.51 m 1.02 m
28 Wheelhouse: Abs. vert. velocity 0.272 m^2/s^2 0.521 m/s 1.043 m/s
29 Wheelhouse: Rel. vert. velocity 0.135 m^2/s^2 0.367 m/s 0.734 m/s
30 Wheelhouse: Abs. vert. accel 0.088 m^2/s^4 0.297 m/s^2 0.593 m/s^2
31 Wheelhouse: Rel. vert. accel 0.086 m^2/s^4 0.293 m/s^2 0.587 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.323 m^2 0.569 m 1.137 m
33 Wheelhouse: Long. (due to pitch) velocity 0.111 m^2/s^2 0.333 m/s 0.665 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.043 m^2/s^4 0.206 m/s^2 0.413 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.551 m^2 1.246 m 2.491 m
36 Wheelhouse: Lat. (due to roll) velocity 1.337 m^2/s^2 1.156 m/s 2.313 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.294 m^2/s^4 1.137 m/s^2 2.275 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.005 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.515 m^2 1.231 m 2.461 m
40 Workdeck: Rel. vert. motion 0.192 m^2 0.438 m 0.877 m
41 Workdeck: Abs. vert. velocity 0.456 m^2/s^2 0.675 m/s 1.35 m/s
42 Workdeck: Rel. vert. velocity 0.158 m^2/s^2 0.398 m/s 0.796 m/s
43 Workdeck: Abs. vert. accel 0.198 m^2/s^4 0.445 m/s^2 0.89 m/s^2
44 Workdeck: Rel. vert. accel 0.152 m^2/s^4 0.39 m/s^2 0.78 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.04 m^2 0.199 m 0.398 m
46 Workdeck: Long. (due to pitch) velocity 0.014 m^2/s^2 0.116 m/s 0.233 m/s
47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.072 m/s^2 0.144 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.19 m^2 0.436 m 0.871 m
49 Workdeck: Lat. (due to roll) velocity 0.164 m^2/s^2 0.404 m/s 0.809 m/s
50 Workdeck: Lat. (due to roll) accel 0.158 m^2/s^4 0.398 m/s^2 0.796 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.486 MII/h 0.286 MII/h
5, 5 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 47.469 kN -- --
17 Heave motion 0.221 m^2 0.47 m 0.94 m
18 Roll motion 0.00595 rad^2 0.07716 rad 0.15433 rad
19 Pitch motion 0.00022 rad^2 0.01469 rad 0.02939 rad
20 Heave velocity 0.168 m^2/s^2 0.41 m/s 0.82 m/s
21 Roll velocity 0.00714 (rad/s)^2 0.08452 rad/s 0.16904 rad/s
22 Pitch velocity 0.00017 (rad/s)^2 0.01299 rad/s 0.02598 rad/s
23 Heave acceleration 0.162 m^2/s^4 0.403 m/s^2 0.805 m/s^2
24 Roll acceleration 0.01321 (rad/s/s)^2 0.11495 rad/s/s 0.2299 rad/s/s)
25 Pitch acceleration 0.00015 (rad/s/s)^2 0.0121 rad/s/s 0.02421 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.093 m^2 0.305 m 0.61 m
27 Wheelhouse: Rel. vert. motion 0.097 m^2 0.311 m 0.622 m
28 Wheelhouse: Abs. vert. velocity 0.075 m^2/s^2 0.274 m/s 0.548 m/s
29 Wheelhouse: Rel. vert. velocity 0.165 m^2/s^2 0.406 m/s 0.813 m/s
30 Wheelhouse: Abs. vert. accel 0.084 m^2/s^4 0.29 m/s^2 0.579 m/s^2
31 Wheelhouse: Rel. vert. accel 0.507 m^2/s^4 0.712 m/s^2 1.424 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.026 m^2 0.16 m 0.319 m
33 Wheelhouse: Long. (due to pitch) velocity 0.019 m^2/s^2 0.139 m/s 0.278 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.016 m^2/s^4 0.128 m/s^2 0.255 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.706 m
36 Wheelhouse: Lat. (due to roll) velocity 0.85 m^2/s^2 0.922 m/s 1.844 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.553 m^2/s^4 1.246 m/s^2 2.492 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.358 MII/h 0.379 MII/h
39 Workdeck: Abs. vert. motion 0.517 m^2 0.719 m 1.438 m
40 Workdeck: Rel. vert. motion 0.115 m^2 0.338 m 0.677 m
41 Workdeck: Abs. vert. velocity 0.448 m^2/s^2 0.67 m/s 1.339 m/s
42 Workdeck: Rel. vert. velocity 0.139 m^2/s^2 0.373 m/s 0.746 m/s
43 Workdeck: Abs. vert. accel 0.516 m^2/s^4 0.718 m/s^2 1.437 m/s^2
44 Workdeck: Rel. vert. accel 0.395 m^2/s^4 0.628 m/s^2 1.257 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.003 m^2 0.056 m 0.112 m
46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.049 m/s 0.097 m/s
47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.045 m/s^2 0.089 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.298 m 0.597 m
49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s
50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.167 MII/h 0.004 MII/h
5, 5 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 138.649 kN -- --
17 Heave motion 0.673 m^2 0.821 m 1.641 m
18 Roll motion 0.01403 rad^2 0.11844 rad 0.23688 rad
19 Pitch motion 0.00056 rad^2 0.02375 rad 0.0475 rad
20 Heave velocity 0.443 m^2/s^2 0.666 m/s 1.331 m/s
21 Roll velocity 0.01595 (rad/s)^2 0.12629 rad/s 0.25257 rad/s
22 Pitch velocity 0.00042 (rad/s)^2 0.02045 rad/s 0.0409 rad/s
23 Heave acceleration 0.386 m^2/s^4 0.621 m/s^2 1.242 m/s^2
24 Roll acceleration 0.02812 (rad/s/s)^2 0.16768 rad/s/s 0.33537 rad/s/s)
25 Pitch acceleration 0.00035 (rad/s/s)^2 0.01867 rad/s/s 0.03734 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.307 m^2 0.554 m 1.107 m
27 Wheelhouse: Rel. vert. motion 0.219 m^2 0.468 m 0.937 m
28 Wheelhouse: Abs. vert. velocity 0.2 m^2/s^2 0.448 m/s 0.895 m/s
29 Wheelhouse: Rel. vert. velocity 0.353 m^2/s^2 0.594 m/s 1.189 m/s
30 Wheelhouse: Abs. vert. accel 0.195 m^2/s^4 0.442 m/s^2 0.883 m/s^2
31 Wheelhouse: Rel. vert. accel 1.048 m^2/s^4 1.024 m/s^2 2.047 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.068 m^2 0.261 m 0.521 m
33 Wheelhouse: Long. (due to pitch) velocity 0.049 m^2/s^2 0.22 m/s 0.441 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.039 m^2/s^4 0.198 m/s^2 0.396 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.731 m^2 1.316 m 2.631 m
36 Wheelhouse: Lat. (due to roll) velocity 1.91 m^2/s^2 1.382 m/s 2.764 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.312 m^2/s^4 1.82 m/s^2 3.64 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.647 MII/h 4.866 MII/h
39 Workdeck: Abs. vert. motion 1.433 m^2 1.197 m 2.394 m
40 Workdeck: Rel. vert. motion 0.285 m^2 0.534 m 1.068 m
41 Workdeck: Abs. vert. velocity 1.107 m^2/s^2 1.052 m/s 2.104 m/s
42 Workdeck: Rel. vert. velocity 0.315 m^2/s^2 0.562 m/s 1.123 m/s
43 Workdeck: Abs. vert. accel 1.172 m^2/s^4 1.083 m/s^2 2.165 m/s^2
44 Workdeck: Rel. vert. accel 0.827 m^2/s^4 0.909 m/s^2 1.818 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.008 m^2 0.091 m 0.182 m
46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.077 m/s 0.154 m/s
47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.069 m/s^2 0.138 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.92 m
49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.483 m/s 0.967 m/s
50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.48 MII/h 0.411 MII/h
5, 5 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 290.756 kN -- --
17 Heave motion 1.617 m^2 1.272 m 2.543 m
18 Roll motion 0.01621 rad^2 0.1273 rad 0.2546 rad
19 Pitch motion 0.00077 rad^2 0.02772 rad 0.05544 rad
20 Heave velocity 0.717 m^2/s^2 0.847 m/s 1.693 m/s
21 Roll velocity 0.01651 (rad/s)^2 0.1285 rad/s 0.25699 rad/s
22 Pitch velocity 0.00051 (rad/s)^2 0.02259 rad/s 0.04517 rad/s
23 Heave acceleration 0.472 m^2/s^4 0.687 m/s^2 1.374 m/s^2
24 Roll acceleration 0.02685 (rad/s/s)^2 0.16386 rad/s/s 0.32772 rad/s/s)
25 Pitch acceleration 0.00039 (rad/s/s)^2 0.01985 rad/s/s 0.0397 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.96 m^2 0.98 m 1.959 m
27 Wheelhouse: Rel. vert. motion 0.242 m^2 0.492 m 0.984 m
28 Wheelhouse: Abs. vert. velocity 0.371 m^2/s^2 0.609 m/s 1.219 m/s
29 Wheelhouse: Rel. vert. velocity 0.344 m^2/s^2 0.586 m/s 1.173 m/s
30 Wheelhouse: Abs. vert. accel 0.241 m^2/s^4 0.491 m/s^2 0.981 m/s^2
31 Wheelhouse: Rel. vert. accel 0.958 m^2/s^4 0.979 m/s^2 1.957 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.097 m^2 0.311 m 0.622 m
33 Wheelhouse: Long. (due to pitch) velocity 0.061 m^2/s^2 0.247 m/s 0.494 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.045 m^2/s^4 0.212 m/s^2 0.425 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 2.039 m^2 1.428 m 2.856 m
36 Wheelhouse: Lat. (due to roll) velocity 2 m^2/s^2 1.414 m/s 2.828 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.176 m^2/s^4 1.782 m/s^2 3.564 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.078 MII/h 4.14 MII/h
39 Workdeck: Abs. vert. motion 2.693 m^2 1.641 m 3.282 m
40 Workdeck: Rel. vert. motion 0.391 m^2 0.625 m 1.251 m
41 Workdeck: Abs. vert. velocity 1.495 m^2/s^2 1.223 m/s 2.445 m/s
42 Workdeck: Rel. vert. velocity 0.345 m^2/s^2 0.587 m/s 1.174 m/s
43 Workdeck: Abs. vert. accel 1.285 m^2/s^4 1.134 m/s^2 2.267 m/s^2
44 Workdeck: Rel. vert. accel 0.775 m^2/s^4 0.88 m/s^2 1.76 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.012 m^2 0.109 m 0.218 m
46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.086 m/s 0.173 m/s
47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.074 m/s^2 0.149 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.249 m^2 0.499 m 0.999 m
49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.989 m/s
50 Workdeck: Lat. (due to roll) accel 0.388 m^2/s^4 0.623 m/s^2 1.247 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.384 MII/h 0.716 MII/h
5, 5 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 54.728 kN -- --
17 Heave motion 0.145 m^2 0.381 m 0.762 m
18 Roll motion 0.00179 rad^2 0.04227 rad 0.08454 rad
19 Pitch motion 0.0005 rad^2 0.02243 rad 0.04486 rad
20 Heave velocity 0.114 m^2/s^2 0.338 m/s 0.675 m/s
21 Roll velocity 0.00224 (rad/s)^2 0.04737 rad/s 0.09475 rad/s
22 Pitch velocity 0.00053 (rad/s)^2 0.02295 rad/s 0.0459 rad/s
23 Heave acceleration 0.104 m^2/s^4 0.322 m/s^2 0.645 m/s^2
24 Roll acceleration 0.00425 (rad/s/s)^2 0.0652 rad/s/s 0.1304 rad/s/s)
25 Pitch acceleration 0.00063 (rad/s/s)^2 0.02505 rad/s/s 0.0501 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.267 m^2 0.517 m 1.034 m
27 Wheelhouse: Rel. vert. motion 0.116 m^2 0.341 m 0.682 m
28 Wheelhouse: Abs. vert. velocity 0.238 m^2/s^2 0.488 m/s 0.977 m/s
29 Wheelhouse: Rel. vert. velocity 0.253 m^2/s^2 0.503 m/s 1.006 m/s
30 Wheelhouse: Abs. vert. accel 0.243 m^2/s^4 0.493 m/s^2 0.987 m/s^2
31 Wheelhouse: Rel. vert. accel 0.986 m^2/s^4 0.993 m/s^2 1.986 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.06 m^2 0.246 m 0.491 m
33 Wheelhouse: Long. (due to pitch) velocity 0.063 m^2/s^2 0.251 m/s 0.501 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.075 m^2/s^4 0.273 m/s^2 0.546 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.215 m^2 0.464 m 0.927 m
36 Wheelhouse: Lat. (due to roll) velocity 0.268 m^2/s^2 0.518 m/s 1.036 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.503 m^2/s^4 0.709 m/s^2 1.418 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.04 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.207 m^2 0.455 m 0.909 m
40 Workdeck: Rel. vert. motion 0.057 m^2 0.238 m 0.477 m
41 Workdeck: Abs. vert. velocity 0.179 m^2/s^2 0.423 m/s 0.845 m/s
42 Workdeck: Rel. vert. velocity 0.168 m^2/s^2 0.41 m/s 0.82 m/s
43 Workdeck: Abs. vert. accel 0.189 m^2/s^4 0.435 m/s^2 0.871 m/s^2
44 Workdeck: Rel. vert. accel 0.99 m^2/s^4 0.995 m/s^2 1.99 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.086 m 0.172 m
46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.088 m/s 0.175 m/s
47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.095 m/s^2 0.191 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.026 m^2 0.162 m 0.324 m
49 Workdeck: Lat. (due to roll) velocity 0.033 m^2/s^2 0.181 m/s 0.362 m/s
50 Workdeck: Lat. (due to roll) accel 0.061 m^2/s^4 0.248 m/s^2 0.496 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 160.574 kN -- --
17 Heave motion 0.491 m^2 0.701 m 1.401 m
18 Roll motion 0.00452 rad^2 0.06725 rad 0.13451 rad
19 Pitch motion 0.00135 rad^2 0.03674 rad 0.07348 rad
20 Heave velocity 0.338 m^2/s^2 0.581 m/s 1.163 m/s
21 Roll velocity 0.00534 (rad/s)^2 0.07307 rad/s 0.14614 rad/s
22 Pitch velocity 0.00132 (rad/s)^2 0.03634 rad/s 0.07269 rad/s
23 Heave acceleration 0.279 m^2/s^4 0.529 m/s^2 1.057 m/s^2
24 Roll acceleration 0.00944 (rad/s/s)^2 0.09715 rad/s/s 0.19429 rad/s/s)
25 Pitch acceleration 0.0015 (rad/s/s)^2 0.03874 rad/s/s 0.07748 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.815 m^2 0.903 m 1.805 m
27 Wheelhouse: Rel. vert. motion 0.26 m^2 0.51 m 1.019 m
28 Wheelhouse: Abs. vert. velocity 0.651 m^2/s^2 0.807 m/s 1.613 m/s
29 Wheelhouse: Rel. vert. velocity 0.547 m^2/s^2 0.74 m/s 1.479 m/s
30 Wheelhouse: Abs. vert. accel 0.617 m^2/s^4 0.785 m/s^2 1.571 m/s^2
31 Wheelhouse: Rel. vert. accel 2.061 m^2/s^4 1.436 m/s^2 2.871 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.162 m^2 0.403 m 0.806 m
33 Wheelhouse: Long. (due to pitch) velocity 0.158 m^2/s^2 0.397 m/s 0.795 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.179 m^2/s^4 0.423 m/s^2 0.845 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.546 m^2 0.739 m 1.477 m
36 Wheelhouse: Lat. (due to roll) velocity 0.639 m^2/s^2 0.799 m/s 1.599 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.118 m^2/s^4 1.057 m/s^2 2.114 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 1.371 MII/h 0.05 MII/h
39 Workdeck: Abs. vert. motion 0.655 m^2 0.809 m 1.619 m
40 Workdeck: Rel. vert. motion 0.13 m^2 0.36 m 0.72 m
41 Workdeck: Abs. vert. velocity 0.499 m^2/s^2 0.707 m/s 1.413 m/s
42 Workdeck: Rel. vert. velocity 0.357 m^2/s^2 0.597 m/s 1.194 m/s
43 Workdeck: Abs. vert. accel 0.481 m^2/s^4 0.693 m/s^2 1.386 m/s^2
44 Workdeck: Rel. vert. accel 2.041 m^2/s^4 1.429 m/s^2 2.857 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.02 m^2 0.141 m 0.282 m
46 Workdeck: Long. (due to pitch) velocity 0.019 m^2/s^2 0.139 m/s 0.278 m/s
47 Workdeck: Long. (due to pitch) accel 0.022 m^2/s^4 0.148 m/s^2 0.296 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.067 m^2 0.258 m 0.517 m
49 Workdeck: Lat. (due to roll) velocity 0.078 m^2/s^2 0.28 m/s 0.559 m/s
50 Workdeck: Lat. (due to roll) accel 0.137 m^2/s^4 0.37 m/s^2 0.74 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.044 MII/h 0.001 MII/h
5, 5 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 328.089 kN -- --
17 Heave motion 1.384 m^2 1.176 m 2.353 m
18 Roll motion 0.00582 rad^2 0.07627 rad 0.15255 rad
19 Pitch motion 0.002 rad^2 0.04476 rad 0.08952 rad
20 Heave velocity 0.659 m^2/s^2 0.812 m/s 1.623 m/s
21 Roll velocity 0.00608 (rad/s)^2 0.07801 rad/s 0.15601 rad/s
22 Pitch velocity 0.00167 (rad/s)^2 0.04081 rad/s 0.08162 rad/s
23 Heave acceleration 0.418 m^2/s^4 0.647 m/s^2 1.293 m/s^2
24 Roll acceleration 0.00963 (rad/s/s)^2 0.09813 rad/s/s 0.19626 rad/s/s)
25 Pitch acceleration 0.00171 (rad/s/s)^2 0.0414 rad/s/s 0.08279 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.843 m^2 1.358 m 2.715 m
27 Wheelhouse: Rel. vert. motion 0.267 m^2 0.517 m 1.034 m
28 Wheelhouse: Abs. vert. velocity 1.049 m^2/s^2 1.024 m/s 2.049 m/s
29 Wheelhouse: Rel. vert. velocity 0.532 m^2/s^2 0.729 m/s 1.458 m/s
30 Wheelhouse: Abs. vert. accel 0.808 m^2/s^4 0.899 m/s^2 1.798 m/s^2
31 Wheelhouse: Rel. vert. accel 1.907 m^2/s^4 1.381 m/s^2 2.762 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.243 m^2 0.492 m 0.985 m
33 Wheelhouse: Long. (due to pitch) velocity 0.2 m^2/s^2 0.447 m/s 0.894 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.204 m^2/s^4 0.452 m/s^2 0.904 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.707 m^2 0.841 m 1.681 m
36 Wheelhouse: Lat. (due to roll) velocity 0.731 m^2/s^2 0.855 m/s 1.71 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.143 m^2/s^4 1.069 m/s^2 2.139 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 1.226 MII/h 0.04 MII/h
39 Workdeck: Abs. vert. motion 1.626 m^2 1.275 m 2.551 m
40 Workdeck: Rel. vert. motion 0.153 m^2 0.391 m 0.783 m
41 Workdeck: Abs. vert. velocity 0.862 m^2/s^2 0.928 m/s 1.857 m/s
42 Workdeck: Rel. vert. velocity 0.344 m^2/s^2 0.587 m/s 1.173 m/s
43 Workdeck: Abs. vert. accel 0.643 m^2/s^4 0.802 m/s^2 1.604 m/s^2
44 Workdeck: Rel. vert. accel 1.854 m^2/s^4 1.362 m/s^2 2.723 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.172 m 0.344 m
46 Workdeck: Long. (due to pitch) velocity 0.024 m^2/s^2 0.156 m/s 0.313 m/s
47 Workdeck: Long. (due to pitch) accel 0.025 m^2/s^4 0.158 m/s^2 0.316 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.086 m^2 0.294 m 0.588 m
49 Workdeck: Lat. (due to roll) velocity 0.089 m^2/s^2 0.299 m/s 0.598 m/s
50 Workdeck: Lat. (due to roll) accel 0.14 m^2/s^4 0.374 m/s^2 0.748 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.198 MII/h 0.01 MII/h
5, 5 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 46.965 kN -- --
17 Heave motion 0.102 m^2 0.32 m 0.64 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00041 rad^2 0.02022 rad 0.04044 rad
20 Heave velocity 0.078 m^2/s^2 0.279 m/s 0.559 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00039 (rad/s)^2 0.01965 rad/s 0.03931 rad/s
23 Heave acceleration 0.068 m^2/s^4 0.261 m/s^2 0.522 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00041 (rad/s/s)^2 0.02021 rad/s/s 0.04042 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.243 m^2 0.493 m 0.986 m
27 Wheelhouse: Rel. vert. motion 0.134 m^2 0.366 m 0.731 m
28 Wheelhouse: Abs. vert. velocity 0.21 m^2/s^2 0.458 m/s 0.917 m/s
29 Wheelhouse: Rel. vert. velocity 0.273 m^2/s^2 0.522 m/s 1.045 m/s
30 Wheelhouse: Abs. vert. accel 0.206 m^2/s^4 0.453 m/s^2 0.907 m/s^2
31 Wheelhouse: Rel. vert. accel 1.083 m^2/s^4 1.041 m/s^2 2.082 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.049 m^2 0.221 m 0.442 m
33 Wheelhouse: Long. (due to pitch) velocity 0.046 m^2/s^2 0.214 m/s 0.428 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.048 m^2/s^4 0.22 m/s^2 0.44 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.082 m^2 0.287 m 0.574 m
40 Workdeck: Rel. vert. motion 0.089 m^2 0.299 m 0.597 m
41 Workdeck: Abs. vert. velocity 0.059 m^2/s^2 0.243 m/s 0.487 m/s
42 Workdeck: Rel. vert. velocity 0.251 m^2/s^2 0.501 m/s 1.001 m/s
43 Workdeck: Abs. vert. accel 0.049 m^2/s^4 0.222 m/s^2 0.443 m/s^2
44 Workdeck: Rel. vert. accel 1.373 m^2/s^4 1.172 m/s^2 2.343 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.077 m 0.154 m
46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.075 m/s 0.15 m/s
47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.077 m/s^2 0.154 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 142.863 kN -- --
17 Heave motion 0.37 m^2 0.609 m 1.217 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.0012 rad^2 0.03466 rad 0.06931 rad
20 Heave velocity 0.248 m^2/s^2 0.498 m/s 0.995 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00105 (rad/s)^2 0.03239 rad/s 0.06478 rad/s
23 Heave acceleration 0.195 m^2/s^4 0.442 m/s^2 0.883 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00105 (rad/s/s)^2 0.03236 rad/s/s 0.06473 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.782 m^2 0.884 m 1.768 m
27 Wheelhouse: Rel. vert. motion 0.313 m^2 0.56 m 1.119 m
28 Wheelhouse: Abs. vert. velocity 0.606 m^2/s^2 0.779 m/s 1.557 m/s
29 Wheelhouse: Rel. vert. velocity 0.604 m^2/s^2 0.777 m/s 1.554 m/s
30 Wheelhouse: Abs. vert. accel 0.549 m^2/s^4 0.741 m/s^2 1.482 m/s^2
31 Wheelhouse: Rel. vert. accel 2.258 m^2/s^4 1.503 m/s^2 3.006 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.144 m^2 0.379 m 0.758 m
33 Wheelhouse: Long. (due to pitch) velocity 0.125 m^2/s^2 0.353 m/s 0.707 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.124 m^2/s^4 0.352 m/s^2 0.705 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.313 m^2 0.559 m 1.118 m
40 Workdeck: Rel. vert. motion 0.2 m^2 0.447 m 0.895 m
41 Workdeck: Abs. vert. velocity 0.197 m^2/s^2 0.444 m/s 0.887 m/s
42 Workdeck: Rel. vert. velocity 0.535 m^2/s^2 0.732 m/s 1.463 m/s
43 Workdeck: Abs. vert. accel 0.146 m^2/s^4 0.382 m/s^2 0.764 m/s^2
44 Workdeck: Rel. vert. accel 2.823 m^2/s^4 1.68 m/s^2 3.361 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.133 m 0.265 m
46 Workdeck: Long. (due to pitch) velocity 0.015 m^2/s^2 0.124 m/s 0.247 m/s
47 Workdeck: Long. (due to pitch) accel 0.015 m^2/s^4 0.123 m/s^2 0.246 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
5, 5 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 5 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 308.117 kN -- --
17 Heave motion 1.183 m^2 1.088 m 2.175 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00212 rad^2 0.04604 rad 0.09207 rad
20 Heave velocity 0.548 m^2/s^2 0.74 m/s 1.48 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00153 (rad/s)^2 0.03907 rad/s 0.07813 rad/s
23 Heave acceleration 0.328 m^2/s^4 0.573 m/s^2 1.145 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00134 (rad/s/s)^2 0.03665 rad/s/s 0.0733 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.899 m^2 1.378 m 2.756 m
27 Wheelhouse: Rel. vert. motion 0.348 m^2 0.59 m 1.179 m
28 Wheelhouse: Abs. vert. velocity 1.067 m^2/s^2 1.033 m/s 2.066 m/s
29 Wheelhouse: Rel. vert. velocity 0.612 m^2/s^2 0.782 m/s 1.565 m/s
30 Wheelhouse: Abs. vert. accel 0.783 m^2/s^4 0.885 m/s^2 1.77 m/s^2
31 Wheelhouse: Rel. vert. accel 2.117 m^2/s^4 1.455 m/s^2 2.91 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.256 m^2 0.506 m 1.011 m
33 Wheelhouse: Long. (due to pitch) velocity 0.183 m^2/s^2 0.427 m/s 0.855 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.16 m^2/s^4 0.4 m/s^2 0.799 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.088 m^2 1.043 m 2.086 m
40 Workdeck: Rel. vert. motion 0.208 m^2 0.456 m 0.913 m
41 Workdeck: Abs. vert. velocity 0.476 m^2/s^2 0.69 m/s 1.38 m/s
42 Workdeck: Rel. vert. velocity 0.515 m^2/s^2 0.718 m/s 1.435 m/s
43 Workdeck: Abs. vert. accel 0.265 m^2/s^4 0.515 m/s^2 1.029 m/s^2
44 Workdeck: Rel. vert. accel 2.584 m^2/s^4 1.608 m/s^2 3.215 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.031 m^2 0.177 m 0.354 m
46 Workdeck: Long. (due to pitch) velocity 0.022 m^2/s^2 0.149 m/s 0.299 m/s
47 Workdeck: Long. (due to pitch) accel 0.02 m^2/s^4 0.14 m/s^2 0.28 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 60.263 kN -- --
17 Heave motion 0.05 m^2 0.223 m 0.445 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00046 rad^2 0.02142 rad 0.04284 rad
20 Heave velocity 0.009 m^2/s^2 0.097 m/s 0.195 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.0001 (rad/s)^2 0.00978 rad/s 0.01956 rad/s
23 Heave acceleration 0.002 m^2/s^4 0.046 m/s^2 0.093 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00002 (rad/s/s)^2 0.0047 rad/s/s 0.0094 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.108 m^2 0.329 m 0.657 m
27 Wheelhouse: Rel. vert. motion 0.075 m^2 0.273 m 0.547 m
28 Wheelhouse: Abs. vert. velocity 0.022 m^2/s^2 0.148 m/s 0.295 m/s
29 Wheelhouse: Rel. vert. velocity 0.019 m^2/s^2 0.137 m/s 0.275 m/s
30 Wheelhouse: Abs. vert. accel 0.005 m^2/s^4 0.069 m/s^2 0.137 m/s^2
31 Wheelhouse: Rel. vert. accel 0.115 m^2/s^4 0.339 m/s^2 0.678 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.05 m^2 0.224 m 0.449 m
33 Wheelhouse: Long. (due to pitch) velocity 0.01 m^2/s^2 0.102 m/s 0.204 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.049 m/s^2 0.098 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.072 m^2 0.268 m 0.536 m
40 Workdeck: Rel. vert. motion 0.096 m^2 0.309 m 0.619 m
41 Workdeck: Abs. vert. velocity 0.014 m^2/s^2 0.118 m/s 0.237 m/s
42 Workdeck: Rel. vert. velocity 0.027 m^2/s^2 0.165 m/s 0.331 m/s
43 Workdeck: Abs. vert. accel 0.003 m^2/s^4 0.058 m/s^2 0.116 m/s^2
44 Workdeck: Rel. vert. accel 0.226 m^2/s^4 0.475 m/s^2 0.95 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.078 m 0.157 m
46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.036 m/s 0.071 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.017 m/s^2 0.034 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 163.748 kN -- --
17 Heave motion 0.202 m^2 0.45 m 0.899 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00139 rad^2 0.03729 rad 0.07459 rad
20 Heave velocity 0.036 m^2/s^2 0.19 m/s 0.38 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00028 (rad/s)^2 0.01673 rad/s 0.03347 rad/s
23 Heave acceleration 0.007 m^2/s^4 0.085 m/s^2 0.17 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00006 (rad/s/s)^2 0.00782 rad/s/s 0.01565 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.365 m^2 0.604 m 1.209 m
27 Wheelhouse: Rel. vert. motion 0.185 m^2 0.43 m 0.86 m
28 Wheelhouse: Abs. vert. velocity 0.07 m^2/s^2 0.264 m/s 0.528 m/s
29 Wheelhouse: Rel. vert. velocity 0.045 m^2/s^2 0.211 m/s 0.423 m/s
30 Wheelhouse: Abs. vert. accel 0.014 m^2/s^4 0.119 m/s^2 0.238 m/s^2
31 Wheelhouse: Rel. vert. accel 0.237 m^2/s^4 0.487 m/s^2 0.974 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.156 m^2 0.395 m 0.789 m
33 Wheelhouse: Long. (due to pitch) velocity 0.031 m^2/s^2 0.176 m/s 0.353 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.007 m^2/s^4 0.082 m/s^2 0.165 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.279 m^2 0.529 m 1.057 m
40 Workdeck: Rel. vert. motion 0.215 m^2 0.463 m 0.927 m
41 Workdeck: Abs. vert. velocity 0.051 m^2/s^2 0.226 m/s 0.451 m/s
42 Workdeck: Rel. vert. velocity 0.06 m^2/s^2 0.244 m/s 0.489 m/s
43 Workdeck: Abs. vert. accel 0.011 m^2/s^4 0.103 m/s^2 0.207 m/s^2
44 Workdeck: Rel. vert. accel 0.461 m^2/s^4 0.679 m/s^2 1.358 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.276 m
46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.062 m/s 0.123 m/s
47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.029 m/s^2 0.058 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m
16 Added resistance 300.968 kN -- --
17 Heave motion 0.827 m^2 0.909 m 1.819 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00265 rad^2 0.0515 rad 0.103 rad
20 Heave velocity 0.121 m^2/s^2 0.348 m/s 0.696 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00048 (rad/s)^2 0.02202 rad/s 0.04404 rad/s
23 Heave acceleration 0.019 m^2/s^4 0.139 m/s^2 0.277 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.0001 (rad/s/s)^2 0.00976 rad/s/s 0.01952 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.067 m^2 1.033 m 2.066 m
27 Wheelhouse: Rel. vert. motion 0.25 m^2 0.5 m 1 m
28 Wheelhouse: Abs. vert. velocity 0.169 m^2/s^2 0.411 m/s 0.823 m/s
29 Wheelhouse: Rel. vert. velocity 0.055 m^2/s^2 0.234 m/s 0.467 m/s
30 Wheelhouse: Abs. vert. accel 0.029 m^2/s^4 0.17 m/s^2 0.34 m/s^2
31 Wheelhouse: Rel. vert. accel 0.207 m^2/s^4 0.455 m/s^2 0.909 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.309 m^2 0.556 m 1.111 m
33 Wheelhouse: Long. (due to pitch) velocity 0.056 m^2/s^2 0.236 m/s 0.472 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.011 m^2/s^4 0.104 m/s^2 0.208 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.022 m^2 1.011 m 2.022 m
40 Workdeck: Rel. vert. motion 0.224 m^2 0.474 m 0.947 m
41 Workdeck: Abs. vert. velocity 0.154 m^2/s^2 0.392 m/s 0.785 m/s
42 Workdeck: Rel. vert. velocity 0.06 m^2/s^2 0.244 m/s 0.489 m/s
43 Workdeck: Abs. vert. accel 0.025 m^2/s^4 0.16 m/s^2 0.319 m/s^2
44 Workdeck: Rel. vert. accel 0.403 m^2/s^4 0.635 m/s^2 1.27 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.038 m^2 0.194 m 0.389 m
46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.083 m/s 0.165 m/s
47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.036 m/s^2 0.073 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 59.918 kN -- --
17 Heave motion 0.061 m^2 0.247 m 0.493 m
18 Roll motion 0.00165 rad^2 0.04057 rad 0.08114 rad
19 Pitch motion 0.00047 rad^2 0.02164 rad 0.04329 rad
20 Heave velocity 0.014 m^2/s^2 0.117 m/s 0.233 m/s
21 Roll velocity 0.0007 (rad/s)^2 0.02642 rad/s 0.05285 rad/s
22 Pitch velocity 0.00012 (rad/s)^2 0.0109 rad/s 0.02179 rad/s
23 Heave acceleration 0.003 m^2/s^4 0.058 m/s^2 0.115 m/s^2
24 Roll acceleration 0.001 (rad/s/s)^2 0.03157 rad/s/s 0.06314 rad/s/s)
25 Pitch acceleration 0.00003 (rad/s/s)^2 0.00567 rad/s/s 0.01133 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.107 m^2 0.327 m 0.654 m
27 Wheelhouse: Rel. vert. motion 0.071 m^2 0.267 m 0.533 m
28 Wheelhouse: Abs. vert. velocity 0.026 m^2/s^2 0.161 m/s 0.322 m/s
29 Wheelhouse: Rel. vert. velocity 0.02 m^2/s^2 0.142 m/s 0.284 m/s
30 Wheelhouse: Abs. vert. accel 0.007 m^2/s^4 0.081 m/s^2 0.162 m/s^2
31 Wheelhouse: Rel. vert. accel 0.047 m^2/s^4 0.218 m/s^2 0.436 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.052 m^2 0.228 m 0.457 m
33 Wheelhouse: Long. (due to pitch) velocity 0.013 m^2/s^2 0.114 m/s 0.229 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.004 m^2/s^4 0.059 m/s^2 0.119 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m
36 Wheelhouse: Lat. (due to roll) velocity 0.083 m^2/s^2 0.289 m/s 0.578 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.117 m^2/s^4 0.342 m/s^2 0.685 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.001 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.117 m^2 0.342 m 0.684 m
40 Workdeck: Rel. vert. motion 0.055 m^2 0.235 m 0.47 m
41 Workdeck: Abs. vert. velocity 0.03 m^2/s^2 0.172 m/s 0.345 m/s
42 Workdeck: Rel. vert. velocity 0.022 m^2/s^2 0.147 m/s 0.293 m/s
43 Workdeck: Abs. vert. accel 0.014 m^2/s^4 0.119 m/s^2 0.239 m/s^2
44 Workdeck: Rel. vert. accel 0.105 m^2/s^4 0.324 m/s^2 0.647 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.08 m 0.16 m
46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.04 m/s 0.08 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.021 m/s^2 0.042 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.024 m^2 0.156 m 0.313 m
49 Workdeck: Lat. (due to roll) velocity 0.01 m^2/s^2 0.101 m/s 0.202 m/s
50 Workdeck: Lat. (due to roll) accel 0.014 m^2/s^4 0.12 m/s^2 0.239 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.813 m 1.625 m
16 Added resistance 163.612 kN -- --
17 Heave motion 0.239 m^2 0.489 m 0.978 m
18 Roll motion 0.00357 rad^2 0.05971 rad 0.11942 rad
19 Pitch motion 0.00138 rad^2 0.03718 rad 0.07436 rad
20 Heave velocity 0.05 m^2/s^2 0.223 m/s 0.445 m/s
21 Roll velocity 0.00147 (rad/s)^2 0.03836 rad/s 0.07673 rad/s
22 Pitch velocity 0.00034 (rad/s)^2 0.01834 rad/s 0.03667 rad/s
23 Heave acceleration 0.011 m^2/s^4 0.105 m/s^2 0.21 m/s^2
24 Roll acceleration 0.00204 (rad/s/s)^2 0.04511 rad/s/s 0.09023 rad/s/s)
25 Pitch acceleration 0.00009 (rad/s/s)^2 0.00932 rad/s/s 0.01864 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.356 m^2 0.596 m 1.193 m
27 Wheelhouse: Rel. vert. motion 0.176 m^2 0.42 m 0.839 m
28 Wheelhouse: Abs. vert. velocity 0.081 m^2/s^2 0.284 m/s 0.568 m/s
29 Wheelhouse: Rel. vert. velocity 0.048 m^2/s^2 0.22 m/s 0.44 m/s
30 Wheelhouse: Abs. vert. accel 0.019 m^2/s^4 0.138 m/s^2 0.277 m/s^2
31 Wheelhouse: Rel. vert. accel 0.099 m^2/s^4 0.315 m/s^2 0.63 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.157 m^2 0.396 m 0.792 m
33 Wheelhouse: Long. (due to pitch) velocity 0.038 m^2/s^2 0.194 m/s 0.388 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.01 m^2/s^4 0.098 m/s^2 0.196 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.434 m^2 0.659 m 1.318 m
36 Wheelhouse: Lat. (due to roll) velocity 0.176 m^2/s^2 0.42 m/s 0.84 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.239 m^2/s^4 0.489 m/s^2 0.979 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.283 MII/h 0.001 MII/h
39 Workdeck: Abs. vert. motion 0.408 m^2 0.639 m 1.277 m
40 Workdeck: Rel. vert. motion 0.125 m^2 0.354 m 0.708 m
41 Workdeck: Abs. vert. velocity 0.094 m^2/s^2 0.306 m/s 0.612 m/s
42 Workdeck: Rel. vert. velocity 0.047 m^2/s^2 0.217 m/s 0.434 m/s
43 Workdeck: Abs. vert. accel 0.036 m^2/s^4 0.189 m/s^2 0.378 m/s^2
44 Workdeck: Rel. vert. accel 0.214 m^2/s^4 0.463 m/s^2 0.925 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.277 m
46 Workdeck: Long. (due to pitch) velocity 0.005 m^2/s^2 0.068 m/s 0.136 m/s
47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.069 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.053 m^2 0.23 m 0.461 m
49 Workdeck: Lat. (due to roll) velocity 0.022 m^2/s^2 0.147 m/s 0.294 m/s
50 Workdeck: Lat. (due to roll) accel 0.029 m^2/s^4 0.171 m/s^2 0.342 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.189 MII/h 0.001 MII/h
10, 10 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m
16 Added resistance 303.586 kN -- --
17 Heave motion 0.91 m^2 0.954 m 1.908 m
18 Roll motion 0.00365 rad^2 0.06044 rad 0.12088 rad
19 Pitch motion 0.0025 rad^2 0.04996 rad 0.09992 rad
20 Heave velocity 0.152 m^2/s^2 0.389 m/s 0.779 m/s
21 Roll velocity 0.00141 (rad/s)^2 0.03759 rad/s 0.07518 rad/s
22 Pitch velocity 0.00054 (rad/s)^2 0.02333 rad/s 0.04666 rad/s
23 Heave acceleration 0.027 m^2/s^4 0.165 m/s^2 0.331 m/s^2
24 Roll acceleration 0.00183 (rad/s/s)^2 0.04275 rad/s/s 0.0855 rad/s/s)
25 Pitch acceleration 0.00013 (rad/s/s)^2 0.01128 rad/s/s 0.02256 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.032 m^2 1.016 m 2.032 m
27 Wheelhouse: Rel. vert. motion 0.234 m^2 0.483 m 0.967 m
28 Wheelhouse: Abs. vert. velocity 0.186 m^2/s^2 0.432 m/s 0.864 m/s
29 Wheelhouse: Rel. vert. velocity 0.059 m^2/s^2 0.243 m/s 0.486 m/s
30 Wheelhouse: Abs. vert. accel 0.037 m^2/s^4 0.192 m/s^2 0.384 m/s^2
31 Wheelhouse: Rel. vert. accel 0.089 m^2/s^4 0.298 m/s^2 0.596 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.294 m^2 0.542 m 1.085 m
33 Wheelhouse: Long. (due to pitch) velocity 0.063 m^2/s^2 0.251 m/s 0.502 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.015 m^2/s^4 0.121 m/s^2 0.241 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.448 m^2 0.669 m 1.339 m
36 Wheelhouse: Lat. (due to roll) velocity 0.17 m^2/s^2 0.412 m/s 0.825 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.215 m^2/s^4 0.464 m/s^2 0.928 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.255 MII/h 0.001 MII/h
39 Workdeck: Abs. vert. motion 1.253 m^2 1.119 m 2.239 m
40 Workdeck: Rel. vert. motion 0.141 m^2 0.375 m 0.75 m
41 Workdeck: Abs. vert. velocity 0.226 m^2/s^2 0.475 m/s 0.95 m/s
42 Workdeck: Rel. vert. velocity 0.048 m^2/s^2 0.219 m/s 0.439 m/s
43 Workdeck: Abs. vert. accel 0.056 m^2/s^4 0.236 m/s^2 0.473 m/s^2
44 Workdeck: Rel. vert. accel 0.189 m^2/s^4 0.435 m/s^2 0.87 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.036 m^2 0.19 m 0.379 m
46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.088 m/s 0.176 m/s
47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.042 m/s^2 0.084 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.055 m^2 0.234 m 0.468 m
49 Workdeck: Lat. (due to roll) velocity 0.021 m^2/s^2 0.144 m/s 0.288 m/s
50 Workdeck: Lat. (due to roll) accel 0.026 m^2/s^4 0.162 m/s^2 0.324 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.22 MII/h 0.001 MII/h
10, 10 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 50.046 kN -- --
17 Heave motion 0.178 m^2 0.422 m 0.844 m
18 Roll motion 0.00596 rad^2 0.07718 rad 0.15437 rad
19 Pitch motion 0.00029 rad^2 0.01691 rad 0.03382 rad
20 Heave velocity 0.135 m^2/s^2 0.367 m/s 0.734 m/s
21 Roll velocity 0.00715 (rad/s)^2 0.08454 rad/s 0.16908 rad/s
22 Pitch velocity 0.00023 (rad/s)^2 0.01522 rad/s 0.03043 rad/s
23 Heave acceleration 0.132 m^2/s^4 0.364 m/s^2 0.728 m/s^2
24 Roll acceleration 0.01322 (rad/s/s)^2 0.11496 rad/s/s 0.22992 rad/s/s)
25 Pitch acceleration 0.00021 (rad/s/s)^2 0.01444 rad/s/s 0.02887 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.061 m^2 0.247 m 0.494 m
27 Wheelhouse: Rel. vert. motion 0.097 m^2 0.312 m 0.624 m
28 Wheelhouse: Abs. vert. velocity 0.048 m^2/s^2 0.219 m/s 0.438 m/s
29 Wheelhouse: Rel. vert. velocity 0.148 m^2/s^2 0.385 m/s 0.77 m/s
30 Wheelhouse: Abs. vert. accel 0.055 m^2/s^4 0.235 m/s^2 0.471 m/s^2
31 Wheelhouse: Rel. vert. accel 0.467 m^2/s^4 0.683 m/s^2 1.366 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.034 m^2 0.184 m 0.369 m
33 Wheelhouse: Long. (due to pitch) velocity 0.027 m^2/s^2 0.163 m/s 0.327 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.023 m^2/s^4 0.153 m/s^2 0.305 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.706 m
36 Wheelhouse: Lat. (due to roll) velocity 0.851 m^2/s^2 0.922 m/s 1.845 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.553 m^2/s^4 1.246 m/s^2 2.493 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.342 MII/h 0.371 MII/h
39 Workdeck: Abs. vert. motion 0.473 m^2 0.688 m 1.376 m
40 Workdeck: Rel. vert. motion 0.096 m^2 0.31 m 0.621 m
41 Workdeck: Abs. vert. velocity 0.418 m^2/s^2 0.646 m/s 1.292 m/s
42 Workdeck: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s
43 Workdeck: Abs. vert. accel 0.493 m^2/s^4 0.702 m/s^2 1.404 m/s^2
44 Workdeck: Rel. vert. accel 0.378 m^2/s^4 0.615 m/s^2 1.23 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.004 m^2 0.064 m 0.129 m
46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.057 m/s 0.114 m/s
47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.053 m/s^2 0.107 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.298 m 0.597 m
49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s
50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.159 MII/h 0.003 MII/h
10, 10 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 143.89 kN -- --
17 Heave motion 0.557 m^2 0.746 m 1.493 m
18 Roll motion 0.01403 rad^2 0.11847 rad 0.23693 rad
19 Pitch motion 0.00074 rad^2 0.02714 rad 0.05427 rad
20 Heave velocity 0.359 m^2/s^2 0.599 m/s 1.199 m/s
21 Roll velocity 0.01595 (rad/s)^2 0.12631 rad/s 0.25262 rad/s
22 Pitch velocity 0.00057 (rad/s)^2 0.0238 rad/s 0.04759 rad/s
23 Heave acceleration 0.315 m^2/s^4 0.561 m/s^2 1.122 m/s^2
24 Roll acceleration 0.02812 (rad/s/s)^2 0.1677 rad/s/s 0.3354 rad/s/s)
25 Pitch acceleration 0.00049 (rad/s/s)^2 0.02214 rad/s/s 0.04428 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.217 m^2 0.466 m 0.933 m
27 Wheelhouse: Rel. vert. motion 0.233 m^2 0.483 m 0.966 m
28 Wheelhouse: Abs. vert. velocity 0.133 m^2/s^2 0.364 m/s 0.729 m/s
29 Wheelhouse: Rel. vert. velocity 0.325 m^2/s^2 0.57 m/s 1.14 m/s
30 Wheelhouse: Abs. vert. accel 0.129 m^2/s^4 0.359 m/s^2 0.719 m/s^2
31 Wheelhouse: Rel. vert. accel 0.968 m^2/s^4 0.984 m/s^2 1.967 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.089 m^2 0.299 m 0.597 m
33 Wheelhouse: Long. (due to pitch) velocity 0.066 m^2/s^2 0.257 m/s 0.514 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.055 m^2/s^4 0.235 m/s^2 0.471 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.732 m^2 1.316 m 2.632 m
36 Wheelhouse: Lat. (due to roll) velocity 1.911 m^2/s^2 1.382 m/s 2.765 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.313 m^2/s^4 1.82 m/s^2 3.64 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.628 MII/h 4.833 MII/h
39 Workdeck: Abs. vert. motion 1.312 m^2 1.146 m 2.291 m
40 Workdeck: Rel. vert. motion 0.239 m^2 0.489 m 0.978 m
41 Workdeck: Abs. vert. velocity 1.027 m^2/s^2 1.013 m/s 2.027 m/s
42 Workdeck: Rel. vert. velocity 0.277 m^2/s^2 0.526 m/s 1.053 m/s
43 Workdeck: Abs. vert. accel 1.115 m^2/s^4 1.056 m/s^2 2.112 m/s^2
44 Workdeck: Rel. vert. accel 0.789 m^2/s^4 0.888 m/s^2 1.776 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.011 m^2 0.104 m 0.209 m
46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.09 m/s 0.18 m/s
47 Workdeck: Long. (due to pitch) accel 0.007 m^2/s^4 0.082 m/s^2 0.165 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.921 m
49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.483 m/s 0.967 m/s
50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.472 MII/h 0.39 MII/h
10, 10 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 294.033 kN -- --
17 Heave motion 1.437 m^2 1.199 m 2.398 m
18 Roll motion 0.01621 rad^2 0.12732 rad 0.25464 rad
19 Pitch motion 0.00097 rad^2 0.03122 rad 0.06244 rad
20 Heave velocity 0.608 m^2/s^2 0.78 m/s 1.56 m/s
21 Roll velocity 0.01652 (rad/s)^2 0.12851 rad/s 0.25703 rad/s
22 Pitch velocity 0.00068 (rad/s)^2 0.02598 rad/s 0.05196 rad/s
23 Heave acceleration 0.391 m^2/s^4 0.625 m/s^2 1.25 m/s^2
24 Roll acceleration 0.02686 (rad/s/s)^2 0.16388 rad/s/s 0.32775 rad/s/s)
25 Pitch acceleration 0.00054 (rad/s/s)^2 0.02332 rad/s/s 0.04664 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.812 m^2 0.901 m 1.802 m
27 Wheelhouse: Rel. vert. motion 0.282 m^2 0.531 m 1.063 m
28 Wheelhouse: Abs. vert. velocity 0.283 m^2/s^2 0.532 m/s 1.063 m/s
29 Wheelhouse: Rel. vert. velocity 0.33 m^2/s^2 0.575 m/s 1.15 m/s
30 Wheelhouse: Abs. vert. accel 0.168 m^2/s^4 0.409 m/s^2 0.819 m/s^2
31 Wheelhouse: Rel. vert. accel 0.89 m^2/s^4 0.943 m/s^2 1.886 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.123 m^2 0.351 m 0.702 m
33 Wheelhouse: Long. (due to pitch) velocity 0.081 m^2/s^2 0.285 m/s 0.57 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.063 m^2/s^4 0.25 m/s^2 0.5 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 2.039 m^2 1.428 m 2.856 m
36 Wheelhouse: Lat. (due to roll) velocity 2.001 m^2/s^2 1.414 m/s 2.829 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.176 m^2/s^4 1.782 m/s^2 3.564 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.053 MII/h 4.104 MII/h
39 Workdeck: Abs. vert. motion 2.505 m^2 1.583 m 3.166 m
40 Workdeck: Rel. vert. motion 0.328 m^2 0.573 m 1.146 m
41 Workdeck: Abs. vert. velocity 1.388 m^2/s^2 1.178 m/s 2.356 m/s
42 Workdeck: Rel. vert. velocity 0.3 m^2/s^2 0.547 m/s 1.095 m/s
43 Workdeck: Abs. vert. accel 1.215 m^2/s^4 1.102 m/s^2 2.204 m/s^2
44 Workdeck: Rel. vert. accel 0.734 m^2/s^4 0.857 m/s^2 1.714 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.015 m^2 0.123 m 0.246 m
46 Workdeck: Long. (due to pitch) velocity 0.01 m^2/s^2 0.1 m/s 0.199 m/s
47 Workdeck: Long. (due to pitch) accel 0.008 m^2/s^4 0.087 m/s^2 0.175 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.249 m^2 0.499 m 0.999 m
49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.989 m/s
50 Workdeck: Lat. (due to roll) accel 0.389 m^2/s^4 0.623 m/s^2 1.247 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.388 MII/h 0.688 MII/h
10, 10 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 51.238 kN -- --
17 Heave motion 0.197 m^2 0.444 m 0.889 m
18 Roll motion 0.0012 rad^2 0.03464 rad 0.06929 rad
19 Pitch motion 0.00048 rad^2 0.02193 rad 0.04386 rad
20 Heave velocity 0.203 m^2/s^2 0.45 m/s 0.9 m/s
21 Roll velocity 0.00162 (rad/s)^2 0.04025 rad/s 0.08049 rad/s
22 Pitch velocity 0.0006 (rad/s)^2 0.02447 rad/s 0.04894 rad/s
23 Heave acceleration 0.237 m^2/s^4 0.487 m/s^2 0.974 m/s^2
24 Roll acceleration 0.00338 (rad/s/s)^2 0.05813 rad/s/s 0.11626 rad/s/s)
25 Pitch acceleration 0.00085 (rad/s/s)^2 0.02908 rad/s/s 0.05815 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.326 m^2 0.571 m 1.143 m
27 Wheelhouse: Rel. vert. motion 0.201 m^2 0.449 m 0.898 m
28 Wheelhouse: Abs. vert. velocity 0.354 m^2/s^2 0.595 m/s 1.191 m/s
29 Wheelhouse: Rel. vert. velocity 0.479 m^2/s^2 0.692 m/s 1.384 m/s
30 Wheelhouse: Abs. vert. accel 0.433 m^2/s^4 0.658 m/s^2 1.316 m/s^2
31 Wheelhouse: Rel. vert. accel 2.204 m^2/s^4 1.485 m/s^2 2.969 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.058 m^2 0.24 m 0.48 m
33 Wheelhouse: Long. (due to pitch) velocity 0.072 m^2/s^2 0.267 m/s 0.535 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.101 m^2/s^4 0.317 m/s^2 0.634 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.144 m^2 0.379 m 0.759 m
36 Wheelhouse: Lat. (due to roll) velocity 0.193 m^2/s^2 0.439 m/s 0.879 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.399 m^2/s^4 0.632 m/s^2 1.264 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.022 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.264 m^2 0.514 m 1.028 m
40 Workdeck: Rel. vert. motion 0.105 m^2 0.324 m 0.647 m
41 Workdeck: Abs. vert. velocity 0.282 m^2/s^2 0.531 m/s 1.062 m/s
42 Workdeck: Rel. vert. velocity 0.323 m^2/s^2 0.569 m/s 1.137 m/s
43 Workdeck: Abs. vert. accel 0.35 m^2/s^4 0.591 m/s^2 1.183 m/s^2
44 Workdeck: Rel. vert. accel 2.04 m^2/s^4 1.428 m/s^2 2.856 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.084 m 0.168 m
46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.094 m/s 0.187 m/s
47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.111 m/s^2 0.222 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.018 m^2 0.133 m 0.265 m
49 Workdeck: Lat. (due to roll) velocity 0.024 m^2/s^2 0.154 m/s 0.307 m/s
50 Workdeck: Lat. (due to roll) accel 0.049 m^2/s^4 0.221 m/s^2 0.442 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 154.64 kN -- --
17 Heave motion 0.641 m^2 0.8 m 1.601 m
18 Roll motion 0.00329 rad^2 0.05735 rad 0.11469 rad
19 Pitch motion 0.00133 rad^2 0.03649 rad 0.07297 rad
20 Heave velocity 0.584 m^2/s^2 0.764 m/s 1.528 m/s
21 Roll velocity 0.00411 (rad/s)^2 0.06407 rad/s 0.12814 rad/s
22 Pitch velocity 0.00155 (rad/s)^2 0.03935 rad/s 0.0787 rad/s
23 Heave acceleration 0.631 m^2/s^4 0.795 m/s^2 1.589 m/s^2
24 Roll acceleration 0.00777 (rad/s/s)^2 0.08816 rad/s/s 0.17631 rad/s/s)
25 Pitch acceleration 0.00208 (rad/s/s)^2 0.04563 rad/s/s 0.09126 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.998 m^2 0.999 m 1.998 m
27 Wheelhouse: Rel. vert. motion 0.471 m^2 0.687 m 1.373 m
28 Wheelhouse: Abs. vert. velocity 0.983 m^2/s^2 0.991 m/s 1.983 m/s
29 Wheelhouse: Rel. vert. velocity 1.065 m^2/s^2 1.032 m/s 2.064 m/s
30 Wheelhouse: Abs. vert. accel 1.126 m^2/s^4 1.061 m/s^2 2.122 m/s^2
31 Wheelhouse: Rel. vert. accel 4.616 m^2/s^4 2.149 m/s^2 4.297 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.16 m^2 0.4 m 0.8 m
33 Wheelhouse: Long. (due to pitch) velocity 0.185 m^2/s^2 0.43 m/s 0.861 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.248 m^2/s^4 0.498 m/s^2 0.996 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.396 m^2 0.629 m 1.258 m
36 Wheelhouse: Lat. (due to roll) velocity 0.491 m^2/s^2 0.7 m/s 1.401 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.92 m^2/s^4 0.959 m/s^2 1.918 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.889 MII/h 0.049 MII/h
39 Workdeck: Abs. vert. motion 0.826 m^2 0.909 m 1.818 m
40 Workdeck: Rel. vert. motion 0.244 m^2 0.494 m 0.987 m
41 Workdeck: Abs. vert. velocity 0.792 m^2/s^2 0.89 m/s 1.78 m/s
42 Workdeck: Rel. vert. velocity 0.7 m^2/s^2 0.837 m/s 1.673 m/s
43 Workdeck: Abs. vert. accel 0.91 m^2/s^4 0.954 m/s^2 1.908 m/s^2
44 Workdeck: Rel. vert. accel 4.202 m^2/s^4 2.05 m/s^2 4.1 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.02 m^2 0.14 m 0.28 m
46 Workdeck: Long. (due to pitch) velocity 0.023 m^2/s^2 0.151 m/s 0.301 m/s
47 Workdeck: Long. (due to pitch) accel 0.03 m^2/s^4 0.174 m/s^2 0.348 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.048 m^2 0.22 m 0.44 m
49 Workdeck: Lat. (due to roll) velocity 0.06 m^2/s^2 0.245 m/s 0.49 m/s
50 Workdeck: Lat. (due to roll) accel 0.113 m^2/s^4 0.335 m/s^2 0.671 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.02 MII/h 0 MII/h
10, 10 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 327.847 kN -- --
17 Heave motion 1.627 m^2 1.276 m 2.551 m
18 Roll motion 0.00479 rad^2 0.06923 rad 0.13846 rad
19 Pitch motion 0.00205 rad^2 0.04533 rad 0.09066 rad
20 Heave velocity 1.037 m^2/s^2 1.018 m/s 2.037 m/s
21 Roll velocity 0.00518 (rad/s)^2 0.07199 rad/s 0.14397 rad/s
22 Pitch velocity 0.00203 (rad/s)^2 0.0451 rad/s 0.0902 rad/s
23 Heave acceleration 0.895 m^2/s^4 0.946 m/s^2 1.892 m/s^2
24 Roll acceleration 0.00845 (rad/s/s)^2 0.09191 rad/s/s 0.18382 rad/s/s)
25 Pitch acceleration 0.00248 (rad/s/s)^2 0.04975 rad/s/s 0.09951 rad/s/s)
26 Wheelhouse: Abs. vert. motion 2.165 m^2 1.472 m 2.943 m
27 Wheelhouse: Rel. vert. motion 0.518 m^2 0.719 m 1.439 m
28 Wheelhouse: Abs. vert. velocity 1.565 m^2/s^2 1.251 m/s 2.502 m/s
29 Wheelhouse: Rel. vert. velocity 1.084 m^2/s^2 1.041 m/s 2.082 m/s
30 Wheelhouse: Abs. vert. accel 1.5 m^2/s^4 1.225 m/s^2 2.449 m/s^2
31 Wheelhouse: Rel. vert. accel 4.351 m^2/s^4 2.086 m/s^2 4.172 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.248 m^2 0.498 m 0.996 m
33 Wheelhouse: Long. (due to pitch) velocity 0.244 m^2/s^2 0.494 m/s 0.988 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.296 m^2/s^4 0.544 m/s^2 1.087 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.58 m^2 0.762 m 1.524 m
36 Wheelhouse: Lat. (due to roll) velocity 0.622 m^2/s^2 0.789 m/s 1.577 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.003 m^2/s^4 1.002 m/s^2 2.003 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.865 MII/h 0.049 MII/h
39 Workdeck: Abs. vert. motion 1.913 m^2 1.383 m 2.766 m
40 Workdeck: Rel. vert. motion 0.281 m^2 0.53 m 1.06 m
41 Workdeck: Abs. vert. velocity 1.315 m^2/s^2 1.147 m/s 2.293 m/s
42 Workdeck: Rel. vert. velocity 0.694 m^2/s^2 0.833 m/s 1.666 m/s
43 Workdeck: Abs. vert. accel 1.228 m^2/s^4 1.108 m/s^2 2.217 m/s^2
44 Workdeck: Rel. vert. accel 3.877 m^2/s^4 1.969 m/s^2 3.938 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.174 m 0.348 m
46 Workdeck: Long. (due to pitch) velocity 0.03 m^2/s^2 0.173 m/s 0.346 m/s
47 Workdeck: Long. (due to pitch) accel 0.036 m^2/s^4 0.19 m/s^2 0.38 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.071 m^2 0.266 m 0.533 m
49 Workdeck: Lat. (due to roll) velocity 0.076 m^2/s^2 0.276 m/s 0.552 m/s
50 Workdeck: Lat. (due to roll) accel 0.123 m^2/s^4 0.35 m/s^2 0.701 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.161 MII/h 0.012 MII/h
10, 10 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 43.148 kN -- --
17 Heave motion 0.154 m^2 0.392 m 0.784 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00039 rad^2 0.01984 rad 0.03968 rad
20 Heave velocity 0.158 m^2/s^2 0.397 m/s 0.794 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00046 (rad/s)^2 0.02155 rad/s 0.04311 rad/s
23 Heave acceleration 0.18 m^2/s^4 0.425 m/s^2 0.85 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00061 (rad/s/s)^2 0.02471 rad/s/s 0.04942 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.305 m^2 0.552 m 1.104 m
27 Wheelhouse: Rel. vert. motion 0.259 m^2 0.509 m 1.019 m
28 Wheelhouse: Abs. vert. velocity 0.33 m^2/s^2 0.574 m/s 1.148 m/s
29 Wheelhouse: Rel. vert. velocity 0.587 m^2/s^2 0.766 m/s 1.532 m/s
30 Wheelhouse: Abs. vert. accel 0.396 m^2/s^4 0.629 m/s^2 1.258 m/s^2
31 Wheelhouse: Rel. vert. accel 2.746 m^2/s^4 1.657 m/s^2 3.314 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.047 m^2 0.217 m 0.434 m
33 Wheelhouse: Long. (due to pitch) velocity 0.055 m^2/s^2 0.235 m/s 0.47 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.072 m^2/s^4 0.269 m/s^2 0.538 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.127 m^2 0.356 m 0.711 m
40 Workdeck: Rel. vert. motion 0.116 m^2 0.341 m 0.682 m
41 Workdeck: Abs. vert. velocity 0.129 m^2/s^2 0.359 m/s 0.717 m/s
42 Workdeck: Rel. vert. velocity 0.414 m^2/s^2 0.644 m/s 1.287 m/s
43 Workdeck: Abs. vert. accel 0.147 m^2/s^4 0.384 m/s^2 0.768 m/s^2
44 Workdeck: Rel. vert. accel 2.808 m^2/s^4 1.676 m/s^2 3.351 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.076 m 0.152 m
46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.082 m/s 0.165 m/s
47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.094 m/s^2 0.188 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 136.862 kN -- --
17 Heave motion 0.533 m^2 0.73 m 1.46 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.0012 rad^2 0.03464 rad 0.06928 rad
20 Heave velocity 0.489 m^2/s^2 0.699 m/s 1.398 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00131 (rad/s)^2 0.0362 rad/s 0.07239 rad/s
23 Heave acceleration 0.517 m^2/s^4 0.719 m/s^2 1.438 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00163 (rad/s/s)^2 0.04033 rad/s/s 0.08065 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.997 m^2 0.999 m 1.997 m
27 Wheelhouse: Rel. vert. motion 0.648 m^2 0.805 m 1.61 m
28 Wheelhouse: Abs. vert. velocity 0.981 m^2/s^2 0.99 m/s 1.981 m/s
29 Wheelhouse: Rel. vert. velocity 1.36 m^2/s^2 1.166 m/s 2.333 m/s
30 Wheelhouse: Abs. vert. accel 1.101 m^2/s^4 1.049 m/s^2 2.099 m/s^2
31 Wheelhouse: Rel. vert. accel 5.889 m^2/s^4 2.427 m/s^2 4.854 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.144 m^2 0.379 m 0.758 m
33 Wheelhouse: Long. (due to pitch) velocity 0.156 m^2/s^2 0.395 m/s 0.791 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.193 m^2/s^4 0.44 m/s^2 0.879 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.449 m^2 0.67 m 1.34 m
40 Workdeck: Rel. vert. motion 0.264 m^2 0.514 m 1.027 m
41 Workdeck: Abs. vert. velocity 0.404 m^2/s^2 0.635 m/s 1.271 m/s
42 Workdeck: Rel. vert. velocity 0.899 m^2/s^2 0.948 m/s 1.896 m/s
43 Workdeck: Abs. vert. accel 0.424 m^2/s^4 0.651 m/s^2 1.302 m/s^2
44 Workdeck: Rel. vert. accel 5.874 m^2/s^4 2.424 m/s^2 4.847 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.133 m 0.265 m
46 Workdeck: Long. (due to pitch) velocity 0.019 m^2/s^2 0.138 m/s 0.277 m/s
47 Workdeck: Long. (due to pitch) accel 0.024 m^2/s^4 0.154 m/s^2 0.308 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
10, 10 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 10 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 310.662 kN -- --
17 Heave motion 1.492 m^2 1.221 m 2.443 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00222 rad^2 0.04707 rad 0.09414 rad
20 Heave velocity 0.972 m^2/s^2 0.986 m/s 1.971 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.002 (rad/s)^2 0.04472 rad/s 0.08943 rad/s
23 Heave acceleration 0.822 m^2/s^4 0.907 m/s^2 1.813 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00219 (rad/s/s)^2 0.04682 rad/s/s 0.09365 rad/s/s)
26 Wheelhouse: Abs. vert. motion 2.346 m^2 1.532 m 3.063 m
27 Wheelhouse: Rel. vert. motion 0.792 m^2 0.89 m 1.78 m
28 Wheelhouse: Abs. vert. velocity 1.733 m^2/s^2 1.317 m/s 2.633 m/s
29 Wheelhouse: Rel. vert. velocity 1.479 m^2/s^2 1.216 m/s 2.433 m/s
30 Wheelhouse: Abs. vert. accel 1.629 m^2/s^4 1.276 m/s^2 2.552 m/s^2
31 Wheelhouse: Rel. vert. accel 5.681 m^2/s^4 2.383 m/s^2 4.767 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.267 m^2 0.517 m 1.033 m
33 Wheelhouse: Long. (due to pitch) velocity 0.24 m^2/s^2 0.489 m/s 0.979 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.261 m^2/s^4 0.511 m/s^2 1.023 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.34 m^2 1.158 m 2.315 m
40 Workdeck: Rel. vert. motion 0.276 m^2 0.525 m 1.05 m
41 Workdeck: Abs. vert. velocity 0.838 m^2/s^2 0.915 m/s 1.831 m/s
42 Workdeck: Rel. vert. velocity 0.878 m^2/s^2 0.937 m/s 1.875 m/s
43 Workdeck: Abs. vert. accel 0.688 m^2/s^4 0.83 m/s^2 1.659 m/s^2
44 Workdeck: Rel. vert. accel 5.439 m^2/s^4 2.332 m/s^2 4.664 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.033 m^2 0.181 m 0.361 m
46 Workdeck: Long. (due to pitch) velocity 0.029 m^2/s^2 0.171 m/s 0.342 m/s
47 Workdeck: Long. (due to pitch) accel 0.032 m^2/s^4 0.179 m/s^2 0.358 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 48.544 kN -- --
17 Heave motion 0.047 m^2 0.217 m 0.433 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00051 rad^2 0.02247 rad 0.04495 rad
20 Heave velocity 0.004 m^2/s^2 0.061 m/s 0.122 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00003 (rad/s)^2 0.00568 rad/s 0.01137 rad/s
23 Heave acceleration 0 m^2/s^4 0.02 m/s^2 0.039 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0 (rad/s/s)^2 0.00189 rad/s/s 0.00377 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.13 m^2 0.36 m 0.72 m
27 Wheelhouse: Rel. vert. motion 0.051 m^2 0.226 m 0.451 m
28 Wheelhouse: Abs. vert. velocity 0.009 m^2/s^2 0.093 m/s 0.185 m/s
29 Wheelhouse: Rel. vert. velocity 0.042 m^2/s^2 0.204 m/s 0.408 m/s
30 Wheelhouse: Abs. vert. accel 0.001 m^2/s^4 0.028 m/s^2 0.056 m/s^2
31 Wheelhouse: Rel. vert. accel 2.184 m^2/s^4 1.478 m/s^2 2.956 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.056 m^2 0.237 m 0.474 m
33 Wheelhouse: Long. (due to pitch) velocity 0.004 m^2/s^2 0.06 m/s 0.121 m/s
34 Wheelhouse: Long. (due to pitch) accel 0 m^2/s^4 0.02 m/s^2 0.04 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.063 m^2 0.251 m 0.502 m
40 Workdeck: Rel. vert. motion 0.088 m^2 0.296 m 0.592 m
41 Workdeck: Abs. vert. velocity 0.005 m^2/s^2 0.071 m/s 0.142 m/s
42 Workdeck: Rel. vert. velocity 0.067 m^2/s^2 0.258 m/s 0.516 m/s
43 Workdeck: Abs. vert. accel 0.001 m^2/s^4 0.024 m/s^2 0.049 m/s^2
44 Workdeck: Rel. vert. accel 4.24 m^2/s^4 2.059 m/s^2 4.118 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.083 m 0.166 m
46 Workdeck: Long. (due to pitch) velocity 0 m^2/s^2 0.021 m/s 0.042 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.007 m/s^2 0.014 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 138.599 kN -- --
17 Heave motion 0.19 m^2 0.436 m 0.873 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00149 rad^2 0.03855 rad 0.07709 rad
20 Heave velocity 0.016 m^2/s^2 0.125 m/s 0.25 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.0001 (rad/s)^2 0.01008 rad/s 0.02016 rad/s
23 Heave acceleration 0.001 m^2/s^4 0.038 m/s^2 0.076 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00001 (rad/s/s)^2 0.00319 rad/s/s 0.00637 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.416 m^2 0.645 m 1.291 m
27 Wheelhouse: Rel. vert. motion 0.133 m^2 0.365 m 0.73 m
28 Wheelhouse: Abs. vert. velocity 0.03 m^2/s^2 0.173 m/s 0.345 m/s
29 Wheelhouse: Rel. vert. velocity 0.087 m^2/s^2 0.295 m/s 0.59 m/s
30 Wheelhouse: Abs. vert. accel 0.003 m^2/s^4 0.051 m/s^2 0.102 m/s^2
31 Wheelhouse: Rel. vert. accel 4.471 m^2/s^4 2.115 m/s^2 4.229 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.168 m^2 0.41 m 0.819 m
33 Wheelhouse: Long. (due to pitch) velocity 0.012 m^2/s^2 0.108 m/s 0.216 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.069 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.249 m^2 0.499 m 0.998 m
40 Workdeck: Rel. vert. motion 0.201 m^2 0.448 m 0.896 m
41 Workdeck: Abs. vert. velocity 0.02 m^2/s^2 0.143 m/s 0.286 m/s
42 Workdeck: Rel. vert. velocity 0.137 m^2/s^2 0.37 m/s 0.739 m/s
43 Workdeck: Abs. vert. accel 0.002 m^2/s^4 0.046 m/s^2 0.091 m/s^2
44 Workdeck: Rel. vert. accel 8.633 m^2/s^4 2.938 m/s^2 5.877 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.021 m^2 0.143 m 0.287 m
46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.038 m/s 0.076 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.012 m/s^2 0.024 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 274.465 kN -- --
17 Heave motion 0.78 m^2 0.883 m 1.766 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00272 rad^2 0.0522 rad 0.1044 rad
20 Heave velocity 0.063 m^2/s^2 0.252 m/s 0.504 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.0002 (rad/s)^2 0.0143 rad/s 0.0286 rad/s
23 Heave acceleration 0.005 m^2/s^4 0.073 m/s^2 0.146 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00002 (rad/s/s)^2 0.0043 rad/s/s 0.0086 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.106 m^2 1.052 m 2.103 m
27 Wheelhouse: Rel. vert. motion 0.206 m^2 0.454 m 0.908 m
28 Wheelhouse: Abs. vert. velocity 0.086 m^2/s^2 0.293 m/s 0.586 m/s
29 Wheelhouse: Rel. vert. velocity 0.084 m^2/s^2 0.29 m/s 0.58 m/s
30 Wheelhouse: Abs. vert. accel 0.007 m^2/s^4 0.085 m/s^2 0.17 m/s^2
31 Wheelhouse: Rel. vert. accel 3.869 m^2/s^4 1.967 m/s^2 3.934 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.318 m^2 0.564 m 1.127 m
33 Wheelhouse: Long. (due to pitch) velocity 0.024 m^2/s^2 0.155 m/s 0.311 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.047 m/s^2 0.093 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.94 m^2 0.97 m 1.939 m
40 Workdeck: Rel. vert. motion 0.219 m^2 0.468 m 0.937 m
41 Workdeck: Abs. vert. velocity 0.077 m^2/s^2 0.277 m/s 0.554 m/s
42 Workdeck: Rel. vert. velocity 0.124 m^2/s^2 0.352 m/s 0.703 m/s
43 Workdeck: Abs. vert. accel 0.007 m^2/s^4 0.082 m/s^2 0.163 m/s^2
44 Workdeck: Rel. vert. accel 7.557 m^2/s^4 2.749 m/s^2 5.498 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.039 m^2 0.197 m 0.394 m
46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.054 m/s 0.109 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.016 m/s^2 0.033 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 57.902 kN -- --
17 Heave motion 0.055 m^2 0.234 m 0.468 m
18 Roll motion 0.00102 rad^2 0.03198 rad 0.06396 rad
19 Pitch motion 0.00048 rad^2 0.02182 rad 0.04363 rad
20 Heave velocity 0.006 m^2/s^2 0.078 m/s 0.156 m/s
21 Roll velocity 0.00051 (rad/s)^2 0.02265 rad/s 0.04529 rad/s
22 Pitch velocity 0.00005 (rad/s)^2 0.00699 rad/s 0.01397 rad/s
23 Heave acceleration 0.001 m^2/s^4 0.028 m/s^2 0.055 m/s^2
24 Roll acceleration 0.00134 (rad/s/s)^2 0.0366 rad/s/s 0.07321 rad/s/s)
25 Pitch acceleration 0.00001 (rad/s/s)^2 0.00235 rad/s/s 0.00471 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.116 m^2 0.341 m 0.682 m
27 Wheelhouse: Rel. vert. motion 0.069 m^2 0.264 m 0.527 m
28 Wheelhouse: Abs. vert. velocity 0.012 m^2/s^2 0.11 m/s 0.219 m/s
29 Wheelhouse: Rel. vert. velocity 0.031 m^2/s^2 0.177 m/s 0.354 m/s
30 Wheelhouse: Abs. vert. accel 0.001 m^2/s^4 0.038 m/s^2 0.075 m/s^2
31 Wheelhouse: Rel. vert. accel 1.094 m^2/s^4 1.046 m/s^2 2.092 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.053 m^2 0.231 m 0.462 m
33 Wheelhouse: Long. (due to pitch) velocity 0.006 m^2/s^2 0.074 m/s 0.148 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.001 m^2/s^4 0.025 m/s^2 0.05 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.124 m^2 0.353 m 0.705 m
36 Wheelhouse: Lat. (due to roll) velocity 0.06 m^2/s^2 0.246 m/s 0.491 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.156 m^2/s^4 0.395 m/s^2 0.789 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.003 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.095 m^2 0.309 m 0.617 m
40 Workdeck: Rel. vert. motion 0.065 m^2 0.256 m 0.512 m
41 Workdeck: Abs. vert. velocity 0.015 m^2/s^2 0.12 m/s 0.241 m/s
42 Workdeck: Rel. vert. velocity 0.05 m^2/s^2 0.224 m/s 0.448 m/s
43 Workdeck: Abs. vert. accel 0.013 m^2/s^4 0.115 m/s^2 0.229 m/s^2
44 Workdeck: Rel. vert. accel 2.256 m^2/s^4 1.502 m/s^2 3.004 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.081 m 0.161 m
46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.026 m/s 0.052 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.009 m/s^2 0.018 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.015 m^2 0.123 m 0.247 m
49 Workdeck: Lat. (due to roll) velocity 0.007 m^2/s^2 0.086 m/s 0.172 m/s
50 Workdeck: Lat. (due to roll) accel 0.019 m^2/s^4 0.138 m/s^2 0.276 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 159.834 kN -- --
17 Heave motion 0.217 m^2 0.465 m 0.931 m
18 Roll motion 0.00224 rad^2 0.04737 rad 0.09475 rad
19 Pitch motion 0.00139 rad^2 0.03726 rad 0.07452 rad
20 Heave velocity 0.024 m^2/s^2 0.155 m/s 0.31 m/s
21 Roll velocity 0.00106 (rad/s)^2 0.03254 rad/s 0.06509 rad/s
22 Pitch velocity 0.00015 (rad/s)^2 0.01207 rad/s 0.02415 rad/s
23 Heave acceleration 0.003 m^2/s^4 0.053 m/s^2 0.106 m/s^2
24 Roll acceleration 0.00272 (rad/s/s)^2 0.05218 rad/s/s 0.10436 rad/s/s)
25 Pitch acceleration 0.00002 (rad/s/s)^2 0.00406 rad/s/s 0.00812 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.376 m^2 0.613 m 1.226 m
27 Wheelhouse: Rel. vert. motion 0.175 m^2 0.418 m 0.836 m
28 Wheelhouse: Abs. vert. velocity 0.04 m^2/s^2 0.199 m/s 0.398 m/s
29 Wheelhouse: Rel. vert. velocity 0.067 m^2/s^2 0.259 m/s 0.519 m/s
30 Wheelhouse: Abs. vert. accel 0.005 m^2/s^4 0.068 m/s^2 0.135 m/s^2
31 Wheelhouse: Rel. vert. accel 2.238 m^2/s^4 1.496 m/s^2 2.992 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.158 m^2 0.397 m 0.795 m
33 Wheelhouse: Long. (due to pitch) velocity 0.017 m^2/s^2 0.129 m/s 0.258 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.044 m/s^2 0.087 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.273 m^2 0.523 m 1.046 m
36 Wheelhouse: Lat. (due to roll) velocity 0.125 m^2/s^2 0.353 m/s 0.706 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.317 m^2/s^4 0.563 m/s^2 1.125 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.543 MII/h 0.003 MII/h
39 Workdeck: Abs. vert. motion 0.342 m^2 0.585 m 1.17 m
40 Workdeck: Rel. vert. motion 0.149 m^2 0.386 m 0.772 m
41 Workdeck: Abs. vert. velocity 0.046 m^2/s^2 0.214 m/s 0.429 m/s
42 Workdeck: Rel. vert. velocity 0.103 m^2/s^2 0.321 m/s 0.643 m/s
43 Workdeck: Abs. vert. accel 0.028 m^2/s^4 0.169 m/s^2 0.337 m/s^2
44 Workdeck: Rel. vert. accel 4.59 m^2/s^4 2.143 m/s^2 4.285 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.139 m 0.278 m
46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.045 m/s 0.09 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.015 m/s^2 0.03 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.033 m^2 0.183 m 0.366 m
49 Workdeck: Lat. (due to roll) velocity 0.015 m^2/s^2 0.123 m/s 0.247 m/s
50 Workdeck: Lat. (due to roll) accel 0.039 m^2/s^4 0.197 m/s^2 0.394 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.013 MII/h 0 MII/h
16, 16 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 0.52 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 299.27 kN -- --
17 Heave motion 0.843 m^2 0.918 m 1.837 m
18 Roll motion 0.00238 rad^2 0.04878 rad 0.09757 rad
19 Pitch motion 0.00248 rad^2 0.04977 rad 0.09954 rad
20 Heave velocity 0.086 m^2/s^2 0.293 m/s 0.587 m/s
21 Roll velocity 0.00098 (rad/s)^2 0.03136 rad/s 0.06272 rad/s
22 Pitch velocity 0.00026 (rad/s)^2 0.01623 rad/s 0.03247 rad/s
23 Heave acceleration 0.009 m^2/s^4 0.095 m/s^2 0.19 m/s^2
24 Roll acceleration 0.00242 (rad/s/s)^2 0.04923 rad/s/s 0.09846 rad/s/s)
25 Pitch acceleration 0.00003 (rad/s/s)^2 0.00541 rad/s/s 0.01081 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.032 m^2 1.016 m 2.032 m
27 Wheelhouse: Rel. vert. motion 0.244 m^2 0.494 m 0.988 m
28 Wheelhouse: Abs. vert. velocity 0.106 m^2/s^2 0.325 m/s 0.65 m/s
29 Wheelhouse: Rel. vert. velocity 0.069 m^2/s^2 0.263 m/s 0.525 m/s
30 Wheelhouse: Abs. vert. accel 0.011 m^2/s^4 0.106 m/s^2 0.212 m/s^2
31 Wheelhouse: Rel. vert. accel 1.94 m^2/s^4 1.393 m/s^2 2.786 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.292 m^2 0.54 m 1.08 m
33 Wheelhouse: Long. (due to pitch) velocity 0.031 m^2/s^2 0.176 m/s 0.353 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.003 m^2/s^4 0.059 m/s^2 0.118 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.292 m^2 0.54 m 1.08 m
36 Wheelhouse: Lat. (due to roll) velocity 0.116 m^2/s^2 0.341 m/s 0.681 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.282 m^2/s^4 0.531 m/s^2 1.062 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.478 MII/h 0.002 MII/h
39 Workdeck: Abs. vert. motion 1.118 m^2 1.057 m 2.115 m
40 Workdeck: Rel. vert. motion 0.166 m^2 0.408 m 0.816 m
41 Workdeck: Abs. vert. velocity 0.123 m^2/s^2 0.35 m/s 0.701 m/s
42 Workdeck: Rel. vert. velocity 0.095 m^2/s^2 0.308 m/s 0.616 m/s
43 Workdeck: Abs. vert. accel 0.034 m^2/s^4 0.184 m/s^2 0.367 m/s^2
44 Workdeck: Rel. vert. accel 4.026 m^2/s^4 2.006 m/s^2 4.013 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.036 m^2 0.189 m 0.378 m
46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.062 m/s 0.123 m/s
47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.021 m/s^2 0.041 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.036 m^2 0.189 m 0.378 m
49 Workdeck: Lat. (due to roll) velocity 0.014 m^2/s^2 0.119 m/s 0.238 m/s
50 Workdeck: Lat. (due to roll) accel 0.034 m^2/s^4 0.186 m/s^2 0.371 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.022 MII/h 0 MII/h
16, 16 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 52.538 kN -- --
17 Heave motion 0.144 m^2 0.379 m 0.758 m
18 Roll motion 0.00596 rad^2 0.07721 rad 0.15442 rad
19 Pitch motion 0.00034 rad^2 0.01832 rad 0.03665 rad
20 Heave velocity 0.11 m^2/s^2 0.331 m/s 0.662 m/s
21 Roll velocity 0.00715 (rad/s)^2 0.08456 rad/s 0.16913 rad/s
22 Pitch velocity 0.00028 (rad/s)^2 0.01684 rad/s 0.03369 rad/s
23 Heave acceleration 0.112 m^2/s^4 0.334 m/s^2 0.668 m/s^2
24 Roll acceleration 0.01322 (rad/s/s)^2 0.11498 rad/s/s 0.22996 rad/s/s)
25 Pitch acceleration 0.00027 (rad/s/s)^2 0.0164 rad/s/s 0.0328 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.058 m^2 0.24 m 0.48 m
27 Wheelhouse: Rel. vert. motion 0.11 m^2 0.332 m 0.663 m
28 Wheelhouse: Abs. vert. velocity 0.048 m^2/s^2 0.218 m/s 0.437 m/s
29 Wheelhouse: Rel. vert. velocity 0.144 m^2/s^2 0.38 m/s 0.759 m/s
30 Wheelhouse: Abs. vert. accel 0.056 m^2/s^4 0.236 m/s^2 0.472 m/s^2
31 Wheelhouse: Rel. vert. accel 0.44 m^2/s^4 0.664 m/s^2 1.327 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.04 m^2 0.2 m 0.4 m
33 Wheelhouse: Long. (due to pitch) velocity 0.033 m^2/s^2 0.181 m/s 0.363 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.03 m^2/s^4 0.174 m/s^2 0.348 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.707 m
36 Wheelhouse: Lat. (due to roll) velocity 0.851 m^2/s^2 0.923 m/s 1.845 m/s
37 Wheelhouse: Lat. (due to roll) accel 1.554 m^2/s^4 1.247 m/s^2 2.493 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.342 MII/h 0.371 MII/h
39 Workdeck: Abs. vert. motion 0.428 m^2 0.654 m 1.309 m
40 Workdeck: Rel. vert. motion 0.081 m^2 0.285 m 0.571 m
41 Workdeck: Abs. vert. velocity 0.388 m^2/s^2 0.623 m/s 1.245 m/s
42 Workdeck: Rel. vert. velocity 0.109 m^2/s^2 0.33 m/s 0.66 m/s
43 Workdeck: Abs. vert. accel 0.474 m^2/s^4 0.688 m/s^2 1.376 m/s^2
44 Workdeck: Rel. vert. accel 0.362 m^2/s^4 0.602 m/s^2 1.203 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.07 m 0.14 m
46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.063 m/s 0.127 m/s
47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.061 m/s^2 0.122 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.299 m 0.597 m
49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s
50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.151 MII/h 0.003 MII/h
16, 16 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 149.234 kN -- --
17 Heave motion 0.459 m^2 0.678 m 1.355 m
18 Roll motion 0.01404 rad^2 0.1185 rad 0.237 rad
19 Pitch motion 0.00085 rad^2 0.02922 rad 0.05844 rad
20 Heave velocity 0.294 m^2/s^2 0.542 m/s 1.084 m/s
21 Roll velocity 0.01596 (rad/s)^2 0.12634 rad/s 0.25269 rad/s
22 Pitch velocity 0.00068 (rad/s)^2 0.02616 rad/s 0.05232 rad/s
23 Heave acceleration 0.264 m^2/s^4 0.514 m/s^2 1.028 m/s^2
24 Roll acceleration 0.02813 (rad/s/s)^2 0.16772 rad/s/s 0.33545 rad/s/s)
25 Pitch acceleration 0.00062 (rad/s/s)^2 0.02498 rad/s/s 0.04996 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.197 m^2 0.444 m 0.888 m
27 Wheelhouse: Rel. vert. motion 0.276 m^2 0.526 m 1.051 m
28 Wheelhouse: Abs. vert. velocity 0.128 m^2/s^2 0.357 m/s 0.715 m/s
29 Wheelhouse: Rel. vert. velocity 0.325 m^2/s^2 0.57 m/s 1.14 m/s
30 Wheelhouse: Abs. vert. accel 0.129 m^2/s^4 0.359 m/s^2 0.717 m/s^2
31 Wheelhouse: Rel. vert. accel 0.918 m^2/s^4 0.958 m/s^2 1.916 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.104 m^2 0.322 m 0.644 m
33 Wheelhouse: Long. (due to pitch) velocity 0.08 m^2/s^2 0.283 m/s 0.567 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.071 m^2/s^4 0.266 m/s^2 0.533 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 1.733 m^2 1.316 m 2.633 m
36 Wheelhouse: Lat. (due to roll) velocity 1.912 m^2/s^2 1.383 m/s 2.765 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.314 m^2/s^4 1.82 m/s^2 3.641 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.626 MII/h 4.831 MII/h
39 Workdeck: Abs. vert. motion 1.184 m^2 1.088 m 2.177 m
40 Workdeck: Rel. vert. motion 0.202 m^2 0.449 m 0.898 m
41 Workdeck: Abs. vert. velocity 0.947 m^2/s^2 0.973 m/s 1.946 m/s
42 Workdeck: Rel. vert. velocity 0.243 m^2/s^2 0.493 m/s 0.986 m/s
43 Workdeck: Abs. vert. accel 1.065 m^2/s^4 1.032 m/s^2 2.064 m/s^2
44 Workdeck: Rel. vert. accel 0.752 m^2/s^4 0.867 m/s^2 1.734 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.013 m^2 0.113 m 0.225 m
46 Workdeck: Long. (due to pitch) velocity 0.01 m^2/s^2 0.099 m/s 0.198 m/s
47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.093 m/s^2 0.186 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.921 m
49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.484 m/s 0.967 m/s
50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.467 MII/h 0.368 MII/h
16, 16 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 1.57 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 298.541 kN -- --
17 Heave motion 1.27 m^2 1.127 m 2.254 m
18 Roll motion 0.01622 rad^2 0.12734 rad 0.25468 rad
19 Pitch motion 0.00111 rad^2 0.03327 rad 0.06653 rad
20 Heave velocity 0.517 m^2/s^2 0.719 m/s 1.438 m/s
21 Roll velocity 0.01652 (rad/s)^2 0.12854 rad/s 0.25708 rad/s
22 Pitch velocity 0.0008 (rad/s)^2 0.02827 rad/s 0.05654 rad/s
23 Heave acceleration 0.33 m^2/s^4 0.574 m/s^2 1.148 m/s^2
24 Roll acceleration 0.02686 (rad/s/s)^2 0.16389 rad/s/s 0.32778 rad/s/s)
25 Pitch acceleration 0.00068 (rad/s/s)^2 0.02605 rad/s/s 0.05209 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.742 m^2 0.861 m 1.723 m
27 Wheelhouse: Rel. vert. motion 0.359 m^2 0.599 m 1.198 m
28 Wheelhouse: Abs. vert. velocity 0.262 m^2/s^2 0.512 m/s 1.023 m/s
29 Wheelhouse: Rel. vert. velocity 0.348 m^2/s^2 0.59 m/s 1.18 m/s
30 Wheelhouse: Abs. vert. accel 0.162 m^2/s^4 0.402 m/s^2 0.805 m/s^2
31 Wheelhouse: Rel. vert. accel 0.853 m^2/s^4 0.924 m/s^2 1.847 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.14 m^2 0.374 m 0.748 m
33 Wheelhouse: Long. (due to pitch) velocity 0.096 m^2/s^2 0.31 m/s 0.62 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.078 m^2/s^4 0.28 m/s^2 0.56 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 2.04 m^2 1.428 m 2.857 m
36 Wheelhouse: Lat. (due to roll) velocity 2.001 m^2/s^2 1.415 m/s 2.829 m/s
37 Wheelhouse: Lat. (due to roll) accel 3.177 m^2/s^4 1.782 m/s^2 3.565 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.05 MII/h 4.101 MII/h
39 Workdeck: Abs. vert. motion 2.295 m^2 1.515 m 3.03 m
40 Workdeck: Rel. vert. motion 0.278 m^2 0.528 m 1.055 m
41 Workdeck: Abs. vert. velocity 1.275 m^2/s^2 1.129 m/s 2.258 m/s
42 Workdeck: Rel. vert. velocity 0.261 m^2/s^2 0.511 m/s 1.022 m/s
43 Workdeck: Abs. vert. accel 1.149 m^2/s^4 1.072 m/s^2 2.143 m/s^2
44 Workdeck: Rel. vert. accel 0.696 m^2/s^4 0.834 m/s^2 1.668 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.017 m^2 0.131 m 0.262 m
46 Workdeck: Long. (due to pitch) velocity 0.012 m^2/s^2 0.108 m/s 0.217 m/s
47 Workdeck: Long. (due to pitch) accel 0.01 m^2/s^4 0.098 m/s^2 0.196 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.25 m^2 0.5 m 0.999 m
49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.99 m/s
50 Workdeck: Lat. (due to roll) accel 0.389 m^2/s^4 0.623 m/s^2 1.247 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.396 MII/h 0.66 MII/h
16, 16 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 46.935 kN -- --
17 Heave motion 0.252 m^2 0.502 m 1.004 m
18 Roll motion 0.00076 rad^2 0.02752 rad 0.05504 rad
19 Pitch motion 0.00045 rad^2 0.02113 rad 0.04227 rad
20 Heave velocity 0.315 m^2/s^2 0.561 m/s 1.123 m/s
21 Roll velocity 0.00112 (rad/s)^2 0.03348 rad/s 0.06696 rad/s
22 Pitch velocity 0.00065 (rad/s)^2 0.02546 rad/s 0.05092 rad/s
23 Heave acceleration 0.44 m^2/s^4 0.663 m/s^2 1.326 m/s^2
24 Roll acceleration 0.00266 (rad/s/s)^2 0.05156 rad/s/s 0.10312 rad/s/s)
25 Pitch acceleration 0.00106 (rad/s/s)^2 0.03252 rad/s/s 0.06504 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.371 m^2 0.609 m 1.219 m
27 Wheelhouse: Rel. vert. motion 0.297 m^2 0.545 m 1.09 m
28 Wheelhouse: Abs. vert. velocity 0.475 m^2/s^2 0.69 m/s 1.379 m/s
29 Wheelhouse: Rel. vert. velocity 0.774 m^2/s^2 0.88 m/s 1.759 m/s
30 Wheelhouse: Abs. vert. accel 0.675 m^2/s^4 0.821 m/s^2 1.643 m/s^2
31 Wheelhouse: Rel. vert. accel 3.938 m^2/s^4 1.984 m/s^2 3.969 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.054 m^2 0.231 m 0.463 m
33 Wheelhouse: Long. (due to pitch) velocity 0.077 m^2/s^2 0.278 m/s 0.557 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.126 m^2/s^4 0.355 m/s^2 0.71 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.091 m^2 0.301 m 0.602 m
36 Wheelhouse: Lat. (due to roll) velocity 0.133 m^2/s^2 0.365 m/s 0.731 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.314 m^2/s^4 0.56 m/s^2 1.12 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.017 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.317 m^2 0.563 m 1.126 m
40 Workdeck: Rel. vert. motion 0.181 m^2 0.425 m 0.85 m
41 Workdeck: Abs. vert. velocity 0.402 m^2/s^2 0.634 m/s 1.269 m/s
42 Workdeck: Rel. vert. velocity 0.561 m^2/s^2 0.749 m/s 1.498 m/s
43 Workdeck: Abs. vert. accel 0.575 m^2/s^4 0.758 m/s^2 1.517 m/s^2
44 Workdeck: Rel. vert. accel 3.505 m^2/s^4 1.872 m/s^2 3.745 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.081 m 0.162 m
46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.097 m/s 0.195 m/s
47 Workdeck: Long. (due to pitch) accel 0.015 m^2/s^4 0.124 m/s^2 0.248 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.011 m^2 0.105 m 0.211 m
49 Workdeck: Lat. (due to roll) velocity 0.016 m^2/s^2 0.128 m/s 0.256 m/s
50 Workdeck: Lat. (due to roll) accel 0.038 m^2/s^4 0.196 m/s^2 0.392 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 147.322 kN -- --
17 Heave motion 0.818 m^2 0.904 m 1.808 m
18 Roll motion 0.00228 rad^2 0.0478 rad 0.0956 rad
19 Pitch motion 0.00129 rad^2 0.03589 rad 0.07178 rad
20 Heave velocity 0.925 m^2/s^2 0.962 m/s 1.924 m/s
21 Roll velocity 0.00306 (rad/s)^2 0.05531 rad/s 0.11063 rad/s
22 Pitch velocity 0.00175 (rad/s)^2 0.04183 rad/s 0.08367 rad/s
23 Heave acceleration 1.207 m^2/s^4 1.099 m/s^2 2.197 m/s^2
24 Roll acceleration 0.00637 (rad/s/s)^2 0.07984 rad/s/s 0.15968 rad/s/s)
25 Pitch acceleration 0.00272 (rad/s/s)^2 0.05212 rad/s/s 0.10425 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.169 m^2 1.081 m 2.162 m
27 Wheelhouse: Rel. vert. motion 0.732 m^2 0.856 m 1.711 m
28 Wheelhouse: Abs. vert. velocity 1.371 m^2/s^2 1.171 m/s 2.342 m/s
29 Wheelhouse: Rel. vert. velocity 1.787 m^2/s^2 1.337 m/s 2.674 m/s
30 Wheelhouse: Abs. vert. accel 1.833 m^2/s^4 1.354 m/s^2 2.708 m/s^2
31 Wheelhouse: Rel. vert. accel 8.471 m^2/s^4 2.911 m/s^2 5.821 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.155 m^2 0.393 m 0.787 m
33 Wheelhouse: Long. (due to pitch) velocity 0.209 m^2/s^2 0.458 m/s 0.915 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.324 m^2/s^4 0.569 m/s^2 1.139 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.274 m^2 0.524 m 1.047 m
36 Wheelhouse: Lat. (due to roll) velocity 0.365 m^2/s^2 0.604 m/s 1.208 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.754 m^2/s^4 0.868 m/s^2 1.737 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.732 MII/h 0.071 MII/h
39 Workdeck: Abs. vert. motion 1.013 m^2 1.006 m 2.012 m
40 Workdeck: Rel. vert. motion 0.441 m^2 0.664 m 1.328 m
41 Workdeck: Abs. vert. velocity 1.17 m^2/s^2 1.081 m/s 2.163 m/s
42 Workdeck: Rel. vert. velocity 1.265 m^2/s^2 1.125 m/s 2.249 m/s
43 Workdeck: Abs. vert. accel 1.563 m^2/s^4 1.25 m/s^2 2.501 m/s^2
44 Workdeck: Rel. vert. accel 7.437 m^2/s^4 2.727 m/s^2 5.454 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.275 m
46 Workdeck: Long. (due to pitch) velocity 0.026 m^2/s^2 0.16 m/s 0.32 m/s
47 Workdeck: Long. (due to pitch) accel 0.04 m^2/s^4 0.199 m/s^2 0.398 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.034 m^2 0.183 m 0.366 m
49 Workdeck: Lat. (due to roll) velocity 0.045 m^2/s^2 0.211 m/s 0.423 m/s
50 Workdeck: Lat. (due to roll) accel 0.092 m^2/s^4 0.304 m/s^2 0.607 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.009 MII/h 0 MII/h
16, 16 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 2.44 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 327.986 kN -- --
17 Heave motion 1.958 m^2 1.399 m 2.799 m
18 Roll motion 0.00389 rad^2 0.06237 rad 0.12475 rad
19 Pitch motion 0.0021 rad^2 0.04578 rad 0.09156 rad
20 Heave velocity 1.614 m^2/s^2 1.271 m/s 2.541 m/s
21 Roll velocity 0.00438 (rad/s)^2 0.0662 rad/s 0.1324 rad/s
22 Pitch velocity 0.00244 (rad/s)^2 0.04936 rad/s 0.09873 rad/s
23 Heave acceleration 1.747 m^2/s^4 1.322 m/s^2 2.644 m/s^2
24 Roll acceleration 0.00747 (rad/s/s)^2 0.08643 rad/s/s 0.17286 rad/s/s)
25 Pitch acceleration 0.00343 (rad/s/s)^2 0.05853 rad/s/s 0.11705 rad/s/s)
26 Wheelhouse: Abs. vert. motion 2.532 m^2 1.591 m 3.182 m
27 Wheelhouse: Rel. vert. motion 0.869 m^2 0.932 m 1.864 m
28 Wheelhouse: Abs. vert. velocity 2.255 m^2/s^2 1.502 m/s 3.003 m/s
29 Wheelhouse: Rel. vert. velocity 1.923 m^2/s^2 1.387 m/s 2.773 m/s
30 Wheelhouse: Abs. vert. accel 2.574 m^2/s^4 1.604 m/s^2 3.209 m/s^2
31 Wheelhouse: Rel. vert. accel 8.197 m^2/s^4 2.863 m/s^2 5.726 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.253 m^2 0.503 m 1.006 m
33 Wheelhouse: Long. (due to pitch) velocity 0.293 m^2/s^2 0.541 m/s 1.082 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.409 m^2/s^4 0.64 m/s^2 1.28 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0.47 m^2 0.686 m 1.371 m
36 Wheelhouse: Lat. (due to roll) velocity 0.525 m^2/s^2 0.725 m/s 1.45 m/s
37 Wheelhouse: Lat. (due to roll) accel 0.887 m^2/s^4 0.942 m/s^2 1.883 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.816 MII/h 0.1 MII/h
39 Workdeck: Abs. vert. motion 2.288 m^2 1.512 m 3.025 m
40 Workdeck: Rel. vert. motion 0.531 m^2 0.728 m 1.457 m
41 Workdeck: Abs. vert. velocity 1.972 m^2/s^2 1.404 m/s 2.809 m/s
42 Workdeck: Rel. vert. velocity 1.323 m^2/s^2 1.15 m/s 2.301 m/s
43 Workdeck: Abs. vert. accel 2.215 m^2/s^4 1.488 m/s^2 2.976 m/s^2
44 Workdeck: Rel. vert. accel 7.045 m^2/s^4 2.654 m/s^2 5.308 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.031 m^2 0.176 m 0.352 m
46 Workdeck: Long. (due to pitch) velocity 0.036 m^2/s^2 0.189 m/s 0.378 m/s
47 Workdeck: Long. (due to pitch) accel 0.05 m^2/s^4 0.224 m/s^2 0.448 m/s^2
48 Workdeck: Lat. (due to roll) motion 0.057 m^2 0.24 m 0.48 m
49 Workdeck: Lat. (due to roll) velocity 0.064 m^2/s^2 0.254 m/s 0.507 m/s
50 Workdeck: Lat. (due to roll) accel 0.108 m^2/s^4 0.329 m/s^2 0.659 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.148 MII/h 0.018 MII/h
16, 16 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 8.792 s -- --
2 Characteristic wave height 1.88 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m
16 Added resistance 38.416 kN -- --
17 Heave motion 0.203 m^2 0.451 m 0.902 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00036 rad^2 0.01907 rad 0.03814 rad
20 Heave velocity 0.259 m^2/s^2 0.509 m/s 1.019 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00052 (rad/s)^2 0.02287 rad/s 0.04573 rad/s
23 Heave acceleration 0.361 m^2/s^4 0.601 m/s^2 1.202 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00083 (rad/s/s)^2 0.02876 rad/s/s 0.05752 rad/s/s)
26 Wheelhouse: Abs. vert. motion 0.338 m^2 0.581 m 1.163 m
27 Wheelhouse: Rel. vert. motion 0.38 m^2 0.617 m 1.234 m
28 Wheelhouse: Abs. vert. velocity 0.441 m^2/s^2 0.664 m/s 1.328 m/s
29 Wheelhouse: Rel. vert. velocity 0.975 m^2/s^2 0.987 m/s 1.974 m/s
30 Wheelhouse: Abs. vert. accel 0.629 m^2/s^4 0.793 m/s^2 1.587 m/s^2
31 Wheelhouse: Rel. vert. accel 5.146 m^2/s^4 2.269 m/s^2 4.537 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.044 m^2 0.209 m 0.417 m
33 Wheelhouse: Long. (due to pitch) velocity 0.062 m^2/s^2 0.25 m/s 0.5 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.098 m^2/s^4 0.314 m/s^2 0.627 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.181 m^2 0.425 m 0.851 m
40 Workdeck: Rel. vert. motion 0.201 m^2 0.448 m 0.896 m
41 Workdeck: Abs. vert. velocity 0.233 m^2/s^2 0.482 m/s 0.965 m/s
42 Workdeck: Rel. vert. velocity 0.713 m^2/s^2 0.844 m/s 1.688 m/s
43 Workdeck: Abs. vert. accel 0.328 m^2/s^4 0.573 m/s^2 1.146 m/s^2
44 Workdeck: Rel. vert. accel 4.996 m^2/s^4 2.235 m/s^2 4.47 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.073 m 0.146 m
46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.087 m/s 0.175 m/s
47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.11 m/s^2 0.219 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 9.691 s -- --
2 Characteristic wave height 3.25 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 0.66 m^2 0.812 m 1.625 m
15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m
16 Added resistance 128.861 kN -- --
17 Heave motion 0.719 m^2 0.848 m 1.696 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00116 rad^2 0.0341 rad 0.06821 rad
20 Heave velocity 0.836 m^2/s^2 0.914 m/s 1.828 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00155 (rad/s)^2 0.03943 rad/s 0.07886 rad/s
23 Heave acceleration 1.089 m^2/s^4 1.044 m/s^2 2.087 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00233 (rad/s/s)^2 0.04824 rad/s/s 0.09649 rad/s/s)
26 Wheelhouse: Abs. vert. motion 1.163 m^2 1.078 m 2.157 m
27 Wheelhouse: Rel. vert. motion 1.021 m^2 1.01 m 2.021 m
28 Wheelhouse: Abs. vert. velocity 1.395 m^2/s^2 1.181 m/s 2.362 m/s
29 Wheelhouse: Rel. vert. velocity 2.378 m^2/s^2 1.542 m/s 3.084 m/s
30 Wheelhouse: Abs. vert. accel 1.87 m^2/s^4 1.367 m/s^2 2.735 m/s^2
31 Wheelhouse: Rel. vert. accel 11.306 m^2/s^4 3.362 m/s^2 6.725 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.139 m^2 0.373 m 0.747 m
33 Wheelhouse: Long. (due to pitch) velocity 0.186 m^2/s^2 0.431 m/s 0.862 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.277 m^2/s^4 0.527 m/s^2 1.053 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 0.641 m^2 0.801 m 1.601 m
40 Workdeck: Rel. vert. motion 0.495 m^2 0.704 m 1.407 m
41 Workdeck: Abs. vert. velocity 0.748 m^2/s^2 0.865 m/s 1.729 m/s
42 Workdeck: Rel. vert. velocity 1.627 m^2/s^2 1.275 m/s 2.551 m/s
43 Workdeck: Abs. vert. accel 0.984 m^2/s^4 0.992 m/s^2 1.984 m/s^2
44 Workdeck: Rel. vert. accel 10.682 m^2/s^4 3.268 m/s^2 6.537 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.017 m^2 0.131 m 0.261 m
46 Workdeck: Long. (due to pitch) velocity 0.023 m^2/s^2 0.151 m/s 0.302 m/s
47 Workdeck: Long. (due to pitch) accel 0.034 m^2/s^4 0.184 m/s^2 0.368 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
16, 16 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m)
Item m0 units RMS units Significant amplitude units
1 Modal period 12.388 s -- --
2 Characteristic wave height 5 m -- --
3 Spectrum type ITTC (2 Param. Bretschneid -- --
4 Wave heading 3.142 rad -- --
5 Vessel Speed 16 kts -- --
6 Vessel displacement 2867.584 m^3 -- --
7 Vessel GMt 2.924 m -- --
8 Vessel trim 0 rad -- --
9 Transom method No transom terms -- --
10 Wave force method Arbitrary wave heading -- --
11 Added res. method Salvesen -- --
12 Pitch gyradius 16.711 m -- --
13 Roll gyradius 4.58 m -- --
14 Wave spectrum 1.563 m^2 1.25 m 2.5 m
15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
16 Added resistance 313.213 kN -- --
17 Heave motion 1.918 m^2 1.385 m 2.77 m
18 Roll motion 0 rad^2 0 rad 0 rad
19 Pitch motion 0.00227 rad^2 0.04768 rad 0.09536 rad
20 Heave velocity 1.666 m^2/s^2 1.291 m/s 2.581 m/s
21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s
22 Pitch velocity 0.00254 (rad/s)^2 0.05038 rad/s 0.10075 rad/s
23 Heave acceleration 1.812 m^2/s^4 1.346 m/s^2 2.692 m/s^2
24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s)
25 Pitch acceleration 0.00338 (rad/s/s)^2 0.05812 rad/s/s 0.11623 rad/s/s)
26 Wheelhouse: Abs. vert. motion 2.815 m^2 1.678 m 3.355 m
27 Wheelhouse: Rel. vert. motion 1.388 m^2 1.178 m 2.356 m
28 Wheelhouse: Abs. vert. velocity 2.621 m^2/s^2 1.619 m/s 3.238 m/s
29 Wheelhouse: Rel. vert. velocity 2.809 m^2/s^2 1.676 m/s 3.352 m/s
30 Wheelhouse: Abs. vert. accel 3.002 m^2/s^4 1.733 m/s^2 3.465 m/s^2
31 Wheelhouse: Rel. vert. accel 11.357 m^2/s^4 3.37 m/s^2 6.74 m/s^2
32 Wheelhouse: Long. (due to pitch) motion 0.274 m^2 0.523 m 1.046 m
33 Wheelhouse: Long. (due to pitch) velocity 0.304 m^2/s^2 0.552 m/s 1.103 m/s
34 Wheelhouse: Long. (due to pitch) accel 0.403 m^2/s^4 0.635 m/s^2 1.27 m/s^2
35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
39 Workdeck: Abs. vert. motion 1.752 m^2 1.324 m 2.647 m
40 Workdeck: Rel. vert. motion 0.587 m^2 0.766 m 1.533 m
41 Workdeck: Abs. vert. velocity 1.502 m^2/s^2 1.225 m/s 2.451 m/s
42 Workdeck: Rel. vert. velocity 1.723 m^2/s^2 1.313 m/s 2.626 m/s
43 Workdeck: Abs. vert. accel 1.633 m^2/s^4 1.278 m/s^2 2.556 m/s^2
44 Workdeck: Rel. vert. accel 10.23 m^2/s^4 3.198 m/s^2 6.397 m/s^2
45 Workdeck: Long. (due to pitch) motion 0.033 m^2 0.183 m 0.366 m
46 Workdeck: Long. (due to pitch) velocity 0.037 m^2/s^2 0.193 m/s 0.386 m/s
47 Workdeck: Long. (due to pitch) accel 0.049 m^2/s^4 0.222 m/s^2 0.444 m/s^2
48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
69
Appendix M – Structural Calculations 
Contents:
Weights and Centers ..............................................................................................................M-1
Excel Calculations Spreadsheet.............................................................................................M-2
Net Load, Shear and Moment Diagram Full Load ................................................................M-3
Net Load, Shear and Moment Diagram 50% Fuel.................................................................M-4
Net Load, Shear and Moment Diagram 10% Fuel.................................................................M-5
N-1: Parameters
Figure N.1: Parameters used for structural Calculations
N-2: ABS Regulations
Figure N.1: Section Modulus Equations
Figure N.2: Wave Load Equations
Figure N.3: Required Section Modulus and Wave Load Calculations
Figure N.4: Required Section Modulus Calculations and Equations
Figure N.5: Side Shell Plating Equations
Figure N.6: Bottom Shell Plating Equations
Figure N.7: Side Shell and Bottom Shell Plating Calculations
Figure N.8: Side Shell End Plating Equations
Figure N.9: Forecastle and Poop Side Plating Equations
Figure N.10: Bow and Stern Thruster Tunnel Plating Equations
Figure N.11: Side Shell Plating at Ends, Forecastle/Poop Side Plating, and Tunnel Plating
Figure N.12  N.13: Deck Plating Equations
Figure N.15  N.16: Strength Deck Plating Equations
Figure N.17: Various Types of Deck Plating
Figure N.18  N.19: Deck Transverse Sizing Equations
Figure N.20  N.21: Deck Transverse Sizing Equations
Figure N.22: Deck Girder Sizing and Proportions Equations
Figure N.23: Deck Frame and Girder Sizing Calculations
Figure N.24: Visual Definition of Proportions
Figure N.24: Bottom Transverse Equations and Calculations
Figure N.25: Collision Bulkhead Location Equations and Definitions
Figure N.25: Bulkhead Plating Equations
Figure N.26: Bulkhead Stiffener Sizing Equations
Figure N.27: Bulkhead Girder Sizing Equations
Figure N.28: Bulkhead Calculations
Figure N.29: Side Frame Equations
Figure N.30: Side Frame Calculations and Visual Definitions
Figure N.31: Deckhouse Stiffener Equations
Figure N.32  N.33: Tween Deck Frame Equations and Visual Definitions
Figure N.34  N.35: Deckhouse Plating Equations
Figure N.36: Tween Deck Frame and Deckhouse Plating Calculations
Figure N.37  N.38: Deckhouse Plating Equations
Figure N.39  N.40: Deckhouse Deck Beam Equations
Figure N.41: Deckhouse Deck Beam Calculations
Figure N.42: Deckhouse Deck Girder Equations
Figure N.43: Deckhouse Deck Girder Calculations
Figure N.44  N.45: Deep Tank Plating Equations
Figure N.46: Deep Tank Stiffener Equations
Figure N.47: Deep Tank Stiffener Equations
N-3: Finnish Swedish Ice Class Regulations
Figure N.48: Height of Load Area
Figure N.49: Ice Pressure Equations
Figure N.49: Ice Pressure Parameters
Figure N.49: Ice Pressure Calculations
Figure N.50: Ice Belt Plate Thickness Equations
Figure N.51: Ice Belt Plate Thickness Calculations for Normal and High Strength Steel
Figure N.52: Ice Belt Framing Extension Definitions
Figure N.53: Ice Belt Framing Equations
Figure N.54: Ice Belt Framing Calculations
N-4: Midship Section Analysis
Figure N.55: Midship Section Analysis
‐10
0
10
20
30
40
50
Magnitude
Load, Shear and Moment Curves ‐ Full Load Departure
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
‐50
‐40
‐30
‐20
‐10
0
10
20
30
40
50
‐80 ‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0
Magnitude
Location (Aft of F.P.)
Load, Shear and Moment Curves ‐ Full Load Departure
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
‐10
0
10
20
30
40
50
60
Magnitude
Load, Shear and Moment Curves ‐ 50% Fuel Used
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
‐50
‐40
‐30
‐20
‐10
0
10
20
30
40
50
60
‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0
Magnitude
Location (Aft of F.P.)
Load, Shear and Moment Curves ‐ 50% Fuel Used
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
‐10
0
10
20
30
40
50
60
Magnitude
Load, Shear and Moment Curves ‐ 90% Fuel used
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
‐50
‐40
‐30
‐20
‐10
0
10
20
30
40
50
60
‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0
Magnitude
Location (Aft of F.P.)
Load, Shear and Moment Curves ‐ 90% Fuel used
Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10

SeniorDesignProjectReport

  • 1.
    Ocean Going SalvageVessel A 10,570 BHP Salvage Vessel Preliminary Design by: Sea Tools Engineering Prepared By: Daniel Place - Alex Donaldson - Marc Woolliscroft - Jacob Trithart Undergraduate Students, Department of Naval Architecture and Marine Engineering The University of Michigan Prepared For: Matthew Collette Professor, Department of Naval Architecture and Marine Engineering Administrator Administrator, U.S. Maritime Administration Capt. Lawson Brigham, USCG (Ret), PhD Deputy Director, U.S. Arctic Research Commission Mr. R. Keith Michel President, Society of Naval Architects and Marine Engineers Mr. Ronald Kiss Past President, Webb Institute Pradeep Nayyar Program Manager, Maritime Administration, U.S. Department of Transportation Project Due Date: April 21, 2010
  • 2.
    2 Table of Contents Listof Tables.................................................................................................................................. 4 List of Figures ................................................................................................................................ 6 1.0 – Executive Summary............................................................................................................... 7 2.0 – Technical Summary ............................................................................................................... 9 2.1 – Introduction........................................................................................................................ 9 2.2 - Requirements...................................................................................................................... 9 2.3 – Principal Characteristics .................................................................................................... 9 2.4 – Hull Selection................................................................................................................... 10 2.5 – General Arrangements ..................................................................................................... 10 2.6 – Engine Selection .............................................................................................................. 11 2.7 – Generator Selection.......................................................................................................... 11 2.8 – Propulsion Design............................................................................................................ 12 2.9 – Weights Estimation.......................................................................................................... 12 2.10 – Floodable Length ........................................................................................................... 12 2.11 – Damage Stability............................................................................................................ 13 2.12 – Midship Analysis ........................................................................................................... 13 2.13 – Seakeeping Analysis...................................................................................................... 13 2.14 – Maneuvering Analysis ................................................................................................... 14 2.15 – Conclusion ..................................................................................................................... 14 3.0 – Introduction.......................................................................................................................... 15 3.1 – Requirements ................................................................................................................... 15 3.2 – Principal Characteristics .................................................................................................. 15 4.0 – Hull Form Design ................................................................................................................ 16 4.1 – Initial Point Design .......................................................................................................... 16 4.2 –Hull Selection and Optimization....................................................................................... 16 4.3 – Lines Drawing.................................................................................................................. 17 5.0 – Capabilities .......................................................................................................................... 19 5.1 – Salvage............................................................................................................................. 19 5.2 – Towing............................................................................................................................. 19 5.3 – Fire Fighting..................................................................................................................... 19 5.4 – Oil Recovery.................................................................................................................... 20 6.0 – General Arrangements ......................................................................................................... 21 6.1 – Bulkhead Placement......................................................................................................... 21 6.2 – Floodable Length ............................................................................................................. 22 6.3 Deck House......................................................................................................................... 22 7.0 – Propulsion and Powering..................................................................................................... 25 7.1 – Resistance ........................................................................................................................ 25 7.2 – Prime Mover Selection .................................................................................................... 26 7.2.1 – Initial Point Design and Selection............................................................................. 26 7.2.2 – Analysis of Selected Engines.................................................................................... 26 7.3 – Propulsion Design............................................................................................................ 28 7.4 – Towing and Bollard Pull.................................................................................................. 30 7.5 – Electrical Power Estimation............................................................................................. 31 7.6 – Generator Selection.......................................................................................................... 31 7.7 – One Line Diagram............................................................................................................ 31 8.0 – Intact and Damage Stability................................................................................................. 33
  • 3.
    3 8.1 – IntactStability.................................................................................................................. 33 8.1.1 – U.S. Coast Guard Wind Heel Requirements............................................................. 33 8.1.2 – Towing Stability Criteria .......................................................................................... 33 8.1.3 – Topside Icing ............................................................................................................ 33 8.1.4 – Cross Curves of Stability.......................................................................................... 34 8.1.5 – Bonjean Curves......................................................................................................... 34 8.2 – Damaged Stability............................................................................................................ 35 9.0 – Midship Analysis ................................................................................................................. 37 9.1 – ABS Regulations.............................................................................................................. 37 9.2 – Moment and Shear Diagram ............................................................................................ 37 9.3 – Midship Analysis ............................................................................................................. 38 10.0 Structural Analysis................................................................................................................ 39 10.1 Ice Strengthened Regions ................................................................................................. 39 10.2 Framing............................................................................................................................. 40 11.0 – Maneuvering Analysis ....................................................................................................... 42 11.1 – Initial Sizing................................................................................................................... 42 11.2 – Maneuvering Prediction Program.................................................................................. 42 11.3 – Bow Thruster ................................................................................................................. 42 12.0 – Seakeeping Analysis.......................................................................................................... 44 12.1 – Seakeeper Results .......................................................................................................... 44 12.2 – Natural Periods............................................................................................................... 47 12.3 – Working Condition Analysis ......................................................................................... 47 13.0 – Fleet Justification............................................................................................................... 49 14.0 Economic Analysis ............................................................................................................... 51 15.0 – Recommendations for Future Work................................................................................... 55 16.0 – Conclusion ......................................................................................................................... 56 Appendix A – Lines Drawing....................................................................................................... 57 Appendix B – Outboard & Inboard Profiles................................................................................. 58 Appendix C – General Arrangements........................................................................................... 59 Appendix D – Propeller Geometry ............................................................................................... 60 Appendix E – Structural Drawings............................................................................................... 61 Appendix F – Powering Specifications......................................................................................... 62 Appendix G – Machinery Specifications...................................................................................... 63 Appendix H – Maneuvering.......................................................................................................... 64 Appendix I – Floodable Length.................................................................................................... 65 Appendix J – Intact Stability......................................................................................................... 66 Appendix K – Damaged Stability................................................................................................. 67 Appendix L – Seakeeping Results ................................................................................................ 68 Appendix M – Structural Calculations ......................................................................................... 69
  • 4.
    4 List of Tables Table1 – Principal Characteristics ................................................................................................. 7 Table 2 – General Engine Characteristics....................................................................................... 8 Table 3 – Propeller Characteristics................................................................................................. 8 Table 4 – Principal Characteristics ............................................................................................... 10 Table 5 – Engine Characteristics .................................................................................................. 11 Table 6 – Generator Characteristics.............................................................................................. 11 Table 7 – Propeller Optimization Characteristics......................................................................... 12 Table 8 – Intact Stability at Four Loading Conditions ................................................................. 12 Table 9 – Midship Analysis.......................................................................................................... 13 Table 10 – Seakeeping Analysis................................................................................................... 14 Table 11 – Maneuvering Analysis ................................................................................................ 14 Table 12 – Client Requirements ................................................................................................... 15 Table 13 – Principal Characteristics ............................................................................................. 15 Table 14 – Regression Analysis Results....................................................................................... 16 Table 15 – Principal Dimensions and Hydrostatics...................................................................... 17 Table 16 – Station Spacing ........................................................................................................... 18 Table 17 – Salvage Characteristics............................................................................................... 19 Table 18 – Firefighting Characteristics......................................................................................... 20 Table 19 – Bulkhead Locations .................................................................................................... 21 Table 20 - Deckhouse Accommodations...................................................................................... 23 Table 21 - Percentage of Total Drag............................................................................................. 25 Table 22 – 8 Cylinder Engine Characteristics .............................................................................. 27 Table 23 – 16 Cylinder Engine Characteristics ............................................................................ 27 Table 24 – Propeller Characteristics............................................................................................. 28 Table 25 – Generator Characteristics............................................................................................ 31 Table 26 - MARAD Design Letter 3 Damaged Stability Criterion.............................................. 35 Table 27 – Damage Stability Results............................................................................................ 36 Table 28 – ABS Longitudinal Strength Calculations ................................................................... 37 Table 29 - Maximum Bending Moments...................................................................................... 37 Table 30 – Midship Section Strength Properties .......................................................................... 38 Table 32 – Ice Belt Definitions..................................................................................................... 39 Table 31 – Plating Thicknesses..................................................................................................... 39 Table 33 – Required and Actual Section Moduli.......................................................................... 40 Table 34 – Stiffener Sizing ........................................................................................................... 40 Table 35 – Maneuvering Analysis ................................................................................................ 42 Table 36 - North Pacific Sea State Characteristics ....................................................................... 44 Table 37 - Natural Periods............................................................................................................ 47 Table 38 - Worst Cast MII Results ............................................................................................... 47 Table 39 – MII Risk Levels .......................................................................................................... 48 Table 40 - Incidents near the Aleutian Island ............................................................................... 49 Table 41 - Crew Cost Breakdown................................................................................................. 51 Table 42 - Build Cost Breakdown ................................................................................................ 51 Table 43 - Operational Cost Breakdown ...................................................................................... 51 Table 44 - 15 Year Expense Summary ......................................................................................... 51 Table 45 - Salvage Revenue ......................................................................................................... 52
  • 5.
    5 Table 46 -Specific Fuel Consumption ......................................................................................... 52 Table 47 - Average Fuel Prices..................................................................................................... 52 Table 48 - Dutch Harbor Fuel Cost............................................................................................... 53 Table 49 - Seattle Fuel Cost.......................................................................................................... 53 Table 50 - Juneau Fuel Cost.......................................................................................................... 53 Table 51 - Required Returns......................................................................................................... 53 Table 52 - Towing Summary........................................................................................................ 54 Table 53 - Required Freight Rate.................................................................................................. 54
  • 6.
    6 List of Figures Figure1 – Lines Drawing ............................................................................................................. 10 Figure 2 – Inboard Profile............................................................................................................. 11 Figure 3 – Floodable Length Diagram.......................................................................................... 13 Figure 4 - Double Hard Chine Hull Form – LOA = 44.2 m......................................................... 17 Figure 5 - Faired Hull Form –....................................................................................................... 17 Figure 6 - Fire Monitor Location.................................................................................................. 20 Figure 7 - Interior General Arrangements .................................................................................... 21 Figure 8 – Bulkhead Placement.................................................................................................... 21 Figure 9 – Floodable Length Analysis.......................................................................................... 22 Figure 10 – Propulsion System Rendering ................................................................................... 25 Figure 11 - Total Resistance and Delivered Thrust versus Speed ................................................ 26 Figure 12 - Engine Layout Rendering .......................................................................................... 28 Figure 13 - Propeller and Kort Nozzles........................................................................................ 29 Figure 14 - Cavitation versus Vessel Speed ................................................................................. 29 Figure 15 - Propeller Coefficients versus Vessel Speed............................................................... 30 Figure 16 - 12,000 mt Barge (380' x 100') with 11' Draft............................................................. 31 Figure 17 - One-Line Diagram ..................................................................................................... 32 Figure 18 - Towline Pull Criterion................................................................................................ 33 Figure 19 – GZ Curves ................................................................................................................. 34 Figure 20 – Bonjean Curves ......................................................................................................... 35 Figure 21 – Load Distribution for the Full Load Condition ......................................................... 38 Figure 22 - Bow Thruster Regression........................................................................................... 43 Figure 23 - 16 kn RAO, 0º............................................................................................................ 44 Figure 24 - 16 kn RAO, 30º.......................................................................................................... 44 Figure 25 - 16 kn RAO, 90º.......................................................................................................... 45 Figure 26 - 16 kn RAO, 140º........................................................................................................ 45 Figure 27 - 16 kn RAO, 180º........................................................................................................ 45 Figure 28 - Heave Response ......................................................................................................... 46 Figure 29 - Roll Response............................................................................................................. 46 Figure 30 - Pitch Response ........................................................................................................... 46 Figure 31 - Critical MII Locations................................................................................................ 47 Figure 32 - Tug Fleet Locations.................................................................................................... 50
  • 7.
    7 1.0 – ExecutiveSummary The Maritime Administration (the Agency) and the Society for Naval Architects and Marine Engineers (SNAME) have expressed a strong need for the capabilities of a 10,000 horsepower ocean going salvage tug in the proximity of the Aleutian Islands. It was the task of Sea Tools Engineering to develop a preliminary design for such a tug. The initial requirements set forth by the Agency and SNAME included a minimum 10,000 hp installed power, ice strengthened for operation in and around the Aleutian Islands, and commercial operations, other than salvage, which would break even on the vessel’s operating cost and amortize the build cost after 15 years. The vessel was also to have a region of operation that would allow efficient response to salvage missions and operate in a safe, secure, and environmentally responsible manner. Sea Tools Engineering has successfully designed a tug as desired by the Agency and SNAME. The tug will be United States flagged and therefore comply with the American Bureau of Shipping (ABS) classification rules, United States Coast Guard requirements, and the Code of Federal Regulations. The Sea Tools tug satisfies all of the client requirements, exceeds classification standards, and has several unique features which make it a feasible choice for deployment in the Aleutian Islands. The principal dimensions for the tug were determined via a regression analysis of similar existing ocean going salvage tugs. Unique and important features of the tug include Fire Fighting II classification, oil recovery capabilities, safe conditions for the crew to pilot the vessel and operate the winch in sea state six, and a variable propulsion system that reduces fuel consumption if full power be unnecessary. An overview of the principal characteristics for the Sea Tools design is listed in Table 1. LOA (m) 66.8 LWL (m) 65.6 B (m) 15.0 D (m) 7.49 T (m) 5.63 C 0.52B Design Speed (kn) 16 Displacement (MT) 2941 Endurance (nm) 2640 Installed Power (kW) 7882 Bollard Pull (tons-force) 129.7 Crew Capacity 30 Cost (millions USD) 26.8 Table 1 – Principal Characteristics The floodable length and damaged stability characteristics of the Sea Tools tug are outstanding and will survive a head on collision resulting in failure of the collision bulkhead. The powering analysis and propeller optimization determined the tug has exceptional bollard pull and minimal cavitation during the bollard pull condition. Powering characteristics are presented in Table 2 and propeller characteristics are presented in Table 3.
  • 8.
    8 MCREngine 7,882 kW(10,570 BHP) @ 800 rpm(kW) Engines 4 Brand ElectroMotive Models EMD 8-710GC-T2 and EMD 16-710GC-T2 Table 2 – General Engine Characteristics Characteristic Value Quantity 2 DP 4.0 m P controllable AE/AO 0.85 RPM 188 rpm Maximum Efficiency 46 % Table 3 – Propeller Characteristics The tug is economically viable and will break even after 15 years of operation. This will be accomplished by performing towing operations between Seattle and Juneau in addition to salvage missions. A fleet of three vessels will be utilized which will leave at least one tug on call at all times for salvage missions. Each Sea Tools tug will require a crew of 12 and is prepared to house 18 additional salvors. Each sailor has ample room in the deckhouse and will be comfortable when performing extended length salvage missions. This report is a preliminary design and contains details of the hull design and optimization, propeller optimization and selection, weight estimation and weight centers, powering calculations, damaged stability, structures, maneuvering and seakeeping predictions, and economic analysis.
  • 9.
    9 2.0 – TechnicalSummary A summary of the technical aspects of the report are summarized in this section. 2.1 – Introduction It has been indicated by the Society of Naval Architects and Marine Engineers, as well as the United States Maritime Administration, that there is currently a strong need for powerful, 10,000 BHP, ocean going salvage vessels in and around the Aleutian Islands and Gulf of Alaska. Because of this need, these organizations have put forth a design competition, in which we have partaken, in order to fulfill this design need. Our preliminary design not only fulfills all necessary salvage operations, but also implements several other commercial applications in order pay for the costs of the vessel over a 15 year period. The remaining details of our vessel design are presented in this report. Details include principal dimensions, hull regression and selection, general arrangement, prime mover and machinery selections, propulsion design, weight and centers estimation, ship intact and damage stability, floodable length, structural analysis of the midship section, a seakeeping analysis, and a maneuvering estimation. 2.2 - Requirements The requirements which governed the design of our vessel are listed below. MARAD and SNAME Design Competition Requirements • Location: Aleutian Islands Chain & Arctic Waters • Power: Minimum of 10,000 HP (7,457 kW) installed • Structure: Ice strengthened for Arctic waters • Economic: Commercial applications other than salvaging Break even with costs after 15 years of continuous operation • Response: Fast response time from doing other commercial applications • Operation: Safe, secure and environmentally responsible Designer Specified Requirements • Seakeeping: Operate safely in conditions up to sea state six 2.3 – Principal Characteristics The principal dimensions for the salvage vessel were determined via a regression analysis of similar existing containerships and iterated until the best solution was found. Developing a brand new hull form can be a very expensive process and unnecessary if many similar vessels have been previously contracted. Initial dimensions for the Sea Tools tug hull form were found through a regression analysis of 28 previously constructed ocean going salvage tugs of similar power and capabilities. Principal characteristics are listed in Table 4.
  • 10.
    10 LOA (m) 66.8 LWL(m) 65.6 B (m) 15.0 D (m) 7.49 T (m) 5.63 C 0.52B Design Speed (kn) 16 Displacement (MT) 2941 Endurance (nm) 2640 Installed Power (kW) 7882 Bollard Pull 129.7 Table 4 – Principal Characteristics 2.4 – Hull Selection Maxsurf was utilized to digitize an existing body plan and lines drawing of a hard chine hull form and parametrically transformed to the target dimensions found from the regression analysis. The lines drawing for the salvage vessel can be found in Figure 1. Figure 1 – Lines Drawing 2.5 – General Arrangements The general arrangements for the salvage vessel were modeled in Rhinoceros NERBs software and AutoCAD. The inboard profile arrangement can be seen in Figure 2.
  • 11.
    11 Figure 2 –Inboard Profile 2.6 – Engine Selection The selection of the engines to be installed aboard the salvage vessel was based on rigorous research of similar existing vessels and research done on several manufacturers. It was determined, based on this research, that ElectroMotive diesel engines would be installed aboard the vessel. The prime mover’s primary characteristics can be seen in Table 5. MCREngine 1,312 kW (1,760 BHP) @ 800 rpm(kW) Cylinders 8 Fuel Consumption Rate (t/kW*hr) 0.00020438 Brand ElectroMotive Model EMD 8-710GC-T2 MCREngine 2,629 kW (3,525 BHP) @ 800 rpm(kW) Cylinders 16 Fuel Consumption Rate (t/kW*hr) 0.00019921 Brand ElectroMotive Model EMD 16-710GC-T2 Table 5 – Engine Characteristics 2.7 – Generator Selection The electrical load of the design is initially estimated as the sum of the following machinery and controls plus a twenty percent preliminary design margin: crane, winch, hotel/deckhouse service, fire monitor controls, machinery pumps and controls, bow thruster, etc. Sea Tools recommends the installation of two 1,550 kW Caterpillar 3512C generators in order to design redundantly in case of failure. Table 6 illustrates the required and installed power on the vessel design. Required (kW) Installed (kW) Average at Sea Service Load 750 3,100 Maximum at Sea Service Load 1,525 3,100 Emergency Power 153 158 Table 6 – Generator Characteristics
  • 12.
    12 2.8 – PropulsionDesign The propeller design in the particular case of the tug style vessel was fairly difficult because it was necessary to maximize thrust at low speeds while also maximizing over all vessel speed for quick response time to salvage operations. This was done using NavCad 2007 and produced two controllable pitch propellers housed within ka-19a Kort nozzles to maximize thrust. The optimized propeller results are given in Table 7. Characteristic Value Quantity 2 DP 4.0 m P controllable AE/AO 0.85 RPM 188 rpm Maximum Efficiency 46 % Table 7 – Propeller Optimization Characteristics 2.9 – Weights Estimation Four operating conditions were analyzed using the arrangements from the Rhino 3D model to estimate the centers of all machinery, structure, plating, and design margins. These conditions were used to analyze the maximum bending moment. Stability properties for each condition can be found in Table 8. GMT GM(m) L T(m) F T(m) A Trim (cm, + by stern)(m) KG (m) Full Load Departure 3.19 76.5 5.63 5.63 0 4.9 50 % Fuel Remaining 3.14 78.4 4.99 5.86 87 5.1 10 % Fuel Remaining 3.19 76.5 5.50 5.74 24 4.9 Topside Icing 3.16 76.2 5.56 5.73 18 4.9 Table 8 – Intact Stability at Four Loading Conditions 2.10 – Floodable Length A floodable length analysis was performed to determine if the bulkhead placement in the design provided adequate number of watertight compartments to maintain a floating vessel in case of damage. The vessel passes all single compartment flooding criteria as well as the two compartment case for both forward-most compartments flooded. The test result diagram is shown in Figure 3.
  • 13.
    13 Figure 3 –Floodable Length Diagram 2.11 – Damage Stability Requirements governing compartment flooding survival for uninspected tugs do not exist. However, safe operation in damaged conditions was a primary concern for the Sea Tools tug. One compartment flooding for all compartments was determined to be a necessary requirement in addition to two compartment flooding in the two bow compartments. The MARAD Design Letter 3 was used for damaged stability to determine if the Sea Tools tug would remain stable in each damaged condition. These criteria were selected because they are relatively conservative compared to other rule sets which could have been used for this vessel. 2.12 – Midship Analysis ABS requirements specified strength requirements for our vessel design, which was verified by analyzing the midship section and the winch location’s framing. The requirements and actual values for our vessel design are listed in Table 9. ABS Required Actual Units SM deck 3202 29,220 cm2 -m SM bottom 3202 16,390 cm2 -m Table 9 – Midship Analysis 2.13 – Seakeeping Analysis Maxsurf’s Seakeeper program was used to analyze the seakeeping properties of our design at Sea States four, five, and six. The results from the seakeeping analysis are listed in Table 10, and they represent, on average, how many interruptions a one will experience in one hour based on the given sea state. These values are well within a reasonable realm for working in up to sea state six at full speed.
  • 14.
    14 Motion-Induced Interruptions perhour SS4 SS5 SS6 Wheelhouse 5.6 18.0 16.5 Winch Controls 8.2 19.4 18.3 Table 10 – Seakeeping Analysis 2.14 – Maneuvering Analysis The University of Michigan’s Maneuvering Prediction Program (MPP) was used to determine the rudder area necessary to meet turning requirements. The required rudder area was calculated to be 11.1 m2 Table 11. The maneuvering results from MPP are listed in . Required Calculated Advance (m) <295.2 852.95 Tactical Diameter (m) <328 312.8 Clarke’s Turning Index >0.4 11.3 Linear Dynamic Stability >0.0 0.00041 Table 11 – Maneuvering Analysis 2.15 – Conclusion This proposed design is an ideal candidate for meeting all requirements set forth by MARAD/SNAME and exceeds the minimum classification and safety requirements. The proposed design has excellent stability properties at several loading conditions, a viable efficiency, and an economically sound business model.
  • 15.
    15 3.0 – Introduction Withthe expansion of the oil industry, increased commercial shipping traffic, and a greater knowledge of the effects of environmental safety, the need for high-powered salvage tugs near the Aleutian Island Chain and the Gulf of Alaska is growing. The unpredictability of the need for salvaging requires designs to be versatile in their capabilities. While not salvaging, commercial operations act as a valuable source of additional income. However, during the event of an emergency, a fast response time and the ability to abort commercial operations become essential. The design enclosed fully meets these necessities as well as the requirements set forth by the MARAD/SNAME student design competition. 3.1 – Requirements The client requirements for the salvage tug are shown in Table 12. Power Minimum of 10,000 HP (7,457 kW) installed Location Aleutian Islands Chain & Arctic Waters Economic Commercial applications other than salvaging Break even with costs after 15 years of continuous operation Structure Ice strengthened for Arctic waters Response Fast response time from doing other commercial applications Operation Safe, secure and environmentally responsible Table 12 – Client Requirements 3.2 – Principal Characteristics The principal characteristics of the salvage tug design are listed in Table 13. LOA (m) 66.8 LWL (m) 65.6 B (m) 15.0 D (m) 7.49 T (m) 5.63 C 0.52B Design Speed (kn) 16 Displacement (MT) 2,941 Endurance (nm) 2,640 Installed Power (kW) 7,882 Crew 12 Cost (millions USD) 26.8 Table 13 – Principal Characteristics
  • 16.
    16 4.0 – HullForm Design Parametric transformation in Maxsurf was utilized to cater a parent hull to the final hull form for the Sea Tools salvage tug. The hull form was designed with consideration for reducing the cost and ease of construction while having favorable stability and seakeeping characteristics. 4.1 – Initial Point Design Developing a brand new hull form can be a very expensive process and unnecessary if many similar vessels have been previously contracted. Initial dimensions for the Sea Tools tug hull form were found through a regression analysis of 28 previously constructed ocean going salvage tugs of similar power and capabilities. The regressions performed utilized one linear term versus installed power. The largest correlation coefficient (0.50) was obtained from the draft versus installed power regression. This is a small correlation coefficient, but this can be attributed to the small pool of tugs analyzed, and the fact that each tug included in the regression was designed with certain requirements, which would over- or undersize certain characteristics. However, the values produced from the regression analysis provided an initial starting point from which to develop the principal dimensions for the Sea Tools tug. The results of the regression analysis are tabulated in Table 14. Regression Variables Result LOA vs. Installed Power 71.5 m LBP vs. Installed Power 59.8 m B vs. Installed Power 15.0 m T vs. Installed Power 6.0 m D vs. Installed Power 7.5 m Speed vs. Installed Power 16.1 kn Bollard Pull vs. Installed Power 115 tons-force Table 14 – Regression Analysis Results These values were essential for developing the principal dimensions of AHAB but were not the final dimensions used. These dimensions were used to initially transform a parent hull and further analysis of the transformed hull form was required to finalize the hull dimensions. 4.2 –Hull Selection and Optimization The hull forms of two previously constructed ocean going salvage tugs were considered to become the parent hull for the Sea Tools tug. The first hull considered was a double hard chine and ice strengthened tug seen in Figure 4. The advantage of choosing this design as the parent hull was its use of hard chines which reduces build cost by not requiring excessive shell plate bending. It was also initially thought that because the design was ice strengthened, using this hull form would reduce hull modifications necessary for ice strengthening the Sea Tools tug. This did not turn out to be true because ice strengthening the Sea Tools tug did not require hull form modifications. The second hull form considered for a parent hull was a faired hull tug seen in Figure 5. The advantage of choosing this form was that its dimensions were closer to the Sea Tools tug target dimensions. This would reduce degradation of the hull form during parametric transformation. Other advantages included favorable seakeeping characteristics and decreased resistance at higher speeds.
  • 17.
    17 Figure 4 -Double Hard Chine Hull Form – LOA = 44.2 m Figure 5 - Faired Hull Form – LOA = 65.2 m It was determined that the hard chine hull form was the best parent hull choice for the Sea Tools tug. Breaking even financially after 15 years of operation was a driving requirement in our design so a hull form which would reduce the initial build cost was an important factor in choosing the hard chine hull. Also, most of the time, Sea Tools tugs will be towing at slower speeds, so although the faired hull would reduce fuel costs by having decreased resistance at higher speeds it was not a primary concern. Maxsurf was utilized to digitize the hard chine hull form and parametrically transform it to the target dimensions found from the regression analysis. For the capabilities the Sea Tools tug was going to be designed to perform, it was also determined that the length of the work deck was too long and also that the displacement of the hull at the design waterline was too large. The hull near the transom was truncated in order to reduce the deck area and the displacement to just less than 3000 metric tons. The final hull form has characteristics shown in Table 15. Displacement (t) 2941 LOA (m) 66.8 LWL (m) 65.6 B (m) 15.0 D (m) 7.49 T (m) 5.63 C 0.52B C 0.876X C 0.836WP LCB (m aft of FP) 49.93 LCF (m aft of FP) 35.99 KB (m) 3.55 Table 15 – Principal Dimensions and Hydrostatics 4.3 – Lines Drawing The lines drawing for the Sea Tools tug hull form can be found in Appendix A. Station spacing was decided and the lines plan was developed in Maxsurf. Table 16 contains the station spacing used in the lines drawing.
  • 18.
    18 Station Spacing (m)5.14 Buttock Spacing (m) 1.08 Waterline Spacing (m) 2.95 Table 16 – Station Spacing
  • 19.
    19 5.0 – Capabilities Thecurrent design of the vessel is capable of undertaking many missions, ranging from routine towing operations to oil recovery. The rules for specialized vessels under 90 meters in length provided by the American Bureau of Shipping were considered when making all design decisions. All machinery specifics are provided in Appendix G – Machinery Specifications. 5.1 – Salvage The vessel was designed primarily to serve as a contract vessel for salvage missions. To be as attractive a salvage vessel as possible, special attention was paid to the safe operation of the vessel as well as cruising speed and machinery capabilities. Table 17 displays characteristics and features of the vessel beneficial to salvage operations. Speed 16 knots Winch (aft) 208 mT Winch (fore) 21.5 mT Crane 35.7 mT Table 17 – Salvage Characteristics The capability of the vessel to cruise at 16 knots is a unique feature from other similar vessels that enables the vessel to reach potential salvage sites quickly. An EBI Model TC-60 telescopic boom crane will be installed just aft of the deckhouse on the starboard side of the vessel. In addition to the characteristics listed in Table 17, weld and dive equipment will be stowed aboard the vessel for use during salvage operations. 5.2 – Towing The primary missions to be undertaken by the vessel will be barge towing, and as such the vessel will be classified an A1 Towing Vessel by the American Bureau of Shipping. The characteristics of the vessel at the target towing speeds of 3-7 knots were investigated and will be discussed in detail later in this report. The specific winches selected were a 208 mT Markey TDSD-44, using 1018 m of 2.75 in thick wire rope for primary towing operations and a 21.5 mT Markey DEPC- 52, using 235 m of 10 in thick synthetic rope for ship assist situations. The TDSD-44 winch will be located just aft of the deckhouse, and the DEPC-52 winch will be located on the forecastle deck. 5.3 – Fire Fighting Adequate fire fighting systems will be installed in the vessel to achieve A1 Fire Fighting Class 2 status from the American Bureau of Shipping. Four, Stang eight inch Electric Low Pro monitors located on top of the deckhouse will be capable of 7200 𝑚𝑚3 ℎ𝑟𝑟 output as seen in Figure 6. In addition to water dispensing capabilities, a foam mixing system will be utilized with the minimum storage as listed below in Table 18. High expansion Silv-Ex Plus foam will be used in cold weather fire fighting operations.
  • 20.
    20 Figure 6 -Fire Monitor Location Characteristic Proposed Design ABS Required Number of Monitors 4 3 or 4 Discharge rate per Monitor 1800 𝑚𝑚3 ℎ𝑟𝑟 1,800 𝑚𝑚3 ℎ𝑟𝑟 Number of Pumps 2 2 Monitor Range 150 m 150 Monitor Height (at a distance 70 m from the vessel) 70 m 70 m Foam Storage Capacity 6.35 m3 required Table 18 – Firefighting Characteristics 5.4 – Oil Recovery It was determined that instances in which oil pollution occurred were fairly common in the operating region of the vessels. Currently the vessel is not planned to receive oil recovery classification from the American Bureau of Shipping, yet oil recovery machinery will be available in case of need. Two DESMI Tarantula oil skimmers with a capacity of 250 𝑚𝑚3 ℎ𝑟𝑟 as well as two Canflex Sea Slug FCB-650CM towable bladders will be stowed below deck, accessible with the crane. All machinery specification can be found in Appendix G – Machinery Specifications.
  • 21.
    21 6.0 – GeneralArrangements The general arrangement for the salvage vessel was designed in Rhinoceros NERBs modeling software, and the final result can be viewed in Figure 7. Its hull form was imported from Maxsurf, and items were drawn such that dimensions, weight centers, and interferences could be determined. The general arrangements can be found in Appendix C – General Arrangements. Figure 7 - Interior General Arrangements 6.1 – Bulkhead Placement The collision and after peak bulkheads were placed based on ABS under 90 m vessel requirements. All bulkhead locations are presented in Table 19. Station (m) Bulkhead Location (m aft of FP) Compartment Length (m) 1 4.6 4.6 2 12.6 8.0 3 24.6 12.0 4 36.6 12.0 5 46.6 10.0 6 59.6 13.0 Table 19 – Bulkhead Locations Figure 8 – Bulkhead Placement
  • 22.
    22 6.2 – FloodableLength The floodable length analysis performed on the Sea Tools tug ensured that the bulkheads placed would permit one compartment flooding survival with a permeability of up to 0.95 while remaining stable. There is no explicit governing criteria which specify compartment flooding for uninspected tugs, however it was believed to be a smart design choice to pass one compartment flooding. In addition to one compartment flooding, the front two compartments are capable of being flooded without the vessel sinking. This was believed to be the most important two compartment flooding case to be able to pass without adding an excessive amount of bulkheads to the tug. The plotted results are presented in Figure 9 and in Appendix K. Figure 9 – Floodable Length Analysis 6.3 Deck House The arrangements of the tug were developed using the guidelines found within “Ship Manning Trends in Northern Europe: Implications for American Shipowners and Naval Architects.” Table 20 displays the requirements set forth by these guidelines and the actual accommodation areas and characteristics. Some of the beneficial aspects of the vessel’s deckhouse are the use of stairs only running fore and aft – conducive for periods of high roll motions – and accommodations for the 12-man permanent crew, a 12-man salvaging crew, and 6 other personnel if ever applicable.
  • 23.
    23 Required Actual Beds --30 Heads -- 24 Quarters 313.0 m 2 361.5 m 2 Galley 19.5 m 2 36.9 m 2 Dry Provision Stores 6.2 m 2 6.75 m 2 Refrigerated Stores 4.7 m 2 6.2 m 2 Mess Hall 26.4 m 2 32.2 m 2 Medical -- 27.9 m 2 Laundry 10.0 m 2 19.3 m 2 Workroom -- 52.1 m 2 Salvor Storage -- 27.9 m 2 Laboratory Space -- 51.3 m 2 Mapping/Charting 15.0 m 2 38.5 m 2 Wheelhouse 30.0 m 2 46.8 m 2 Table 20 - Deckhouse Accommodations The lowest deck is positioned 2.69 meters above baseline. A drawing of this deck appears in Appendix C – General Arrangements. On this deck all, main propulsion machinery, main electrical powering machinery, and gearing can be accessed. The fuel tanks are located below this deck while the potable and black/gray water tanks are situated on it. The bow thruster room can also be accessed from this deck. The exhaust pipes from the engines and the fire monitor pipes from fire pumps terminate, with only necessary jogs, above the deckhouse. The deck 5.09 meters above baseline contains the lowest level of crew accommodations. Also appearing on this deck is an HVAC/electrical cable trunk that terminates, without any jogs, in the wheelhouse. A drawing of this deck appears in Appendix C – General Arrangements. Main deck contains crew accommodations, workrooms, a salvor storage room, and a galley. The workrooms are situated at the aft end of the deckhouse for the convenience of workers carrying equipment inside from the work deck. Similarly, the medical center is located on main deck just forward of the workrooms so an injured person can be moved from the work deck without having to climb stairs. To minimize down-flooding points, the only door that can be used to access the main deck portion of the deckhouse is situated on centerline. A drawing of main deck appears in Appendix C – General Arrangements. The 01 level houses officer accommodations, which are more spacious than the crew accommodations. Exterior stairs can be used to access the 01 level from main deck. The crane can also be accessed from the 01 level. The crane is used for lifting objects to and from docks and deploying oil recovery equipment that is stored below main deck. While extended to 22.9 meters, the telescopic crane can lift 4.9 tons. The empty oil bladders onboard are 3.1 tons and are held within the below deck storage 13 meters from the crane. Therefore, the crane can be
  • 24.
    24 used to deploythe oil bladders. A drawing of the 01 level appears in Appendix C – General Arrangements. The crane specifications appear in Appendix G – Machinery Specifications. The 02 level holds laboratory space, which is used for analyzing oil samples and allows the vessel to be used for research related missions in the future. Also appearing on the 02 level is a space designated for charting and mapping. A drawing of the 02 level appears in Appendix C – General Arrangements. The wheelhouse is the highest enclosed deck of the deckhouse, and it contains navigational equipment. The exhaust pipes terminate at the height of this deck, and the fire pipes continue to the top of the deckhouse. A drawing of the wheelhouse appears in Appendix C – General Arrangements.
  • 25.
    25 7.0 – Propulsionand Powering The rendering in Figure 10 – Propulsion System Rendering below illustrates the final design of the propulsion system, hull form and all associated appendages on the vessel used in the following section’s calculations. Figure 10 – Propulsion System Rendering 7.1 – Resistance The total vessel resistance was calculated in order to determine the resistive forces of the hull and appendages at all plausible speeds. These values would later be used to calculate the speed and available thrust of the vessel. Using HydroComp NavCad 2007, the vessel’s bare hull and appendage drag were determined along with an eight percent preliminary design margin and Table 21 illustrates the average percentage of drag associated with the hull and the appendages at all speeds. NavCad allowed for all appendages to modeled, such as the skeg, Kort nozzles, shafting, struts, bow thruster opening, ice knives and rudders. Predictive equations such as Holtrop’s 1984 Method and the ITTC prediction line were also used. The plot in Figure 11 represents the total resistance and thrust of the vessel versus speed. The thrust of the vessel will be further explained in the propulsion portion of this section. The intersection of the lines in this plot indicates the operating point where vessel thrust equals vessel resistance and thus the location of the vessel’s top speed of 16 knots. Vessel Speed Bare Hull Drag (%) Appendage and Wind Drag (%) 2 - 16 knots 91% 9% Table 21 - Percentage of Total Drag
  • 26.
    26 Figure 11 -Total Resistance and Delivered Thrust versus Speed 7.2 – Prime Mover Selection 7.2.1 – Initial Point Design and Selection The initial selection of the engines began with the owner’s requirement that a minimum of 10,000 hp be installed. Using this information, several engine manufacturers were investigated; including Wärtsilä, Rolls Royce, and ElectroMotive. It was determined, based on our research, that the ElectroMotive medium speed diesel engines were our best choice based on several criteria. These criteria included the fact that they are two-cycle, easily maintained and reputable engines that have been used on many tug boat applications. They currently retain an EPA tier two marine certification and based on information received from a contact within EMD, it has been indicated that with several easy, on board modifications that will soon be available, the engines will be rated as tier three certified, which further increases the environmental responsibility of the design. These engines also offer an instantaneous response in power when altering throttle position, as well as a ten percent overload capability for two out of every twenty four hours. 7.2.2 – Analysis of Selected Engines Once the brand of engine was chosen, several configurations of engines were investigated in order to meet the 10,000 hp minimum installed power. Everything from two large capacity engines to four identical engines were investigated. The arrangement of one, sixteen and one, eight cylinder ElectroMotive medium speed diesel engine per propeller shaft was selected,
  • 27.
    27 delivering a totalof 10,570 hp between all four engines. Table 22 and Table 23 illustrate the characteristics of each selected engine. A detailed analysis of the fuel consumption of the engines can be found in Appendix F – Powering Specifications. There is enough lube oil stored on board to lubricate the prime movers for 3,360 hours of continuous operation in order to save time at port when re-fueling the vessels. MCREngine 1,312 kW (1,760 BHP) @ 800 rpm(kW) Cylinders 8 Fuel Consumption Rate (t/kW*hr) 0.00020438 Brand ElectroMotive Model EMD 8-710GC-T2 Table 22 – 8 Cylinder Engine Characteristics MCREngine 2,629 kW (3,525 BHP) @ 800 rpm(kW) Cylinders 16 Fuel Consumption Rate (t/kW*hr) 0.00019921 Brand ElectroMotive Model EMD 16-710GC-T2 Table 23 – 16 Cylinder Engine Characteristics Figure 12 illustrates the layout of the selected engines. The theory behind the layout displayed in this rendered figure is so that the fire pumps can be powered mechanically with the two eight cylinder engines, leaving the sixteen cylinder engines to provide propulsion power during fire fighting exercises. Also, during towing of small barges or vessels or during general maneuvering exercises where the entire 10,570 hp installed is not needed, the eight cylinders can be powered down, reducing the overall fuel consumption and extending the life of the engines. This layout is feasible by using a clutch system, along with the double input reduction gears going to the propeller shafts, and the single reduction gears going to the fire pumps from the eight cylinder engines. Appendix F – Powering Specifications contains more detailed information on these engines.
  • 28.
    28 Figure 12 -Engine Layout Rendering 7.3 – Propulsion Design The propeller design in the particular case of a tug style vessel is fairly difficult because it is necessary to maximize thrust at low speeds while also maximizing over all vessel speed for quick response time to salvage operations. This was done using NavCad 2007 which led to the design of two controllable pitch propellers housed within ka-19a Kort nozzles to maximize thrust. Prediction equations such as Holtrop’s 1984 Method and Keller’s Cavitation equation were utilized. The Kort nozzles and propeller shafting will be ice strengthened and protected by ice knives on the back side for reverse conditions. The final characteristics of the counter rotating propeller design are displayed in Table 24 and a rendering of the propeller design can be seen in Figure 13. Characteristic Value Quantity 2 DP 4.0 m P controllable AE/AO 0.85 RPM 188 rpm Maximum Efficiency 46 % Table 24 – Propeller Characteristics
  • 29.
    29 Figure 13 -Propeller and Kort Nozzles The reason for the fairly low efficiency is due to the optimization of thrust and top speed. The benefits of having one of these, causes downfalls to having the other. Figure 14 illustrates the cavitation of the propeller blades at vessel speeds up to sixteen knots. It is relevant to note that at low speed, towing and bollard pull condition, the cavitation is under 5%, thus lowering propeller damage. Figure 15 illustrates the propeller efficiency, torque and thrust coefficients. The propeller efficiency is highest at thirteen knots, a typical port to port maneuvering speed. Figure 14 - Cavitation versus Vessel Speed
  • 30.
    30 Figure 15 -Propeller Coefficients versus Vessel Speed 7.4 – Towing and Bollard Pull With the propulsion system preliminarily designed, its capabilities in towing and bollard pull were explored in order to confirm that it was a feasible proposal. The missions of the tug, which are reliant on the propulsion system, include salvage, barge towing and ship assist missions. It was determined that our propulsion system delivered 129.7 tons force of bollard pull at the zero speed condition, which was higher than the initial 115 tons force that was initially estimated. To put this into a physical perspective, it was calculated that there was an available thrust of roughly 789 kN at 7 knots. Analyzing the modern day 12,000 mT barge in Figure 16, with the characteristics listed below, it was determined to have 615 kN of resistance from friction, wave and wind drag terms. The available thrust is greater than the resistance of the barge, so Sea Tools can confidently declare that this design is able to tow this typical barge with a 22% margin to account for more adverse conditions. Appendix G – Machinery Specifications contains more detailed information about this barge.
  • 31.
    31 Figure 16 -12,000 mt Barge (380' x 100') with 11' Draft 7.5 – Electrical Power Estimation The electrical load of the design was initially estimated as the sum of the following machinery and controls plus a twenty percent preliminary design margin: crane, winch, hotel/deckhouse service, fire monitor controls, machinery pumps and controls, bow thruster, etc. 7.6 – Generator Selection It is recommend that the installation of two 1,550 kW Caterpillar 3512C generators is reasonable in order to design in redundancy in case of failure and to alternate between generators to increase the life cycle of each. Also, these generators may both need to be used in situations involving salvage operations and the use of the 500 kW bow thruster. The Caterpillar C6.6 ACERT emergency generator was selected to ensure all communication and on board fire suppressant systems are available in case of emergency or damage to the vessel or primary power generators. The characteristics of the service loads versus installed generator power outputs are displayed in Table 25. Appendix F – Powering Specifications contains more detailed information on these generators. Required (kW) Installed (kW) Average at Sea Service Load 750 3,100 Maximum at Sea Service Load 1,525 3,100 Emergency Power 153 158 Table 25 – Generator Characteristics 7.7 – One Line Diagram Figure 17 illustrates the electrical configuration on board the vessel and shows the availability of 440, 240 and 120 volt applications for select machinery and accommodations throughout the vessel. This electrical design proposal allows for all current machinery to be operated efficiently, as well as allowing for any future machinery additions to easily be installed. Appendix F – Powering Specifications contains a larger detailed figure of the one line diagram.
  • 32.
    32 Figure 17 -One-Line Diagram
  • 33.
    33 8.0 – Intactand Damage Stability Intact and damaged stability of the Sea Tools tug determined whether or not the ship was stable enough to pass requirements set forth in the Code of Federal Regulations (CFR). 8.1 – Intact Stability Intact stability of the vessel was analyzed using the HECSALV stability suite and compared to CFR requirements. 8.1.1 – U.S. Coast Guard Wind Heel Requirements The U.S. Coast Guard requires a minimum GMT based on a ship’s profile area above water on which beam winds could act and heel the ship. The “USCG Wind Heel GMT” spreadsheet was used to determine minimum value to be 0.62 m. The Sea Tools tug’s GMT is 3.19 m, which clearly passes this requirement. The “USCG Wind Heel GMT” spreadsheet has been included in Appendix J – Intact Stability. 8.1.2 – Towing Stability Criteria The CFR mandates certain stability requirements in the towing condition. A choice is given in the CFR of meeting a minimum metacentric height (GM) or passing requirements regarding the heeling arm and righting arm curves. The GM height requirement was chosen as the towing stability criterion the Sea Tools tug was to pass. The equation found in Figure 18 is provided and the indicated inputs were used to calculate the minimum required GM. The equation derives from the tug having its rudders full turned at full speed while not moving forward which creates the largest heeling moment on the tug. 2 3 f ( )( ) ( )( ) ( )B N P D s h GM K × = ∆ N (number of propellers) 2 P (shaft power per shaft in kilowatts) 3941 D (propeller diameter in meters). 4.5 s (fraction of the propeller circle cylinder intercepted when rudder turned 45 degrees from the vessel's centerline) 0.719857 h (vertical distance from propeller shaft centerline at rudder to towing bitts in meters) 6.83 Δ (displacement in metric tons) 2936 f (minimum freeboard along the length of the vessel in meters) 1.859 B (molded beam in meters) 15 K=13.93 in metric units 13.93 Figure 18 - Towline Pull Criterion The calculated minimum GM requirement for the Sea Tools tug was discovered to be 1.32 m. The Sea Tools tug’s GMT of 3.19 m passes this requirement. 8.1.3 – Topside Icing Specific requirements regarding icing of the topsides of an uninspected tug do not exist however this was a case that Sea Tools wished to consider for the tug because of its Arctic operation. The CFR topside icing requirements for fishing vessels was used to calculate the effects of icing on the Sea Tools tug. The icing requirements are applicable for vessels operating between 42˚
  • 34.
    34 North latitude and66˚30’ North latitude between November 15 and April 15. 30 kg/m2 (corresponding to 1.3”) of ice and 15 kg/m2 (corresponding to 0.65”) of ice is to be used for horizontally and vertically projected surfaces, respectively. This calculation indicated that full topside icing would result in 15.7 mt of ice added to the vessel. Adding this mass to our weights estimation and recalculating the hydrostatics determined that the GMT of the vessel reduces to 3.16 m, which still passes all of the CFR mandated requirements. 8.1.4 – Cross Curves of Stability HECSALV was used to generate the cross curves of stability for the Sea Tools tug and then used to create the GZ curves at the full load condition. The GZ curves are presented in Figure 19. The max GZ of 1.22 m occurs at a heel angle of 34.9˚. Figure 19 – GZ Curves 8.1.5 – Bonjean Curves Bonjean curves present station areas at different mean drafts. HECSALV was used to generate these curves and are presented in Figure 20. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 20 40 60 80 100 GZ(m) Heel Angle (deg) GZ Curve Max GZ
  • 35.
    35 Figure 20 –Bonjean Curves 8.2 – Damaged Stability Requirements governing compartment flooding survival for uninspected tugs does not exist, however safe operation in damaged conditions was a primary concern for the Sea Tools tug design. One compartment flooding for all compartments was determined to be a necessary requirement in addition to two compartment flooding in the two bow compartments. The MARAD Design Letter 3 was used as damaged stability to determine if the Sea Tools tug would remain stable in each damaged condition. These criteria were selected because they are relatively conservative compared to other rule sets which could have been used for this vessel. The rules are presented in Table 26. GZ Max Heel GM 20˚ positive range, 0.1 m minimum 15˚ Positive Table 26 - MARAD Design Letter 3 Damaged Stability Criterion The Damaged Stability part of the HECSALV program suite was used to test eight different compartment flooding cases. Initially, the tug failed when the engine room was flooded. The bulkheads were re-spaced to decrease the volume of the engine room. Compartment one is the forward most compartment on the vessel. A summary of each damage stability case is shown in Table 27. All of the damaged cases with their complete results and diagrams are included in Appendix K – Damaged Stability.
  • 36.
    36 Damaged Equilibrium # DraftStatus Damage AngMax GZ (deg) IntGM (m) Area (m-rad) LimitAngle (deg) AngE (deg) MaxGZ M Range (deg) Pass/Fail 1 1 1 1 15.3 0.308 0.0215 22.9 0 0.100 22.9 Pass 2 1 1 2 12.9 0.519 0.0231 21.4 0 0.100 21.4 Pass 3 1 1 4 10.8 0.792 0.0231 20.6 0 0.100 20.6 Pass 4 1 1 8 10.0 1.073 0.0288 20.0 0 0.134 20.0 Pass 5 1 1 10 9.9 1.296 0.0348 20.0 0 0.164 20.0 Pass 6 1 1 12 10.5 0.822 0.0234 20.0 0 0.107 20.0 Pass 7 1 1 13 14.7 0.343 0.0202 21.5 0 0.100 21.5 Pass 8 1 1 1,2 11.9 0.577 0.0226 20.7 0 0.100 20.7 Pass Table 27 – Damage Stability Results
  • 37.
    37 9.0 – MidshipAnalysis The midship cross section of the vessel was structurally analyzed to determine if the ship passes the regulations set forth by the American Bureau of Shipping (ABS). 9.1 – ABS Regulations ABS regulations state that the section modulus of the midship section should be larger than the greater result of equations one and three. The equations used to calculate the requirements are provided below. 2 min 1 2 ( 0.7)bSM C C L B C= + Equation 1 1 0.0451 3.65C L= + Equation 2 2 0.01C = Equation 3 /t pSM M f= Equation 4 t SW WSM M M= + Equation 5 Maximum Still Water Bending MomentSWM = Equation 6 2 3 1 1 ( 0.7) 10WS bM k C L B C − =− + ⋅ Equation 7 2 3 2 1 10WH bM k C L BC − = ⋅ Equation 8 1 110k = Equation 9 2 190k = Equation 10 2 17.5 /pf t cm= Equation 11 The results from these calculations are listed in Table 28. These values were used in the analysis of the midship section. Variable Result Units Mws -56,000 kN-m Mwh 44,650 kN-m Msw 31.41 kN-m SMmin 3202.0 cm2 -m SM 16,390 cm2 -m Table 28 – ABS Longitudinal Strength Calculations 9.2 – Moment and Shear Diagram The moment and shear diagrams were generated using Hydromax. The weights curves were used in previously described calculations to confirm that the vessel adhered to ABS regulation. The maximum bending moments are presented in Table 29. Condition Max Moment Full Departure 3689 mt-m %50 Fuel 3110 mt-m %10 Fuel 3270 mt-m Table 29 - Maximum Bending Moments
  • 38.
    38 The maximum bendingmoment was developed in the Full Departure condition and using Hydromax, the net load, shear, and bending moment distributions were plotted. The complete results from Hydromax are included in Appendix M – Structural Calculations as well as the weights estimation spreadsheets. Figure 21 – Load Distribution for the Full Load Condition 9.3 – Midship Analysis The utilization of a midship section analysis spreadsheet was used in conjunction with the section modulus and moment of inertia values calculated from the ABS requirements to determine the characteristics of the vessel’s midship section. Because of how the vessel was strengthened, the minimum SM requirement of 3,202 cm2 -m was met easily. This spreadsheet is included in Appendix M – Structural Calculations and a table of the midship section properties is included in Table 30. ABS Required Actual Units SM deck 3202 29,220 cm2 -m SM bottom 3202 16,390 cm2 -m Table 30 – Midship Section Strength Properties
  • 39.
    39 10.0 Structural Analysis Thestructural analysis of the vessel was performed considering two regulatory sources of input. While the vessel will be classified by the American Bureau of Shipping, all Ice strengthening aspects of the vessel were designed considering the “Finnish-Swedish Ice Class Rules”. These rules were selected based on their relative strictness when compared to ABS, and the structural safety they will provide. Rules from the American Bureau of Shipping found in “Rules for Building and Classing Steel Vessel Under 90 Meters in Length” were referenced for all other aspects of the design. A summary of plate thicknesses can be found below. 10.1 Ice Strengthened Regions The Finnish-Swedish ice class rules designate four possible classification of ice class: 1C, 1B, 1A, and 1A super. The current design of the vessel adheres to rules for Ice Class 1A vessels. The ice belt region of the vessel was determined using the following equation table the Finnish- Swedish Ice Class rules. Ice Class Extension Above LWL (m) Extension Below LWL (m) 1A Super 0.6 0.75 1A 0.5 0.6 1B 0.4 0.5 1C 0.4 0.5 Table 31 – Ice Belt Definitions While the vessel is designed to meet Ice Class 1A requirements in the ice belt region, the ice belt of the vessel extends 0.6 m above and 0.75 m below the design water line, which is only required of Ice Class 1A Super vessels. The thickness of plate in the ice belt is higher (25.4 mm) than the rest of the side shell (16 mm). Further ice strengthening measures were implemented in the framing of the vessel. Plate Location Thickness (mm) Bottom Shell 16 Side Shell 16 Side Shell – Ice Belt 25.4 Bulwarks 16 Main Deck 25.4 Bulkheads 16 Deckhouse – Sides/Decks 8 Fuel Tank Tops/Below Decks 8 Table 32 – Plating Thicknesses
  • 40.
    40 10.2 Framing Transverse framingwas selected for the vessel because of its relatively short length and the simplicity of construction that transverse framing offers. Unless stated otherwise, all framing in the vessel was spaced at 0.46 m. This section will discuss the structural members of each part of the vessel. All structural calculations can be found in Appendix M – Structural Calculations. Location Classification Society Used Required SM (m*cm2 ) Actual SM (m*cm2 ) Bottom Frame ABS 1018 1140 Side Frame FIN 1133 1140 Deck Frames ABS 702 747 Deck Girders ABS 4162 4553 Bulkhead Girder ABS 69 87 Bulkhead Stiffener ABS 328 352 Superstructures - Side ABS 26 38 Superstructure – Deck Frames ABS 696 761 Superstructure – Deck Girder ABS 515 564 Table 33 – Required and Actual Section Moduli Angle bars were used as stiffening members in all locations except the deckhouse. Angle bars were selected over t-bars because of lower cost and ease of production. In the deckhouse of the vessel it was feasible to select unobtrusive flat plate bars with an adequate section modulus. In future design iterations the sizing of these bars will be investigated with special attention paid to the weight of flat bar stiffeners and the space that could be saved if angle or t-bars were selected instead. Location L (cm) W (cm) t (cm) Steel Strength Bottom Frame 20 20 3 Normal Side Frame 20 20 3 High Deck Frames 20 15 2.5 Normal Deck Girders 71 56 2.5 Normal Bulkhead Girder 8 8 1 Normal Bulkhead Stiffener 15 15 1 Normal Superstructures - Side 10 --- 1 Normal Superstructure –Deck Frames 20 15 2 Normal Superstructure –Deck Girder 40 --- 2.5 Normal Table 34 – Stiffener Sizing The bottom and side frames of the vessel have the largest required section moduli of all structural members below deck. Because of the similar nature of the bottom and side framing requirements, angle bars with identical geometry were selected for these structural members. It should be noted that the side frame requirement assumes that the frames be constructed out of a
  • 41.
    41 high strength steelof yield stress greater than 315 𝑁𝑁 𝑚𝑚 𝑚𝑚2 . Because the side frames of the vessel will be constructed out of high strength steel, longitudinal strengthening members will not be necessary on the side shell. Another benefit of using such structurally sound side frames is that machinery stress, such as moments generated by the winches or crane, will not cause the failure of any structural members. The bulkheads of the vessel will also be structurally sound. All bulkheads will be constructed out of 16 mm thick steel and fitted with vertical stiffeners sized to adequately strengthen the deepest bulkhead of the vessel. Where necessary, a horizontal deck girder will be installed such that no vertical span of length 4.5 m or more will be horizontally unsupported. The deep tank structural requirements were also analyzed. It was determined that the existing bulkhead plating and stiffeners would adequately strengthen the deep tanks, and that no additional structural members would be required. The deck of the vessel will be made out of inch thick steel and strengthened by both transverse deck frames and two longitudinal deck girders spaced evenly across the deck. The high section modulus requirement of the longitudinal deck girders is a result of the bulkhead spacing of the vessel. Two deck girders were selected to reduce the sizing requirements of the transverse deck frames. The size of the deckhouse necessitated that the transverse deck frames in the deckhouse be sized similarly to the deck frames of the main deck. These deck frames were joined to relatively small deckhouse side frames to complete the deckhouse framing system. As previously discussed, a flat bar longitudinal deck girder was fitted below each deck level, and the geometry of this girder will be investigated in the future.
  • 42.
    42 11.0 – ManeuveringAnalysis The University of Michigan’s Maneuvering Prediction Program (MPP) was used to determine the maneuvering characteristics of the Sea Tools tug and to size its rudders. 11.1 – Initial Sizing MPP requires an initial guess for the size of the rudder and iterations must be performed to meet IMO maneuvering regulations. The initial input for the size of one rudder was derived from the equation below. Equation 12 The estimated rudder area was calculated to be 8.5 m2 . 11.2 – Maneuvering Prediction Program Several iterations were necessary to find an appropriate rudder size. The final rudder area was determined to be 11.1 m2 . For a rudder turning ability of 35˚, a ship is specified to have an advance of less than 4.5LBP, a tactical diameter of less than 5LBP, a Clarke’s turning index greater than 0.4, and a Linear Dynamic Stability Criterion greater than zero. The maneuvering requirements and results for the tug are presented in Table 35. Results from MPP are provided in Appendix H – Maneuvering. Required Calculated Advance (m) <295.2 236.1 Tactical Diameter (m) <328 312.8 Clarke’s Turning Index >0.4 11.3 Linear Dynamic Stability >0.0 0.00041 Table 35 – Maneuvering Analysis 11.3 – Bow Thruster The bow thruster for the Sea Tools tug was selected by performing a regression analysis on similar tugs and their projected sail area (Figure 22). Based on the Sea Tools tug’s sail area of 325 m2 , it was determined that the bow thruster should have an installed power of 502 kW (including a 20% margin). A 614 kW Wartsila and 530 kW Schottel bow thruster were both examined for selection. The Schottel thruster was chosen because its power was closer to the estimated power requirement and because of lower weight and therefore lower expected cost. Thruster details are provided in Appendix H – Maneuvering. 2 1 25 100 r LT B A L    = +     
  • 43.
    43 Figure 22 -Bow Thruster Regression y = 1.8373x - 178.64 R² = 0.9916 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 TotalInstalledThrusterPower(kW) Windage Area (m2) Installed Thruster Power vs. Windage Area
  • 44.
    44 12.0 – SeakeepingAnalysis Seakeeper was used to perform a seakeeping analysis on the Sea Tools tug in sea states four, five, and six. The tug will be operating in the Bearing Sea, the Gulf of Alaska, and the western coast of Canada and the USA thus an appropriate wave spectrum was selected to model the conditions there. The ITTC 2 Parameter Bretschneider wave spectrum was used and the characteristic conditions can be seen in Table 36. Sea State Wave Height (m) Average Period (s) Wind Speed (kn) Probability (%) 4 1.88 8.80 19.00 31.6 5 3.25 9.70 24.00 20.94 6 5.00 12.40 37.50 15.03 Table 36 - North Pacific Sea State Characteristics Wave headings from 0 to 180 degrees were examined in increments of 10 degrees. 180 degrees represents waves following seas, 90 degrees represents beam seas, and 0 degrees represents head seas. Speeds of 0 kn, 5 kn, 10 kn, and 16 kn were analyzed. 12.1 – Seakeeper Results The first step in analyzing the seakeeping results from Seakeeper was to verify the response amplitude operators (RAOs) were making sense for all specified headings and speeds. All we checked and their shapes and amplitudes did make sense for all headings and speeds. A sampling of the RAOs at 16 kn can be seen in Figure 23 - Figure 27. One interesting point that would require additional investigation in further design iterations is the peak amplitude in heave exceeding the pitch peak amplitude in Figure 25 - Figure 27. This was not expected and is only seen at these headings at 16 kn and not at other headings or speeds. This is expected to be a result of the tug’s hull having a low block coefficient while being a “beamy” ship (small L/B ratio). Figure 23 - 16 kn RAO, 0º Figure 24 - 16 kn RAO, 30º 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 1 2 3 RAO(TransferFunction) Encounter Frequency (rad/s) 0˚ - Following Seas Heave RAO Roll RAO Pitch RAO 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 1 2 3 RAO(TransferFunction) Encounter Frequency (rad/s) 30˚ Heave RAO Roll RAO Pitch RAO
  • 45.
    45 Figure 25 -16 kn RAO, 90º Figure 26 - 16 kn RAO, 140º Figure 27 - 16 kn RAO, 180º The next step in analyzing the Seakeeper data was to examine the RMS values of heave, roll, and pitch at all headings, speeds, and sea states. Plots of the RMS heave, roll, and pitch values at 16 kn are presented in Figure 28, Figure 29, and Figure 30. It was seen that the motions appear as expected for the given sea state and heading and it should be noted that the consistency of data was also verified at the other speeds analyzed. Subsequent design iterations should use an alternative seakeeping analysis to verify the results found here. The complete Seakeeper results are included in Appendix L – Seakeeping Results. 0 0.5 1 1.5 2 2.5 3 0 1 2 3 RAO(TransferFunction) Encounter Frequency (rad/s) 90˚ - Beam Seas Heave RAO Roll RAO Pitch RAO 0 0.5 1 1.5 2 0 1 2 3 RAO(TransferFunction) Encounter Frequency (rad/s) 140˚ Heave RAO Roll RAO Pitch RAO 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 1 2 3 RAO(TransferFunction) Encounter Frequency (rad/s) 180˚ - Head Seas Heave RAO Roll RAO Pitch RAO
  • 46.
    46 Figure 28 -Heave Response Figure 29 - Roll Response Figure 30 - Pitch Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 50 100 150 200 HeaveAmplitude(m) Heading (deg) Heave RMS, 16 kts ss4 ss5 ss6 0 1 2 3 4 5 6 7 8 0 50 100 150 200 RollAmplitude(deg) Heading (deg) Roll RMS, 16 kts ss4 ss5 ss6 0 0.5 1 1.5 2 2.5 3 3.5 0 50 100 150 200 RollAmplitude(deg) Heading (deg) Pitch RMS, 16 kts ss4 ss5 ss6
  • 47.
    47 12.2 – NaturalPeriods The RAO graphs produced by Seakeeper were analyzed and the natural frequencies found for each response. The natural periods for each response were then found and are listed in Table 37. Degree of Freedom Natural Period (s) Heave 5.7 Roll 6.3 Pitch 10.1 Table 37 - Natural Periods 12.3 – Working Condition Analysis The specified owner’s requirements dictated that the tug be able to operate in sea state six and at the full speed of 16 kn. In order to validate workable conditions on the tug boat, it was necessary to look at the Motion Induced Interruptions (MIIs) occurring at critical locations on the vessel. The red markers seen in Figure 31 show the two locations analyzed, the wheel house on centerline and the tow winch controls, 3 m starboard of centerline. Figure 31 - Critical MII Locations Seakeeper calculates the accelerations at those locations and determines how many times per hour a person would be interrupted during their work due to the local accelerations. All speeds and headings were analyzed and the worst MII cases are shown in Table 38. Motion-Induced Interruptions per hour SS4 SS5 SS6 Wheelhouse 5.6 18.0 16.5 Work deck 8.2 19.4 18.3 Table 38 - Worst Cast MII Results As highlighted in red, the maximum number of MIIs per hour is about 20, which falls between the lowest two severity ranges shown in Table 39. From this analysis, it has been determined
  • 48.
    48 that a salvagecrew will have no problem operating the Sea Tools tug at full speed during sea state six. MII Risk Levels Severity MII Risk Level MII per hour 1 Possible 6 2 Probable 30 3 Serious 90 4 Severe 180 5 Extreme 300 Table 39 – MII Risk Levels The Motion Sickness Incidence analysis performed by Seakeeper did indicate that an untrained, non-sailor would be subject to 10% probability of sea sickness in under 30 minutes during sea states five and six at a full speed of 16 kn. However, contacts in the U.S. Coast Guard have indicated that this will not be an issue for a seasoned salvage tug crew.
  • 49.
    49 13.0 – FleetJustification A solution was sought for the owner’s requirements set forth by the MARAD/SNAME student design competition. These requirements included operating near the Aleutian Island chain, having the ability to perform salvaging operations, and possessing an expense break even period of no more than 15 years. First, the demand for a salvage tug operating near the Aleutian Islands was investigated. Data collected from the USCG Marine Safety Management System and the Marine Information Safety and Law Enforcement System were reviewed. These data included the vessel types involved in incidents and the type of incident for accidents occurring near the Aleutian Islands from 1991- 2003. The per-year averages for types of incidents and types of vessels during this time period were calculated. These averages are shown in Table 40. Vessel Types Per Year Incident Types Per Year Fishing Vessels 229 Pollution 113 Freight Ships 19 Person 94 Commercial Vessels 12 Vessel 59 OSVs 9 Facility 3 Table 40 - Incidents near the Aleutian Island It was noted that fishing vessels and OSVs were comparable in size to the salvage tug to be designed and therefore would not be an economically viable source . However, on average there were over 30 incidents per year involving freight ships and commercial vessels. It was also noted that pollution was the most frequently occurring incident type. After verifying the demand for salvage support in the Aleutian Islands and Gulf of Alaska, a mission model was devised. A fleet of three tugs was chosen to operate out of the cities of Dutch Harbor, AK; Juneau, AK; and Seattle, WA. All vessels would have the same design and capabilities. Dutch Harbor was chosen due to its proximity to the Unimak Pass – a waterway passage heavy with commercial shipping traffic. The Dutch Harbor tug was designated as solely a salvaging vessel. It was decided that the Juneau and Seattle tugs would perform towing operations between the two cities as a commercial source of income. These two vessels would alternate travelling from Seattle to Juneau. With one tug towing a barge and the other commuting back to Seattle, a constant source of commercial income would be obtained while still maintaining the ability to attend to salvaging incidents. Port Hardy, British Columbia and Prince Rupert, British Columbia were ports chosen as barge drop off locations in the event that a tug engaged in towing was called for emergency related operations. The locations of the three tugs are shown in Figure 32. Also, with the possibility of response time being key in an emergency, red and yellow circles are shown to indicate distances accessible after 24 and 36 hours of travel at the design speed of 16 knots.
  • 50.
    50 Figure 32 -Tug Fleet Locations
  • 51.
    51 14.0 Economic Analysis Theeconomics of the tug fleet were analyzed and refined throughout the design of the vessel. With the 15-year break even requirement driving the analysis, the expenses incurred from crew costs, build costs, and operational costs were examined. Through a contact within the salvaging industry, estimates for 12-man crew costs were provided. These crew costs appear in Table 41. Crew Cost Per Day Crew Cost Per Year Crew Cost Over 15 years Captain $650 $237,250 $3,558,750 Mates (3) $1,620 $591,300 $8,869,500 Chief Engineer $550 $200,750 $3,011,250 QMEDs (2) $800 $292,000 $4,380,000 AB Deckhands (5) $1,550 $565,750 $8,486,250 25% Payroll Tax $1,293 $471,763 $7,076,438 15% Admin Expense $776 $283,058 $4,245,863 Total Crew Costs $7,238 $2,641,870 $39,628,050 Table 41 - Crew Cost Breakdown The contact also provided a build cost estimate of $20 million. To make this estimate more conservative, it was increased to $25 million. In addition, an 80% loan with a 4% interest rate compounded annually for 15 years was applied to the $25 million build cost estimate. These figures, as well as the accumulated interest and total build cost, are presented in Table 42. Build Cost Build Cost $25,000,000 80% Build Cost Loan $20,000,000 Interest Rate 4% Accumulated Interest $1,798,822 Total Build Cost $26,798,822 Table 42 - Build Cost Breakdown Lastly, a preliminary estimate for the operational costs was provided by the industry contact. These costs are displayed in Table 43. Per Day Per Year Over 15 Years Operational Costs $4,762 $1,738,130 $26,071,950 Table 43 - Operational Cost Breakdown The total preliminary costs for the tug design and the three tug fleet over the first 15 years of operation are presented in Table 44. 15 Year Expense Totals 15 Year Total Tug Expenses $92,498,822 15 Year Total Fleet Expenses $277,496,466 Table 44 - 15 Year Expense Summary
  • 52.
    52 With the preliminaryexpenses established, estimates were made for the possible returns through salvaging operations, fire fighting, and other emergency related missions. The industry contact estimated that a gross income of $8 million can be received from a single large salvaging job. A more conservative estimate of $5 million per salvage job each year per tug was used. Based off of this estimate, the returns used for the preliminary economics of the tug fleet appear in Table 45. Per Year Over 15 Years Dutch Harbor $5 million $75 million Juneau $5 million $75 million Seattle $5 million $75 million Total $15 million $225 million Table 45 - Salvage Revenue Throughout the design, as machinery was selected and the missions to be performed were developed further, the economic analysis of the fleet was refined. The same estimates used for the preliminary twelve man crew and build costs were used for the additional iterations of the economic analysis. Using specific fuel consumptions, average fuel prices, and time at sea estimates, the operational costs were updated. The specific fuel consumptions used appear in Table 46, and the average fuel prices, collected by the Fisheries Economics Data Program, are shown in Table 47. 8 Cylinder 16 Cylinder SFC (lb/bhp-hr) 0.336 0.3275 Consumption Rate (lb/hr) 554.4 1195.4 Volume Consumption Rate (gal/day) 1874.03 4040.70 Table 46 - Specific Fuel Consumption #2 Marine Diesel Fuel Prices 2010 Average Alaskan Port Fuel Prices $2.91 2010 Average Washington Port Fuel Prices $2.65 Average of 2010 Alaskan and Washington Port Fuel Prices $2.78 Table 47 - Average Fuel Prices These data were combined with time at sea estimates. The time at sea estimates were developed by considering that the Dutch Harbor tug would not tow and would, therefore, spend less time at sea per year. While operating at sea, it was assumed that all four of a tug’s engines would be operating at 850 rpm. In addition, the average 2010 port fuel prices for #2 marine diesel fuel in Alaska and Washington were averaged for the Juneau and Seattle tugs. This was done because the tugs would be towing between the two states and might refuel in either Alaska or Washington. The fuel consumption summaries for each tug appear in Table 48, Table 49 and Table 50.
  • 53.
    53 Dutch Harbor Time AtSea (Days) 28 Fuel Consumed Per Year (Gallons) 331,225.01 Fuel Cost Per Year $963,864.79 15 Year Fuel Cost Total $14,457,971.86 Table 48 - Dutch Harbor Fuel Cost Seattle Time At Sea (Days) 287 Fuel Consumed Per Year (Gallons) 3,395,056.39 Fuel Cost Per Year $9,438,256.78 15 Year Fuel Cost Total $141,573,851.65 Table 49 - Seattle Fuel Cost Juneau Time At Sea (Days) 287 Fuel Consumed Per Year (Gallons) 3,395,056.39 Fuel Cost Per Year $9,438,256.78 15 Year Fuel Cost Total $141,573,851.65 Table 50 - Juneau Fuel Cost The refinement of the operational costs caused the total 15 year fleet cost to increase to $496,886,291. Using the same salvaging and firefighting return estimates as the previous economic iteration, it was calculated that the residual returns needed to be made from towing, in order to break even within 15 years, was $271,886,291. These figures are displayed in Table 51. 15 Year Expense and Return Totals Total 15 Year Fleet Expenses $496,886,291 Total 15 Year Salvaging Returns $225,000,000 Necessary 15 Year Towing Returns $271,886,291 Table 51 - Required Returns The time necessary to tow a barge from Seattle to Juneau was investigated by determining how quickly a barge could be towed and by determining how much time should be given to stay in port for fuel, water, and provisions. The time required for a tug to make a roundtrip was calculated by allowing one day for the vessel to prepare for the trip in Seattle, tow a barge at an average of 6 knots to Juneau, spend one day idle in Juneau for fuel, water, and provisions, and traverse back to Seattle at 16 knots. The total time required for this roundtrip is 9.4 days. The total amount of trips possible over 15 years between two tugs was then calculated, followed by the amount of money required to charge per tow to make approximately $272 million from towing – the amount necessary for the fleet to make to break even within 15 years. These figures are presented in Table 52.
  • 54.
    54 Towing Days Per Trip9.4 Trips Per Year 39 Trips Over 15 Years (2 Tugs) 1165 Required Charge Per Tow $233,379 Total Towing Gains $271,886,291 Table 52 - Towing Summary The required freight rates of a variety of barge sizes appear in Table 53. These rates are required, in order to break even within 15 years of operating the fleet, due to losses incurred from building, operating, and manning the tugs. RFR 4000 ton barge $58.34/ton RFR 6000 ton barge $38.90/ton RFR 8000 ton barge $29.17/ton RFR 10000 ton barge $23.34/ton RFR 12000 ton barge $19.45/ton RFR 14000 ton barge $16.67/ton RFR 16000 ton barge $14.59/ton Table 53 - Required Freight Rate
  • 55.
    55 15.0 – Recommendationsfor Future Work While all design decisions were well-informed and made with confidence, there are some areas of the design that warrant future investigation. These areas are discussed in the body of the report as they occur, and this section will detail recommendations for future work. One area of potential concern is the ease of deep tank production. Future design iterations will investigate alternate fuel tank arrangements that would allow for easier welding during construction. The seakeeping analysis of the vessel is another area that deserves future investigation. The data obtained from Seakeeper will need future validation by other methods, and special attention will be paid to why the heave RAOs are dominating pitch RAOs at 16 knots in sea state 6 at headings between head and beam seas. A seakeeping analysis with a towing barge attached will also be necessary. The propulsion system of the vessel could be improved in the future by performing more iterations of the propeller design to maximize, thrust, speed, and efficiency. Once completed, the system could be analyzed further and its capabilities in towing and bollard pull. It is in the opinion of Sea Tools that these further iterations will decrease the preliminary design margins and increase the towing ability of the vessel as well as the static bollard pull characteristics of the vessel. Future design iterations should also address the piping and electrical requirements for all areas of habitability. Adjustments to the arrangements may need to be made to minimize piping and electrical material in these areas. Also, more detailed estimations should be found for the returns to be made through salvaging, fire fighting, and other emergency missions. Lastly, pricing of machinery and outfitting should be considered for a more accurate build cost.
  • 56.
    56 16.0 – Conclusion Notonly does the Sea Tools tug design satisfy all of the MARAD/SNAME student design competition requirements but also has a wide range of towing and rescue capabilities, making it a versatile design. Sea Tools Engineering is confident that the design will satisfy the need for high powered salvage tugs near the Aleutian Islands and the Gulf of Alaska. Key features of the design include highly favorable seakeeping properties, fire fighting II capabilities, and an ice strengthened hull, all of which allow the vessel to perform commercial and rescue missions in a variety of arctic water conditions.
  • 57.
  • 60.
  • 63.
    59 Appendix C – General Arrangements  Contents: General Arrangements 1........................................................................................................C-1 General Arrangements 2 ........................................................................................................C-2 General Arrangements 3 ........................................................................................................C-3 General Arrangements 4 ........................................................................................................C-4
  • 68.
  • 70.
    61 Appendix E – Structural Drawings  Contents: Deckhouse Section Layout....................................................................................................E-1 Bulkhead Section Layout.......................................................................................................E-2 Midship Section Layout.........................................................................................................E-3
  • 74.
    62 Appendix F – Powering Specifications  Contents: EMD Brochure.......................................................................................................................F-1 8 CylinderFuel Consumption................................................................................................F-2 16 Cylinder Fuel Consumption..............................................................................................F-3 Caterpillar 3512C Genset.......................................................................................................F-4 Caterpillar C6.6 ACERT Emergency Generator ...................................................................F-5 One Line Diagram..................................................................................................................F-6
  • 75.
  • 77.
  • 78.
  • 79.
    Fuel Consumption Model: 8-710G7C-T2 Conditions:ISO 15550 & 3046-1 Standard Reference Operating Speed: Variable Air In Temp: 77o F (25o C) Load: Variable Barometer: 29.61 in Hg (100 kpa) Rated Speed: 900 RPM Fuel S. G.: 0.855 (7.1 lbs/gal) Idle Speed: 350 RPM Fuel LHV: 18360 btu/lb (42700 kJ/kg) ISO Continuous Power: 2000 BHP Airbox Temp: 120o F (49o C) maximum ISO Overload Power: 2200 BHP BSFC Tolerance: + 5% maximum Emissions: US EPA 40 CFR 94 Emissions Tier: 2 Application: Fixed Pitch Prop Propulsion EPA Duty Cycle Table: B-1 ISO Cycle: E3 Comments: Engine mounted pumps included. Horsepower / fuel consumption will vary with deviation from stated conditions. Data is provided in accordance with ISO 3046-1:2002E conditions and associated tolerances, and is intended only for purpose of comparison with competitive manufacturer engines. Electro-Motive Diesel, Inc. maintains ISO9001:CURRENT REVISION registration for its engine manufacturing and test facilities. Factory engine test data is recorded at observed site conditions in accordance with ISO9001/QMS9000 procedures. 0.330 0.340 0.350 0.360 0.370 0.380 0.390 0.400 0.410 0.420 0.430 0.440 0.450 0.460 0.470 0.480 0.490 0.500 0.510 0.520 0.530 300 400 500 600 700 800 900 Engine Speed (rpm) FuelConsumption(lb/bhp-hr) 100 300 500 700 900 1100 1300 1500 1700 1900 2100 EnginePower(bhp) Commercial_8G7C-T2_VS9_VL_B-1_E3.xls
  • 80.
  • 81.
  • 82.
    More available powerover a wider operating range High power density for continuous applications with A and B ratings at 1200, 1600, and 1800 rpm. More sophisticated electronic control system Provides improved engine monitoring, communication, and display capabilities. Results in easier integration with your vessel’s systems. More flexible cooling system options Separate Circuit Cooling for optimum cooling capabilities. Keel cooled options are designed for high inlet water temperatures, minimizing cooler size and installation costs. Durable and reliable The 3500 engine platform is a simple and proven design providing industry-leading reliability and durability. True technical sophistication Delivers ease of maintenance and assembly/disassembly without the need for expensive processes or tools. Meets EPA Tier 2 Marine, EU Stage IIIA and IMO emissions regulations the sophistication of simplicity New Diesel Electric Propulsion ratings available 2250 ekW 3516-HD @ 60Hz 2000 ekW 3516-HD @ 60Hz
  • 83.
    More power withlower emissions for your applications Unrestricted Continuous A ratings of up to 2450 bhp (1825 bkW) providing 4900 bhp (3650 bkW) for applications with twin engines. Heavy Duty B ratings of up to 3005 bhp (2240 bkW) providing 6010 bhp (4480 bkW) for applications with twin engines. Maximum Continuous C ratings of up to 3150 bhp (2350 bkW) providing 6300 bhp (4700 bkW) for applications with twin engines. Intermittent Duty D ratings of up to 3385 bhp (2525 bkW) providing 6770 bhp (5050 bkW) for applications with twin engines. Outstanding fuel efficiency and lube oil consumption Standard or reverse rotation options available Long maintenance intervals Worldwide parts and service availability When Caterpillar says it’s a continuous rating, that means you can haul a drill rig from Seattle. to Singapore at full throttle and full power. 3500C
  • 84.
    ADEM™ A3 Electronic ControlUnit (ECU) • One of the most advanced electronic control systems available for Cat® marine engines • Faster, with more memory capability • Compatible with several optional display systems • Does not require fuel cooling • Enhanced input/output capacity • Rugged marine design and IP66 connectors • Award-winning circuitry design Engine-Mounted Instrument Panel • Integrated MPD display for quick response and effective local control • Optional local speed control • Optional individual cylinder exhaust temperature scanner with data link for remote mounting • Local E-stop, warning indicators, horn • Plug Run connections allow mounting on port or starboard side of engine Marine Power Display (MPD) • Graphic display of engine operating parameters in analog, digital, or bar- chart format • Rugged, weatherproof construction • Fully user-configured display screens • Marine classification society-type approved • Diagnostic messages and alarms • Three-tier prioritization of events and diagnostics • Multilingual capability • Night-mode LCD display • ISO symbols for parameter identification Caterpillar® ACERT® Technology uses advanced computer modeling to optimize the combustion process within the piston crater. Caterpillar® ACERT® Technology • 3500C is the first marine large engine model to incorporate the building blocks of ACERT® Technology. • ACERT Technology is the key enabler that allows us to meet current emissions regulations. 3500C Engine Features Improved performance and increased functionality
  • 85.
    Modular Pulse Exhaust Manifold •Modular pulse-type exhaust system designed to conserve exhaust pulse energy for maximum thermal efficiency at the turbochargers • Highly efficient inlet and exhaust air flow High Capacity, High Efficiency Turbos • Standard marine twin turbocharger configuration • More reserve power for superior part load performance at continuous ratings • Turbos tuned for high power and excellent fuel consumption Rigid Wiring Harness • Highly durable: long service life • Flexibility for custom wire additions • Lined with fire retardant foam • Marine classification society approved Wastegate for 16-cylinder High Power Ratings • Provides excellent acceleration at low and medium speeds • Optimizes fuel consumption near cruise Power Distribution Box • Isolates “control power” from alternator/starter/jacket water heater power • Mountable off engine • Allows end user to choose up to three independent power sources • Has built-in circuit breakers and switches for easy troubleshooting Marine Classification Society Approval ABS / DNV / LR / GL / CCS / BV
  • 86.
    Electronic Features • 3Dhistogram data collection • Load feedback signal for CPP operation • Electronic torque limit for re-power and torque limited application equipment • Programmable droop • Adjustable governor gains • Condition-based maintenance • Monitoring features • Serial data bus communications • Primary and secondary A3 controllers on all propulsion engines Cat® Pilot House Panels • Cat pilot house panels with integrated Marine Power Display (MPD) • Easily connected to the engine customer connector • Ability to have full function helm panels and reduced function wing panels Unit Injectors • Caterpillar designed and built system • “Drop-in” installation • No threaded fuel connections • High pressure fuel contained inside the injector • Does not require double wall lines or leak collection devices Power Take-off • Power take-off adapters available • Auxiliary drives for power take-offs for hydraulic pumps and compressors Engine-Mounted Gear-Driven Pumps • Standard engine-mounted aftercooler pump • Standard engine-mounted jacket water pump • Optional engine-mounted, gear-driven, super high capacity sea water pump Engine Mounting System • Rigid mounting points • Optional resilient mounting In-Hull Overhaul • Easily removable side covers • Accessible bearing caps 3500C Engine Features
  • 87.
    3500C Specifications Bore —mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170.0 (6.69) Stroke — mm (in) . . . . . . . . . . . . . . . . . . . . . . 190, 215 (7.48, 8.46) Rated Speed . . . . . . . . . . . . . . . . . . . . . . . . . 1200, 1600, 1800 rpm Aspiration . . . . . . . . . . . . . . . . . Twin Turbocharged-Aftercooled Governor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic Cooling System . . . . . . . . . . . . . Heat Exchanger or Keel Cooled Rotation (from flywheel end) . . Clockwise or Counterclockwise 3516C Specifications Displacement — L (cu in) . . . . . . . . . . . . . . . . 69-78 (4,210-4,766) Flywheel Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 00 Refill Capacity — L (gal) Cooling System (engine only) . . . . . . . . . . . . . . . . . 233.2 (61.6) Lube Oil System A-C Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 (213.0) D Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 (53) Oil Change Interval (deep sump) . . . . . . . . . . . . . . . 1000 hours 3512C Specifications Displacement — L (cu in) . . . . . . . . . . . . . 51.8-58.6 (3,161-3,576) Flywheel Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 00 Refill Capacity — L (gal) Cooling System (engine only) . . . . . . . . . . . . . . . . 156.8 (41.4) Lube Oil System A-C Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 (165.0) D Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 (40) Oil Change Interval (deep sump) . . . . . . . . . . . . . . . 1000 hours 3508C Specifications Displacement — L (cu in) . . . . . . . . . . . . . . . . . . . . . . 34.5 (2,107) Flywheel Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAE No. 0 Refill Capacity — L (gal) Cooling System (engine only) . . . . . . . . . . . . . . . . . . 103 (27.1) Lube Oil System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 (117.0) Oil Change Interval (deep sump) . . . . . . . . . . . . . . . . 1000 hours 3516C Length — mm (in) . . . . . . . . . . . . . . . 3083.7-3185.5 (121.5-125.5) Width — mm (in) . . . . . . . . . . . . . . . . . . 2036.9-2142.1 (80.2-84.4) Height — mm (in) . . . . . . . . . . . . . . . . . . 1967.0-2149.8 (77.5-85.0) 3512C Length — mm (in) . . . . . . . . . . . . . . . 2564.6-2645.4 (101.0-104.2) Width — mm (in) . . . . . . . . . . . . . . . . . . 2036.9-2142.1 (80.3-84.4) Height — mm (in) . . . . . . . . . . . . . . . . . . 1947.4-2134.1 (76.7-84.1) 3508C Length — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2117.3 (83.4) Width — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1703 (67.1) Height — mm (in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1828.9 (72.1) Technical Data 3500C Dimensions MARINE PROPULSION ratings Model Rating rpm Power (bhp) POWER (kW 3508C A/B/C 1200 775/850/900 578/634/671 3508C A/B/C 1600 1000/1050/1100 746/783/820 3512C-HD A/B/C 1600 1810/1911/2012 1350/1425/1500 3512C A/B/C 1800 1500/1575/1650 1120/1175/1230 3512C-HD B/C/D 1800 2250/2365/2550 1678/1765/1901 3516C A/B/C 1600 2000/2100/2200 1491/1566/1640 3516C-HD A/B/C 1600 2450/2575/2682 1825/1920/2000 3516C-HD B/C/D 1800 3005/3250/3385 2240/2350/2525 diesel electric propulsion ratings Model Rating rpm Power (ekW) 3516C-HD DEP 1800 2000/2250
  • 88.
    LEDM6478-03 ©2008 Caterpillar All rightsreserved. Printed in U.S.A. CAT, CATERPILLAR, their respective logos, Acert, ADEM, “Caterpillar Yellow” and the power edge trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission. Images may not reflect actual engine. For most current information, please refer to TMI web. Headquarters Caterpillar Marine Power Systems Neumühlen 9 22763 Hamburg/Germany Phone: +49 40 2380-3000 Telefax: +49 40 2380-3535 Europe, Africa, Middle East Caterpillar Marine Power Systems Neumühlen 9 22763 Hamburg/Germany Phone: +49 40 2380-3000 Telefax: +49 40 2380-3535 Americas Caterpillar Marine Power Systems 3450 Executive Way Miramar Park of Commerce Miramar, FL. 33025/USA Phone: +1 954 447 71 00 Telefax: +1 954 447 71 15 Asia-Pacific Caterpillar Marine Trading (Shanghai) Co., Ltd. 25/F, Caterpillar Marine Center 1319, Yan’an West Road 200050 Shanghai, P.R. China Phone: +86 21 62262200 Telefax: +86 21 62264500 Caterpillar Marine Asia Pacific Pte Ltd 14 Tractor Road Singapore 627973/ Singapore Phone: +65 68287-600 Telefax: +65 68287-624 Caterpillar Marine Power Systems For more information please visit http://marine.cat.com
  • 89.
  • 90.
    MCS Approved Packages TheC6.6 ACERT generator set is available direct from our factory in Marine Classification Society (MCS) approved packages — with EPA Tier 2 emissions compliance. These packages meet MCS requirements for manned and unmanned engine rooms, including emergency applications, and come with certification documentation. The single-source consistency and standardized quality of the MCS program provides streamlined procurement, installation, and servicing, with: • Factory completion of torsional vibration calculations and installation of alarm, shutdown, and all mechanical additions • Complete factory testing • Controlled packaging environment • Easier shipyard installation with no re-packaging required • Simplified servicing with established component and packaging standards Standard Equipment • Common rail fuel system • Turbocharger • Mounted air cleaner • Fuel (primary and secondary) and oil filters • Cold start aid — glow plugs • 12 24 volt starter motor and battery charging alternator • EMCP3 control panel with remote monitoring capability • Charge air cooler • Primary fuel filter with water separator • Duplex oil filter MCS Control Panel c6.6 acert generator sets Optional Attachments • On-board spars and tool kit • Instrumentation • Duplex primary or secondary fuel filter • Governor droop kit (enables paralleling with appropriate customer-supplied switch gear) • Remote expansion tank kit • Double wall fuel lines • Space heater kit • Air starter • Jacket water heater
  • 91.
    Cat® power. No matterhow far out you need to go, or how rough it gets, power solutions from Caterpillar can drive your vessel — and your work — like no other brand. When you take Cat engine expertise out to sea, you’ll never be alone. You’ll have the most dependable power available, and the world’s largest, most responsive support network with you every day, everywhere. your most valuable cargo Saves space, saves stress The C6.6 ACERT® generator set is the latest in a line of innovative marine power products from Caterpillar that pack big performance and efficiency advantages into amazingly compact units. The C6.6 ACERT delivers up to 170 ekW, yet you’ll almost forget it’s even on board. From easy installation; through clean, quiet, smooth operation; to long service intervals… the C6.6 ACERT does its job so you can focus on yours.
  • 92.
    Delivers more... Power The electroniccontrol of the 6.6 liter engine with ACERT Technology simultaneously optimizes fuel economy and performance while meeting the most stringent emissions standards. The electronic governor ensures power quality that’s suitable for sophisticated equipment, such as computers and other electronics. Economy Competitive pricing, outstanding fuel efficiency, extended service intervals, and ultra long life, all contribute to the overall low owning and operating costs of the C6.6 ACERT. Environmental responsibility The C6.6 ACERT is IMO emission-compliant; both 60 Hz and 50 Hz meet EPA Tier II regulations. Peace of mind The Caterpillar 12-month warranty and available Extended Service Coverage keep the C6.6 ACERT — and your operation — on a smooth course. Flexibility C6.6 ACERT packages offer six ratings. Three standard cooling options are also available: Sea water after cooling, keel cooling, and radiator cooling. In addition, the C6.6 ACERT is compatible with a variety of fuels, including kerosene, jet aviation fuel, and 20 percent bio-fuel. Safety Automatic safety shutdowns include low oil pressure, high water temperature, and overspeed. C6.6 ACERT® MARINE generator set ratings cooling cycles kVA ekW @ .8 pf HEX 60 Hz 156 125 HEX 60 Hz 187 150 HEX 60 Hz 212 170 HEX 50 Hz 125 100 HEX 50 Hz 156 125 HEX 50 Hz 178 143 Radiator 60 Hz 150 120 Radiator 60 Hz 175 140 Radiator 60 Hz 200 160 Radiator 50 Hz 125 100 Radiator 50 Hz 150 120 Radiator 50 Hz 169 135
  • 93.
    GEAR-DRIVEN SEA WATERAND JACKET WATER PUMPS improve durability (fail-safe operation) 500-HOUR SERVICE INTERVAL reduces service costs HIGH BLOCK LOADING CAPABILITY 300% SHORT CIRCUIT CURRENT needed to start large loads like air conditioning units CRANKCASE VENTILATION SYSTEM eliminates crankcase fumes ISO9001:2000 manufacturing facility Environmentally friendly Low emission, noise, and vibration levels Heavy-duty air cleaner for commercial applications one source supply for propulsion and generator set engines features benefits
  • 94.
    Specifications I-6, 4-Stroke-Cycle-Diesel Displacement —L (cu in).................................................. 6.6 (403) Bore — mm (in)................................................................. 105 (4.13) Stroke — mm (in)................................................................ 127 (5.0) Refill Capacity — L (U.S. gal) Cooling system — heat exchanger cooled...................30 (7.9) — radiator cooled................................ 36 (9.5) Lube oil system.............................................................17.5 (4.62) Oil Change Interval.......................................................... 500 hours Dimensions (HEX Only) Open Minimum Length — mm (in)....................................................... 1833 (72.2) Width (with mounting brackets) — mm (in)............. 956 (37.7) Height* — mm (in)...................................................... 1315 (51.8) Open Maximum Length — mm (in)....................................................... 2001 (78.8) Width (with mounting brackets) — mm (in)............. 956 (37.7) Height* — mm (in)...................................................... 1315 (51.8) *Caterpillar height dimensions do not include remote-mounted air filter or electronic control panel. Dimensions Front View Right Side View LEDM0005-00 ©2008 Caterpillar All rights reserved. Printed in U.S.A. CAT, CATERPILLAR, their respective logos, ACERT, “Caterpillar Yellow” and the power edge trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission. Learn more about bringing the Cat C6.6 ACERT generator set aboard. Call your Cat dealer or visit marine.cat.com today. This is a preliminary document, not to be used for installation design.
  • 96.
    63 Appendix G – Machinery Specifications  Contents: Tugger Winch ........................................................................................................................G-1 TowingWinch .......................................................................................................................G-2 Fire Pumps .............................................................................................................................G-3 Crane......................................................................................................................................G-4 Oil Skimmers .........................................................................................................................G-5 Towable Oil Bladders ............................................................................................................G-6 Typical Towed Barge.............................................................................................................G-7
  • 97.
    DEPC-52Electric Hawser Winch Max.Drum Capacity: Over 770 feet of 9.5/10.0 circumference synthetic line (9 layers). Rated Line-Pull: 47,300 lbs (near stall); 31,500 lbs rated line-pull at 67 feet per minute (barrel layer). Electric Motor Drive: 75HP marine-duty electric motor with AC-variable frequency drive. Winch Braking: Total brake capacity of over 518,000 lbs at the second layer. Air-set/release drum brake with joystick control, freewheel mode, and override lever. Winch Control: Wheelhouse controls with on-deck emergency stop and freewheel pushbuttons. Power Requirements: 460VAC 3 Phase, 60Hz. Other source voltage options available. ApproximateWeight: 23,000 lbs. Winch Dimensions: 88.8 H x 83.7 W x 110.5 D. The DEPC-52 is a single-drum electric hawser winch featuring automatic tension-selectable render-recovermode,highbrakingcapacities,andfastlinespeedsforescortandship-assist vessels.All electrical components comply withABS, USCG, and IEEE-45 standards. WINCH SYSTEM SPECIFICATIONS Markey Machinery Company, Inc. 4634 East Marginal Way South, Suite C-140, Seattle, WA 98134 Phone: (206) 622-4697 Toll Free (800) 637-3430 Fax: (206) 623-9839 Email: info@markeymachinery.comRepresented by: Griffin Associates - 355 GrowAvenue NW, Bainbridge Island, WA 98110 (USA) Phone:206-780-0509 Email:bagriffin@griffinassociates.com JH Menge Company, Inc - 5825 Plauche Street, New Orleans, LA 70123 (USA) Phone:504-733-4871 Email:fclatour@jhmenge.com
  • 98.
    Markey's rugged hawserwinches are built to the highest quality workboat standards using materials and processes providing maximum life and minimum maintenance in marine and outdoor applications. Markey DEPC-52 Winch Innovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend on Explosion-proof electric motor and intrinsically-safe controls Digital/Analog Line Tension Display System Multiple-station winch controls Hydraulic power systems and winch-drives available Models available with or without fairleader, and with or without warping head Proportional brake control available A variety of source power configurations can be accommodated Electrical hooks in system box for ship's UPS Performance ratings can be tailored to suit specific applications Hawser Winch System Options
  • 99.
    TDSD-44Diesel Towing Winch Max.Drum Capacity: Port and Starboard Drums, 3,340 feet of 2.75 wire (each). Rated Line-Pull: Maximum 460,000 lbs rated pull (stall) at barrel layer, in first gear. Diesel Power Unit: Performance based on GM8V-92 Diesel and CRT-5633 Transmission. Winch Brakes: Air-cylinder set and release (maximum 790,000 lbs), with handwheel for lock-down. Winch Controls: Pneumatic / Electric. Winch Dimensions: 108.5 H x 259.5 W x 227.0 D. Approximate Weight: 137,000 lbs. The TDSD-44 is a reliable diesel-driven double-drum towing winch with high line-pull and brakingcapacity,designedspecificallyforoffshoretowingoranchor-handlingapplications. Ruggedly built to provide decades of high performance with low maintenance requirements, the TDSD-44 is a proven industry workhorse suitable for even the most demanding jobs. WINCH SYSTEM SPECIFICATIONS Markey Machinery Company, Inc. 4634 East Marginal Way South, Suite C-140, Seattle, WA 98134 Phone: (206) 622-4697 Toll Free (800) 637-3430 Fax: (206) 623-9839 Email: info@markeymachinery.comRepresented by: Griffin Associates - 355 GrowAvenue NW, Bainbridge Island, WA 98110 (USA) Phone:206-780-0509 Email:bagriffin@griffinassociates.com JH Menge Company, Inc - 5825 Plauche Street, New Orleans, LA 70123 (USA) Phone:504-733-4871 Email:fclatour@jhmenge.com
  • 100.
    Markey's rugged towingwinches are built to the highest quality workboat standards using materials and processes providing maximum life and minimum maintenance in marine and outdoor applications. Markey TDSD-44 Towing Winch Innovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend onInnovation you can depend on Single Double Drum configurations available Dual fairleads available Winch can be designed for chain-drive from Diesel Power Unit located below-deck or in the fidley Winch can be designed for shaft-drive from Diesel Power Unit located in the fidley Drum sizes can be changed to accomodate various rope capacity requirements Auxiliary drum available to replace warping head Diesel, hydraulic electric drives available Performance ratings can be tailored to suit specific applications 2nd and 3rd-station winch controls available Marine-duty epoxy paint system Towing Winch System Options
  • 101.
    FiFi Class ComplianceFiFi 2 FiFi 2 FiFi 1 FiFi 1/2 (No Int'l Class) FiFi 1/2 (No Int'l Class) FiFi 0 (No Int'l Class) FiFi 0 (No Int'l Class) Water Volume Delivery 7,200 m3 /h 7,200 m3 /h 2,400 m3 /h Monitor Quantity Three to Four Three to Four Two Minimum Water Throw 150 Meters (500 Feet) 150 Meters (500 Feet) 120 Meters (400 Feet) Water Height 70 Meters (230 Feet) 70 Meters (230 Feet) 45 Meters (148 Feet) Monitor Controls from Wheelhouse Remote, Electronic Remote, Electronic Remote, Electronic MTT FIRE PUMP MODELS MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT * Two (2) Units Equal FiFi 2 Four (4) Units Equal FiFi 2 One (1) Unit Equals FiFi 1 One (1) Unit Equals 1/2 FiFi One (1) Unit Equals 1/2 FiFi One (1) Unit Equals FiFi 0 One (1) Unit Equals FiFi 0 FiFi Class Compliance FiFi 2 FiFi 2 FiFi 1 FiFi 1/2 FiFi 1/2 FiFi 0 FiFi 0 Water Volume Total Delivery Required to Reach FiFi Class 7,200 m 3 /h 7,200 m 3 /h 2,400 m 3 /h 1,200 m 3 /h 1,200 m 3 /h 1,000 m 3 /h ~ 385 m 3 /h Monitor Quantity Minimum Required to Reach FiFi Class Four Four Two One One One or Two Two to Four Water Throw 150 Meters (500 Feet) 150 Meters (500 Feet) 120 Meters (400 Feet) 120 Meters (400 Feet) 120 Meters (400 Feet) 117 Meters (385 Feet) 85 Meters (255 Feet) Water Height 70 Meters (230 Feet) 70 Meters (230 Feet) 45 Meters (148 Feet) 45 Meters (148 Feet) 45 Meters (148 Feet) 45 Meters (148 Feet) 35 Meters (105 Feet) Monitor Controls from Wheelhouse Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic Remote, Electronic MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Gas Turbine 2 ea. Lycoming T-53's 1 ea. Lycoming T-53 1 ea. Lycoming T-53 1 ea. Lycoming T-53 Walter 601 Walter 601 RR Allison C-20B Horsepower at ISO 1,400 HP ea. 1,400 HP 1,400 HP 1.400 HP 600 HP 600 HP 420 HP Engine to Pump Coupling - Falk a a a a a a a Fuels - Diesel, Kerosene Jet a a a a a a a Air Cooled w/On-Board Oil Cooler a a a a a a a Mechanical Fuel Pump a a a a a a a 12/24V Electrical w/Charger a a a a a a a Oil, Fuel and Air Filtration a a a a a a a Full Analog Gauge Package a a a a a a a MTT Fire Pump Model Listings and Ratings MTT Units Required to Meet FiFi Class Compliance Standard International Classifications for FiFi Fire Pump Units Standard MTT Classifications for Fire Pump Units (FiFI Compliance) Engine Configuration
  • 102.
    High Temp Low Oil Pres. Alarm a a a a a a a Over-Speed Governor Control a a a a a a a MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Split Case Centrifugal with Cast Iron Case Aurora Pump (or Equivalent) Aurora Pump (or Equivalent) Aurora Pump (or Equivalent) Aurora Pump (or Equivalent) Aurora Pump (or Equivalent) Aurora Pump (or Equivalent) Flowserve (or Equivalent) Pump Quantity Required Per Unit Two (2) One (1) One (1) One (1) One (1) One (1) One (1) Pump Flow and Pressure 3,634 m3 /h @ 150 - 180 PSI 1,800 m3 /h @ 150 - 180 PSI 2,400 m3 /h @ 150 - 180 PSI 1.200 m3 /h @ 150 - 180 PSI 1.200 m3 /h @ 150 - 180 PSI 1,000 m3 /h @ 150 - 180 PSI ~ 385 m3 /h @ 150 - 180 PSI Suction Discharge 16 Suction, 10 Discharge 16 Suction, 10 Discharge 16 Suction, 10 Discharge 16 Suction, 10 Discharge 14 Suction, 10 Discharge 10 Suction, 8 Discharge 6 Suction, Two 2.5 or Four 1.5 Discharge Suction Manifold One (1) ea., 16 per Pump Six (6) ea., Six Inch Flex Lines Six (6) ea., Six Inch Flex Lines Five (5) ea., Six Inch Flex Lines Five (5) ea., Six Inch Flex Lines Three (3) ea., Six Inch Flex Lines One (1) ea., Six Inch Flex Line Suction Configuration Vertical, Above or Below Deck Horizontal, Deck Mounted Horizontal, Deck Mounted Horizontal, Deck Mounted Horizontal, Deck Mounted Horizontal, Deck Mounted Horizontal, Deck Mounted Foot Valves - As Required a a a a a Vacuum Pump with Sea Strainers Vacuum Pump with Sea Strainers Maximum Vertical Lift - Suction Entry to Pump 4.5 Meters (15 Feet) 4.5 Meters (15 Feet) 4.5 Meters (15 Feet) 4.5 Meters (15 Feet) 4.5 Meters (15 Feet) 4.5 Meters (15 Feet) N/A (Suction Lines 5' from Waterline) Speed 1,800 RPM, Stainless Shaft 1,800 RPM, Stainless Shaft 1,800 RPM, Stainless Shaft 1,800 RPM, Stainless Shaft 1,800 RPM, Stainless Shaft 1,800 RPM, Stainless Shaft 3,600 RPM, Stainless Shaft MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Above Deck or Below Deck Both Both Both Both Above Above Under Above Deck (Combo) Skid Construction Heavy Duty Steel Heavy Duty Steel Heavy Duty Steel Heavy Duty Steel Aluminum Aluminum Aluminum Engine Noise Attenuation a a a a a a a Blast Proof Lighting and Circuitry a a a a a a a Sealed Access Door a a a a a a a Anti-Slip Surfaces a a a a N/A N/A N/A Recessed Roof Ladder and Safety Railings a a a a N/A N/A N/A Air Inlet with Spray Deflectors a a a a a a a Pump is Mounted to Engine Output Shaft w/Flex Coupling / Drive Adapter a a a a a a a Lifting Hooks at the Four Upper Corners a a a a a a N/A Milspec 12V Gel Batteries are Rack Mount w/Perko Switch a a a a a a a Watertight Breaker w/Ext. Resets a a a a a a a Insulated Stainless Steel Exhaust w/Roof Discharge 2 Insulated Ceramic Blanket a a a a a a N/A Manual Roof Cover a a a a a a Not Applicable Skid Configuration Pump Configuration
  • 103.
    Requires 480V, 3Phase Power a a a a a a DC Power Yellow Interior and Exterior Finish a a a a a a Custom Finish MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Fuel Tank (per Specific Application) Per Specific Application Per Specific Application Per Specific Application Per Specific Application Per Specific Application Per Specific Application Per Specific Application Mechanical Fuel Pump for Turbine a a a a a a a Electric Fuel Priming Pump a a a a a a a 1 Fuel Supply Line a a a a a a a Fuel / Water Separation and Filtration a a a a a a a Access Pipes for Supply Lines Located in Side of Container a a a a a a a MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Water Delivery 3,634 m3 /h at 150 Meters (500 Ft) 1,800 m3 /h at 150 Meters (500 Ft) 2,400 m3 /h at 120 Meters (400 Ft) 1,200 m3 /h at 120 Meters (400 Ft) 1,200 m3 /h at 120 Meters (400 Ft) 1,000 m3 /h at 117 Meters (385 Feet) ~ 385 m3 /h at 85 Meters (255 Feet) Control Cable for Engine / Monitor for Remote Boxes 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 100 Feet of Cable 25 Feet of Cable Monitor QTY Required Per Unit Two (2) One (1) Two (2) One (1) One (1) One (1) Two (2) to Four (4) Nozzles Monitor Type Stang 8 Electric Super Low Pro Stang 8 Electric Super Low Pro Stang 8 Electric Super Low Pro Stang 6 Electric Super Low Pro Stang 6 Electric Super Low Pro Stang 6 Electric Super Low Pro Stang Low Pro Foam Capabilities a a a a a a a MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT MTT Test Run Prior to Shipping a a a a a a a MTT Provides a 2 Valve Inlet to Allow Sea Water to Prime Pump a a a a Per Installation N/A N/A MTT Provides ABS Statement of Fact a a a a a a a MTT Provides Installation Services on a Time and Materials Basis a a a a a a MTT Installs at Factory Customer Supplies Mounting of Unit to Vessel a a a a a a MTT Installs at Factory Customer Supplies 480V, 3 Phase Power to Unit a a a a a a MTT Provides DC Power FOB MTT Facility - Franklin, LA a a a a a a a Installation and Shipping Monitors Fuel System
  • 104.
    Approximate Dimensions MTT FP- 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Length 2.54 Meters (8 Feet, 4 Inches) 4.12 Meters (13 Feet, 6 Inches) 4.12 Meters (13.6 Feet) 4.12 Meters (13 Feet, 6 Inches) 3.38 Meters (11 Feet, 1 Inches) 2.9 Meters (9 Feet, 6 Inches) 5.4 Meters (18 Feet) Width 2.90 Meters (9 Feet, 6 Inches) 1.83 Meters (6 Feet) 1.83 Meters (6 Feet) 1.83 Meters (6 Feet) 1.17 Meters (3 Feet, 10 Inches) 1.22 Meters (4 Feet) 2.44 Meters (8 Feet) Height 2.2 Meters (7 Feet, 3 Inches) 3.66 Meters (12 Feet) 3 Meters (10 Feet) 3.0 Meters (10 Feet) 2.16 Meters (7 Feet, 1 Inch) 2.13 Meters (7 Feet) 3.05 Meters (10 Feet) Weight Dry 6,803 Kilos (15,000 lbs) 5,743 Kilos (12,660 lbs) 6,804 Kilos (15,000 lbs.) 5,216 Kilos (11,500 lbs.) 1,878 Kilos (4,140 lbs.) 2,322 Kilos (5,120 lbs.) 6,82 Kilos (1,500 lbs.) Payment and Availability MTT FP - 16000 (16,000 GPM) FiFi 2 MTT FP - 8000 (8,000 GPM) FiFi 2 MTT FP - 10600 (10,600 GPM) FiFi 1 MTT FP - 5285 (5,285 GPM) FiFi 1/2 MTT PFP - 5285 (5,285 GPM) FiFi 1/2 PORTABLE MTT FP - 4400 (4,400 GPM) FiFi 0 PORTABLE MTT ABFP - 1700 (1,700 GPM) FiFi 0 AIRBOAT Price Per Unit $ USD $ USD $ USD $ USD $ USD $ USD $ USD Units Req'd to Reach FiFi Class Two (2) Units for FiFi 2 Four (4) Units for FiFi 2 One (1) Unit for FiFi 1 One (1) Unit for 1/2 FiFi One (1) Unit for 1/2 FiFi One (1) Unit for 0 FiFi One (1) Unit for 0 FiFi Total Price $ USD $ USD Terms of Payment 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped 50% at Order, 50% When Shipped Production Lead Time ARO 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks 12 - 16 Weeks MTT Substitution of Components Allowed Prior to Order Acceptance a a a a a a a Configuration Changes Note: FiFi 2 Compliance Requirement if for DNV Regulations: (1) Monitor Qty: Two. (2) Water Throw: 180 Meters (590 ft). (3) Water Height: 110 Meters (360 ft). * New Generation Airboat under construction. All specifications and performance ratings are estimated at the current time. The Above are MTT's Standard Configurations and are subject to change at any time. Any customer additions or deletions to the Specification will require MTT engineering approval and a Price Adjustment.
  • 105.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] Elevating Boats, LLC. 201 Dean Court, Houma LA --- 900 St. Bernard Pkwy, Braithwaite, LA Servicing the oil field for over 50 years. Manufacturer of: Liftboats w Cranes w Gearboxes w Winches w Hydraulic Cylinders w Components   Home Liftboats Cranes Cranes Service Construction Components Jobs FAQ Contact Us Model TC60-43-73 EBI Telescopic Boom Cranes   STANDARD EQUIPMENT:  EBI CRANES ARE MANUFACTURED IN ACCORDANCE WITH API-2C SPECIFICATIONS. EBI CRANES MEET ABS, USCG AND OSHA REQUIREMENTS. PLANETARY SWING MECHANISM WITH ADJUSTABLE MOUNT, HIGH TORQUE MOTOR AND AUTOMATIC SPRING APPLIED BRAKES. DOUBLE HYDRAULIC SWIVEL FOR CONTINUOUS ROTATION. OPTIONAL EQUIPMENT: EBI CRANE CONTROL LOCATIONS: - PEDESTAL MOUNTED WALK-AROUND - REMOTELY LOCATED - VARIOUS PLATFORM CONFIGURATIONS - CAB MOUNTED JOY STICK TYPE SOLAR/BATTERY POWERED BOOM BEACONS. BOOM LIGHTING. COMPLETE HYDRAULIC SAFETY SYSTEM DETECTING THE MOMENT INDUCED BY LOAD ON THE CRANE TO
  • 106.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] INDUCTION HARDENED CHROME PLATED CYLINDER RODS. 18 I.D. MANWAY WITH BOLTED COVER. THREE COLOR, SAFE LOAD INDICATOR GAUGE. RACK AND PINION TELESCOPING SYSTEM. THERE ARE NO INTERNAL BOOM CYLINDERS. LOAD LINE WINCH: 2 SPEED MOTOR. THREE COAT MARINE PAINT SYSTEM. ANTI-FRICTION BEARINGS IN THE SHEAVES. BRONZE BUSHINGS ON ALL PIVOTING POINTS. LOAD TEST AT TWICE API DYNAMIC LOAD BEFORE SHIPPING. HELP PREVENT OVERLOAD CONDITION. POWER UNITS CAN BE CRANE MOUNTED OR REMOTELY LOCATED. POWER UNITS: ELECTRIC MOTOR, AIR MOTOR OR DIESEL ENGINE (DETROIT DIESEL, CUMMINS, CATERPILLAR, OR DEUTZ AIR-COOLED, ETC.) DIESEL ENGINE STARTER SYSTEMS:  ELECTRIC, AIR OR HYDRAULIC. AIR/HYDRAULIC OIL HEAT EXCHANGER. 17-4PH STAINLESS STEEL, HEAT TREATED CHROME PLATED CYLINDER RODS. 440C STAINLESS STEEL, HEAT TREATED PINS. FAST LINE WINCH DESIGNED FOR PERSONNEL HANDLING. WINCH CAPACITY IS 5000 LB. LINE PULL (1000 LB. FOR PERSONNEL). ANTI-TWO BLOCK SYSTEM. EMERGENCY LOAD LOWERING SYSTEM.   MODEL TC60-43-73  43 FT. RETRACTED API LOAD CHART (U.S. CUSTOMARY UNITS) REACH (FT.) BOOM ANGLE (DEG.) DYNAMIC LOAD (LBS.) STATIC LOAD (LBS.) 10 76 76300 78700 15 69 47950 72575 20 62 34300 52100 25 54 26400 40250 30 45 21200 32450 35 35 17850 27425 40 21 15100 23300 43 1 13800 21350 API PEDESTAL REACTIONS      MAXIMUM OTM = 2,743,707 FT. LBS. CORRESPONDING AXIAL FORCE = 94,164 LBS. MAXIMUM AXIAL FORCE = 202,437 LBS. CORRESPONDING OTM = 1,870,871 FT. LBS. BASIC CRANE WEIGHT = 37,500 LBS.
  • 107.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] (REACTIONS @ 3 X DYNAMIC RATED LOAD) (OTM = OVERTURNING MOMENT) MODEL TC60-43-73   53 FT. EXTENDED API LOAD CHART (U.S. CUSTOMARY UNITS) REACH (FT.) BOOM ANGLE (DEG.) DYNAMIC LOAD (LBS.) STATIC LOAD (LBS.) 10 79 55500 78500 15 73 45500 69000 20 68 33500 51000 25 62 26300 40200 30 56 21000 32300 35 49 17500 27000 40 42 15000 23300 45 32 12800 19900 50 20 11000 17300 53 1 10300 16200   MODEL TC60-43-73   65 FT. EXTENDED API LOAD CHART (U.S. CUSTOMARY UNITS) REACH (FT.) BOOM ANGLE (DEG.) DYNAMIC LOAD (LBS.) STATIC LOAD (LBS.) 10 81 42000 63800 15 76 33000 50300 20 71 27000 41300 25 67 23500 36000 30 62 20500 31500 35 56 17300 26700 40 51 14800 22900 45 45 12800 19900 50 38 11000 17300 55 30 9800 15400 60 18 8800 13900 65 1 7800 12400   MODEL TC60-43-73   73 FT. EXTENDED API LOAD CHART (U.S. CUSTOMARY UNITS) REACH (FT.) BOOM ANGLE DYNAMIC LOAD STATIC LOAD
  • 108.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] (DEG.) (LBS.) (LBS.) 10 82 39000 59300 15 78 28500 43500 20 74 23500 36000 25 70 19900 30600 30 66 17300 26700 35 61 14800 22900 40 57 13300 20700 45 52 11800 18400 50 47 10700 16700 55 41 9500 15000 60 35 8800 13900 65 27 8000 12800 70 17 7000 11300 73 1 6800 10900   IN ACCORDANCE WITH API-2C, VALUES SHOWN ARE ACTUAL HOOK LOADS (WEIGHT OF BLOCK AND HOOK EXCLUDED). LOAD LINE BLOCK WEIGHT IS 1300 LBS. LOAD LINE (4 PART LINE): 1 6x25 EIPS IWRC; 100,000 LB. BREAKING STRENGTH; 20,000 LB. WORKING STRENGTH. FAST LINE BLOCK IS 110 LBS. FAST LINE (1 PART LINE): 9/16 19x7 EIPS IWRC; 25,000 LB. BREAKING STRENGTH; 5000 LB. WORKING STRENGTH. STATIC LOAD = 1.5 x DYNAMIC LOAD PEDESTAL REACTIONS ARE BASED ON THREE TIMES THE DYNAMIC LOAD PLUS DEAD LOAD.   MODEL TC60-43-73  13.1 METERS RETRACTED API LOAD CHART (INTERNATIONAL METRIC UNITS) REACH (METERS) BOOM ANGLE (DEG.) DYNAMIC LOAD (KGS.) STATIC LOAD (KGS.) 3.0 76 34610 35698 4.6 69 21750 32920 6.1 62 15558 23633 7.6 54 11975 18257 9.1 45 9616 14719 10.7 35 8097 12440 12.2 21 6849 10569 13.1 1 6260 9684       BASIC CRANE WEIGHT = 17,010 KGS.
  • 109.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM]   MODEL TC60-43-73  16.1 METERS EXTENDED API LOAD CHART (INTERNATIONAL METRIC UNITS) REACH (METERS) BOOM ANGLE (DEG.) DYNAMIC LOAD (KGS.) STATIC LOAD (KGS.) 3.0 79 25175 35608 4.6 73 20639 31298 6.1 68 15196 23134 7.6 62 11930 18235 9.1 56 9526 14651 10.7 49 7938 12247 12.2 42 6804 10569 13.7 32 5806 9027 15.2 20 4990 7847 16.2 1 4672 7348   MODEL TC60-43-73  19.8 METERS EXTENDED API LOAD CHART (INTERNATIONAL METRIC UNITS) REACH (METERS) BOOM ANGLE (DEG.) DYNAMIC LOAD (KGS.) STATIC LOAD (KGS.) 3.0 81 19051 28940 4.6 76 14969 22816 6.1 71 12247 18734 7.6 67 10660 16330 9.1 62 9300 14288 10.7 56 7847 12111 12.2 51 6713 10387 13.7 45 5806 9027 15.2 38 4990 7847 16.8 30 4445 6985 18.3 18 3992 6305 19.8 1 3538 5625   MODEL TC60-43-73  22.2 METERS EXTENDED API LOAD CHART (INTERNATIONAL METRIC UNITS) REACH (METERS) BOOM ANGLE (DEG.) DYNAMIC LOAD (KGS.) STATIC LOAD (KGS.) 3.0 82 17690 26898
  • 110.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] 4.6 78 12928 19732 6.1 74 10660 16330 7.6 70 9027 13880 9.1 66 7847 12111 10.7 61 6713 10387 12.2 57 6033 9390 13.7 52 5352 8346 15.2 47 4854 7575 16.8 41 4309 6804 18.3 35 3992 6305 19.8 27 3629 5806 21.3 17 3175 5126 22.9 1 3084 4944   IN ACCORDANCE WITH API-2C, VALUES SHOWN ARE ACTUAL HOOK LOADS (WEIGHT OF BLOCK AND HOOK EXCLUDED). LOAD LINE BLOCK WEIGHT IS 590 KGS. LOAD LINE (4 PART LINE): 1 6x25 EIPS IWRC; 45,359 KGS. BREAKING STRENGTH; 9,072 KGS. WORKING STRENGTH. FAST LINE BLOCK IS 50 KGS. FAST LINE (1 PART LINE): 9/16 19x7 EIPS IWRC; 11,340 KGS. BREAKING STRENGTH; 2,268 KGS. WORKING STRENGTH. STATIC LOAD = 1.5 x DYNAMIC LOAD PEDESTAL REACTIONS ARE BASED ON THREE TIMES THE DYNAMIC LOAD PLUS DEAD LOAD.   Model TC60-43-73 Telescopic Boom Crane   Available Configurations
  • 111.
    Elevating Boats, LLC. http://www.ebi-inc.com/[4/10/20104:52:29 PM] TAIL SWING CHART at 0 deg. BOOM ANGLE * CONFIGURATION MAXIMUM TAIL SWING CONFIGURATION MAXIMUM TAIL SWING 1 4'-10 RADIUS 6   9'-3 RADIUS 2 5'-4 RADIUS 7   9'-3 RADIUS 3 7'-4 RADIUS 8 9'-8 RADIUS 4 7'-4 RADIUS 9 9'-8 RADIUS 5 7'-4 RADIUS 10 9'-8 RADIUS *TAIL SWING VALUES MAY BE EXCEEDED DEPENDING UPON WINCH MOUNT OPTIONS.  
  • 112.
    The design ofthe DESMI TA- RANTULA skimmer has ben- efited from a continuing devel- opment program over nearly 20 years. The resulting system is the most versatile, powerful and seaworthy unit in its class. All components are manufac- tured in marine grade alumin- ium, stainless steel or polypro- pylene. Wireless remote control and thruster system to allow re- mote positioning of the skim- mer head and operation of the hose reel are available for the DESMI TARANTULA. The DESMI TARANTULA incor- porates two powerful DESMI DOP-250 DUAL screw pumps that deliver a maximum total capacity of 250m3 /h and can develop discharge pressures up to 10 bar while maintaining nearly maximum flow. The DESMI TARANTULA skim- mer also has a self-adjusting weir lip which is controlled by the pumping rate. This enables the skimmer to handle a wide range of oils. DESMI TARANTULA - High capacity offshore skimmer The DESMI TARANTULA skimmer is the latest gen- eration offshore skimmer system from RO-CLEAN DESMI, and is the largest skimmer, ideal for offshore situations. DESMITARANTULA Proven oil spill technology Proven oil spill technology
  • 113.
    Advantages of theDESMI TARAN- TULA: • Affordable high capacity • Capable of recovering a wide range of oils • Self-adjusting weir • Two independently controlled DOP-250 DUAL pumps • Cutting knives fitted to pumps for trash handling • Thrusters for remote positioning of skimmer • Hydraulic knuckle crane matched with power pack • Readily available parts • Low maintenance • The skimmer can also be fitted with disc or brush modules www.ro-cleandesmi.com TECHNICAL DATA Nameplate capacity: 250 m³ per hour / 1100 US gpm Inlet weir: Self-adjusting, 1.36 m / 53 in diameter Operating draught: 0.85 m / 33 in Weight: 340 kg / 750 lbs 380 kg / 838 lbs with thrusters Onboard pumps: 2 x DOP-250 DUAL Max discharge pressure: 10 bar / 145 psi Max solids size: 50 mm / 2 in Pump discharge: 6 in Maximum hydraulic demand: 320 litres per min / 84 US gpm 210 bar / 3,045 ps i Power pack: 119 kW / 159 hp Hydraulic hose connections (pumps): 2 x 1 in, 1 x 3/8 in drain plus thruster hoses (optional) Dimensions: 2.35 x 2.35 x 1.25 m / 92 x 92 x 49 in All information is subject to change, and pictures are for illustration purposes only, and not necessarily correct. Issue no 1 DESMITARANTULA - Contact one of the offices below for further information Proven oil spill technology Head Office RO-CLEAN DESMI A/S Hestehaven 61 DK-5260 Odense S Phone: + 45 65 48 16 10 Fax: + 45 65 48 16 15 E-mail: Denmark.ro-clean@desmi.com U.S.A. Office, APPLIED FABRIC TECHNOLOGIES INC PO Box 575, 227 Thorn Ave, Orchard Park, NY 14127 Tel: +1 716 662 0632 Fax: +1 716 662 0306 E-mail: bestboom@afti.com U.K. Office RO-CLEAN DESMI LTD. Unit 24, Shamrock Quay William Street Southampton, SO14 5QL Tel. +44 23 80829751 Fax. +44 23 80339190 E-mail: uk.ro-clean@desmi.com Asia Office RO-CLEAN DESMI ASIA 50/F Menara BCA Jl. MH. Thamrin No. 1 Jakarta 13010 Indonesia Tel: +62 21 2358 4468 Fax: +62 21 2358 4401 E-mail: asia.ro-clean@desmi.com Latin America Office RO-CLEAN DESMI LATINOAMERICA S.A. Calle Amagasí del Inca E14-68 y 2° Transversal Edificio RO-CLEAN DESMI - PB Quito-Ecuador Tel.: +593 2 326 1939 Fax: +593 2 326 4844 E-mail: Latinoamerica.ro-clean@desmi.com
  • 115.
    Introduction Canflex USA Inc.is a major U.S. Manufacturer of high frequency welded products made with special high strength TPU/PVC blend or Urethane coated fabrics, such as polyester, nylon, and Kevlar®. All of our products are collaps- ible and can be folded for easy storage and transportation. Our tanks can be used to transport or store a wide variety of liquids including, but not limited to, potable water, oil, jet fuel, diesel fuel, waste water, sewage, oil spill and ballast water. CANFLEX also offers custom products made from coated fabrics and complete systems including off load pumps and power packs. All fittings are made from cast anodized marine grade aluminum. Any nuts, bolts, or washers integral to the fittings are made of stainless steel. All fittings are bolted through the main body of the tanks to a cast marine grade aluminum backing plate. Each fitting is mounted on a patch that has a diameter greater than the fitting outside diameter. Fill and discharge hose connections are generally cam-lock type connections with the size depending on the users needs. The following is a partial purchaser list of CANFLEX (USA) INC collapsible storage products: U.S Coast Guard, Canadian Coast Guard, National Response Corporation, Alaska Clean Seas , Clean Caribbean and Americas, Seacor Environmental, Petrobras-Brazil, Pemex-Mexico, PetroEcuador, Columbia Pipeline Company, Australian Maritime Safety Authority (AMSA), New Zealand Maritime Safety Authority, South Africa Strategic Fuel, Clean Islands Council-Hawaii, Alyeska Pipeline and many other companies. CANFLEX MODEL FCB-125“Sea Slug”
  • 116.
    Canflex“Sea Slug”bladders arevery rugged units with a cylindrical main body and matching conical ends giving them great towing characteristics. The ends of the Sea Slug are constructed so the towing force is evenly distrib- uted through the fabric panels of the product, rather than distributing the tow forces throughout the hardware connecting the end fittings. This increases the product longevity. Canflex superior engineering design along with the high strength coated fabrics used to manufacture the bladders allow them to be used safely for training and practical applications over an unlimited time period. Their coated fabric materials are many times stronger than materials used by other towable bladder manufacturers. This material strengh is critical for constructing a safe ocean towable bladder that can be filled, towed and off loaded repeatedly. CANFLEX“SEA SLUG” Canflex“Sea Slug”Ocean Towable Bladders are normally used for Oil spill recovery and Temporary storage and are primarily used on water, they are however strong enough to be used for liquid storage on land. Special mate- rial coatings are available for these bladders to be used in many environments, such as storage and transport of Drinking water, Fuels or Waste products. CANFLEX MODEL FCB-125“Sea Slug” CANFLEX MODEL FCB-60“Sea Slug” CANFLEX MODEL FCB-25“Sea Slug”
  • 117.
    The Sea Slugis equipped with rectangular shaped flotation panels on each side. These floats are enclosed in water tight, covered pockets that run the full length of the bladder along the upper sides. Each float consists of several air chambers or closed cell foam, giving the float a low profile rectangular shape. Also, the use of multiple air chambers creates a high safety margin in case of a puncture or damage causing air leak in one of the chambers. The streamline and inherent flota- tion allow the Sea Slug to be used in ocean environments while filled with fluid, including high-density weathered oils. The Sea Slug, inclined bow encloses an air inflatable bladder that ensures that the bow rides high in the water and maintains a streamlined shape for the optimum towing speed of the bladder when loaded. CANFLEX MODEL FCB-250“Sea Slug” Clip - Lok Box
  • 118.
    CANFLEX (USA) INCoffers a proven submersible pump off loading system for its“Sea Slug”ocean towable bladders. In addition Canflex offers a manufactured top center off-load hatch assembly that allows the submersible pump to be lowered into the center of the bladder . This top center hatch opening is available on the sizes of 25 m3 capacity and larger “Sea Slugs”. This is a fast and efficient method of off loading and is achieved by simply lowering the pump with the custom watertight cap with the pump attached into the Sea Slug. With the pump now locked inside the bladder all hydraulic power hoses and off-load fluid connections can quickly be connected to external fittings on its pump adaptation cap. Canflex can offer positive displacement Archimedes screw pumps or Centrifugal screw submersible pumps with off load capacities from 20m3/h to 170m3/h.These high capacity pumps driven by their respective diesel engine powered hydraulic power packs will off-load a wide variety of fluids including high viscosity crude oils.Also available are non submersible portable diesel engine powered type pumps with off-load capacities from 11m3/h to 600m3/h. This type of pump can be connected to our stern off-load hose connection or at one of the top NPT flanged fittings. The bladder high strength coated fabric material allows the bladder to be either folded or rolled into compact shape to fit into its custom aluminum storage / shipping container. The CANFLEX (USA) INC durable Marine Grade aluminum shipping /storage containers are fork- lift able from all sides, collapsible from one side, and crane lift able. The container has a lift off top cover and it is equipped with two screened air vents for ventila- tion. It also has a bottom drain and a replaceable inner liner for storing oily debris during a spill response, or for using the container or additional liquid storage. Two Aluminum Containers (1) showing replaceable in- ner liner fitted (2) FCB-125, 50cu.m - 50 tonne (12,500 gallon) “Sea Slug” folded into cargo net and packed inside. Container Size: 100”-width x 75” - depth x 56” height
  • 119.
    NOTES: (1) TheSea Slugs with 48 oz yd2 coated material are yellow color and the others are orange color. (2) All materials have a Bending Resistance of minimum 100.000 knits (DIN 53359). (3) All materials have Ultra Violet resistance 7 of 8 Black color (8 of possible 8) (DIN 54404). (4) Canflex can supply Sea Slugs with Higher Density coated material (5) SERIES 3 * Special Order CANFLEX (USA) INC 412-30th. Street-PO. Box 1014– ANACORTES, WASHINGTON 98221 TEL: (206) 282-8233 or (800) 544-8356 — FAX: (206) 282-5933 or (800) 635-8992 / canflex@direct.ca / www.canflexinc.com SERIES1 canflex (USA), Inc.SERIES2SERIES3 CANFLEX (USA) INC “SEA SLUG” CHARACTERISTICS SUMMARY MODEL Capacity Lenght (L) Diam (ø) Auxiliary Floatation Dry Weight with accessories Draft (Full) Shipping Volume with accessories POLYESTER FABRIC TPU/PVC Blended Coated “Oil Fuel Resistant” PROPERTIES Weight DIN 53853 Tensile Strength DIN 53354 Tear Strength FTMS 191556 Cold Crack DIN 53361 Heat Resistance IVK Method m3 m m Kg Kg m m3 g/ m3 N/5 cm N º C º C USG ft ft lbs lbs ft ft3 oz/yd2 lbf/in lbf º F º F FCB-12 5 6.2 1.1 168 68 0.98 0.9 1622 8090 1553 -30 -80 1,320 20 3.5 370 150 3.13 31 48 924 350 -22 +160 FCB-15 6 7.2 1.1 210 77 0.98 1 1622 8090 1553 -30 -80 1,585 23.7 3.5 464 170 3.13 35 48 924 350 -22 +160 FCB-21 8 8.5 1.3 230 136 1.16 1.1 1622 8090 1553 -30 -80 2,113 28 4.2 510 300 3.76 38 48 924 350 -22 +160 FCB-25 10 9.2 1.3 250 163 1.16 1.2 1622 8090 1553 -30 -80 2640 30 4.2 550 360 3.76 42 48 924 350 -22 +160 FCB-33 12.5 9.9 1.5 320 166 1.34 1.4 1622 8090 1553 -30 -80 3,300 32.5 4.9 705 365 4.38 49 48 924 350 -22 +160 FCB-40 15 8.7 1.7 226 168 1.52 1.8 1622 8090 1553 -30 -80 3,962 28.5 5.6 500 370 5.01 64 48 924 350 -22 +160 FCB-43 16 9.1 1.7 281 172 1.52 2.2 1622 8090 1553 -30 -80 4300 29.8 5.6 620 380 5.01 80 48 924 350 -22 +160 FCB-52 20 9.7 1.8 317 227 1.61 1.7 1884 11034 2406 -30 +80 5,285 32 5.9 700 500 5.28 60 56 1260 541 -22 +160 FCB-60 25 11.7 1.8 348 313 1.61 1.8 2278 13000 2942 -30 +80 6,600 38.5 5.9 767 690 5.28 64 67 1484 662 -22 +160 FCB-80 30 13.7 1.8 411 335 1.61 2.1 2278 13000 2942 -30 +80 7,925 44.9 5.9 906 740 5.28 74 67 1484 662 -22 +160 FCB-125 50 14.3 2.3 1012 818 2.06 6 3024 18000 2975 -30 +80 13,200 47 7.5 2230 1800 6.71 211 89 2057 669 -22 +160 FCB-250 100 20 2.8 1579 1088 2.50 6.8 3024 18000 2975 -30 +80 26,400 66 9.2 3480 2400 8.23 240 89 2057 669 -22 +160 FCB-400 150 20.4 3.50 1594 1150 3.13 7.6 3024 18000 2975 -30 +80 39,650 67 11.3 3515 2540 10.11 268 89 2057 669 -22 +160 FCB-500 200 22.6 3.70 1769 1270 3.31 8.4 3024 18000 2975 -30 +80 52,850 74.3 12.2 3900 2800 10.91 297 89 2057 669 -22 +160 FCB-650 250 27.1 3.70 2023 1470 3.31 9.2 3024 18000 2975 -30 +80 66,000 88.9 12.2 4460 3250 10.91 325 89 2057 669 -22 +160 *FCB-300CM 300 29.5 4.0 2429 2430 3.58 10 3024 18000 2975 -30 +80 79,250 96.6 13 5354 5350 11.63 353 89 2057 669 -22 +160 *FCB-400CM 400 31 4.5 2517 2520 4.03 11.6 3024 18000 2975 -30 +80 105,670 102 14.7 5550 5550 13.15 410 89 2057 669 -22 +160 *FCB-500CM 500 32 5.2 2530 2700 4.65 13.2 3024 18000 2975 -30 +80 132,000 105 17 5570 5950 15.21 466 89 2057 669 -22 +160 *FCB-600CM 600 35.2 5.2 2840 2840 4.65 14.8 3024 18000 2975 -30 +80 158,500 115.4 17 6260 6260 15.21 523 89 2057 669 -22 +160 *FCB-650CM 650 37.6 5.2 3080 3080 4.65 15.6 3024 18000 2975 -30 +80 171,700 123.5 17 6800 6800 15.21 551 89 2057 669 -22 +160
  • 120.
    400 Series -400’ x 99’6” x 20’ Specifications Summer Load Line Keel Draft 14' 2.75 Summer Load Line Displacement 15,416 ST Summer Load Line Deadweight 12,035 ST Lightship Draft 4' 0.5 Lightship Displacement 3,380 ST Lightship LCG 203.4 ft Forward of Transom Lightship VCG 10.5 ft above Baseline Draft Mark Locations Fwd Marks 320 ft Forward of Transom Aft Marks 50 ft Forward of Transom Longitudinal Strength Data Maximum Allowable Still Water Bending Moments In Port 122,850 LT-ft At Sea 57,950 LT-ft Maximum Allowable Still Water Shear Force In Port 4,083 LT At Sea 1,897 LT www.crowley.com © Crowley Maritime Corporation, 2004 CROWLEY is a registered trademark of Crowley Maritime Corporation Liner Shipping • Worldwide Logistics • Project Management • Ship Assist Escort • Alaska Fuel Sales Distribution • Energy Support • Ocean Towing Transportation • Salvage Emergency Response • Petroleum Chemical Transportation CROWLEY ® People Who Know™
  • 121.
    Summary of AllowableLoads Transverse Frames Transverse Bulkheads Longitudinal Bulkheads Uniform Linear Load - 16,247 lb/ft Uniform Linear Load - 33148 lbf/ft2 Uniform Linear Load - 31131 lbf/ft2 Point Load - 162, - lbs Point Load - 331481lbf Point Load - 374192 lbf (only over web frames) (only over web frames) Nominal Overall Deck Load Rating Intersection of Structures Counting Long'l Stiffeners - 1072 lbf/ft2 Transverse and Longitudinal Bulkheads - 449 Kips Counting only Frames, - 1625 lbf/ft2 Transverse Bulkhead and Side Shell - 620 Kips Rail Girders and Bhds Transverse Frame and Side Shell - 519 Kips RC O LW E Y BARGE 400 ) ) ) ) ) ) ) ) ) ) ) )* * * * * *+ + + A - Longitudinal Stiffeners B - Rail Girders C - Frame Stanchions 1102 S.W. Massachusetts Street • Seattle, Washington 98134 • (206) 332-8000 16701 Greenspoint Park Dr., Suite 195 • Houston, Texas 77060 • (281) 774-5400
  • 122.
    64 Appendix H – Maneuvering  Contents: Maneuvering Prediction Output.............................................................................................H-1 BowThruster Specifications..................................................................................................H-2    
  • 123.
    file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM] Universityof Michigan Department of Naval Architecture and Marine Engineering Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons References: Clarke,D., Gedling,P., and Hine,G., The Application of Manoeuvring Criteria in Hull Design using Linear Theory, Trans. RINA, 1983 Lyster, C., and Knights, H. L., Prediction Equations for Ships Turning Circles, Trans. NECIES, 1978-1979 Run Identification: A Input Verification: Length of Waterline LWL (m) = 65.50 Maximum Beam on LWL (m) = 14.95 Mean Draft (m) = 5.63 Draft Forward (m) = 5.63 Draft Aft (m) = 5.63 Block Coefficient on LWL CB = 0.5210 Molded Volume (m^3) = 2872.98 Center of Gravity LCG (%LWL; + Fwd) = 51.4000 Center of Gravity LCG (m from FP) = -0.92 Midships to Rudder CE XR (%LWL; + Aft) = 49.0000 Rudder Center of Effort XR (m from FP) = 64.85 Initial Ship Speed (knots) = 16.00 Initial Ship Speed (m/s) = 8.2310 Water Type = Salt@15C Water Density (kg/m^3) = 1025.87 Kinematic Viscosity (m^2/s) = 0.118831E-05 Yaw Radius of Gyration K33/LWL = 0.2500 Water Depth to Ship Draft Ratio H/T = 1000.00 Steering Gear Time Constant (s) = 2.50 Total Rudder Area - Fraction of LWL*T = 0.0298
  • 124.
    file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM] Numberof Propellers = 2 Number of Rudders = 2 Submerged Bow Area - Fraction of LWL*T = 0.0000 University of Michigan Department of Naval Architecture and Marine Engineering Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons *** Linear Maneuvering Criteria Option *** Reference: Clarke,D., Gedling,P., and Hine,G., The Application of Manoeuvring Criteria in Hull Design using Linear Theory, Trans. RINA, 1983 Run Identification: A Linear Maneuvering Derivatives Nondimensional Mass M prime = 0.020444 Nondimensional Mass Moment I sub zz = 0.001278 Sway Velocity Derivative Y sub v = -0.038365 Sway Acceleration Derivative Y sub v dot = -0.022187 Yaw Velocity Derivative N sub v = -0.015269 Yaw Acceleration Derivative N sub v dot = -0.003301 Sway Velocity Derivative Y sub r = 0.006011 Sway Acceleration Derivative Y sub r dot = -0.003010 Yaw Velocity Derivative N sub r = -0.005794 Yaw Acceleration Derivative N sub r dot = -0.000732 Sway Rudder Derivative Y sub delta = 0.007680 Yaw Rudder Derivative N sub delta = -0.003763 Time Constants and Gains for Nomotos Equation Dominant Ship Time Constant T1 prime = 1.1259 Ship Time Constant T2 prime = -0.2215
  • 125.
    file:////storage.adsroot.itcs.umich.edu/home/windat.V2/Desktop/Maneuvering%20Output.txt[4/20/2010 11:09:20 PM] NumeratorTime Constant T3 prime = 1.0185 Numerator Time Constant T4 prime = 0.3694 1st Order Eqn. Time Constant T prime = -0.1141 Rudder Gain Factor K prime = -0.6459 Rudder Gain Factor K sub v prime = 0.4432 Steering Gear Time Constant TE prime = 0.3141 Evaluation of Turning Ability and Stability Inverse Time Constant 1/|T prime| = 8.7668 Inverse Gain Factor 1/|K prime| = 1.5481 Clarkes Turning Index P = 11.2914 Linear Dynamic Stability Criterion C = 0.0004051 Vessel is hydrodynamically open loop course stable Closed Loop Phase Margin with Steering Engine = 84.2157 degrees University of Michigan Department of Naval Architecture and Marine Engineering Maneuvering Prediction Program (MPP-1.3) by M.G. Parsons *** Turning Prediction Option *** Reference: Lyster, C., and Knights, H. L., Prediction Equations for Ships Turning Circle, Trans. NECIES, 1978-1979 Run Identification: A Approach Speed = 16.00 knots Rudder Angle = 30.00 degrees Steady Turning Diameter = 312.83 meters Tactical Diameter = 321.83 meters Advance = 236.06 meters Transfer = 147.96 meters Steady Speed in Turn = 10.93 knots
  • 127.
    65  Appendix I – Floodable Length  Contents: Floodable Length Results......................................................................................................I-1
  • 129.
    66 Appendix J – Intact Stability  Contents: USCG Wind HeelRequirement Spreadsheet ........................................................................J-1  
  • 130.
    U.S. Coast GuardWind Heel GMt (R2) [46CFR170.170] Draft T 5.63 m input Depth D 7.50 m Length LOA 66.8 m output Beam BOA 15 m Displacement 2936 t Freeboard F 1.87 m number length height #h abv DWL Az Lateral Areas # [m] h [m] A [m2 ] z [m] moment Main Deck 219.00 2.910 637.29 Deckhouse 76.00 8.160 620.16 Fly Bridge 72.00 15.100 1087.20 Aft Structure 117.00 1.940 226.98 Summation 484.00 5.313 2571.63 total area net z h net z + T/2 = 8.128 m P 0.05760 t/m2 min(14,atan(F/B)) 0.1240 radians 14 deg. = 0.2443 radians GMt reqd 0.619 m Note: these are the same deckhouse and superstructure profile view  x h areas used in the Watson and Gilfillan structural weight modeling. Units in tonnes and meters
  • 131.
    67 Appendix K – Damaged Stability  Contents: HECSALV Damage StabilityResults ...................................................................................K-1    
  • 165.
  • 166.
    0, 0 kts;0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 49.146 kN -- -- 17 Heave motion 0.073 m^2 0.27 m 0.539 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.0007 rad^2 0.02637 rad 0.05275 rad 20 Heave velocity 0.039 m^2/s^2 0.197 m/s 0.394 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00046 (rad/s)^2 0.02139 rad/s 0.04278 rad/s 23 Heave acceleration 0.026 m^2/s^4 0.161 m/s^2 0.323 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00033 (rad/s/s)^2 0.01826 rad/s/s 0.03652 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.121 m^2 0.348 m 0.696 m 27 Wheelhouse: Rel. vert. motion 0.17 m^2 0.412 m 0.824 m 28 Wheelhouse: Abs. vert. velocity 0.08 m^2/s^2 0.284 m/s 0.567 m/s 29 Wheelhouse: Rel. vert. velocity 0.209 m^2/s^2 0.457 m/s 0.914 m/s 30 Wheelhouse: Abs. vert. accel 0.062 m^2/s^4 0.25 m/s^2 0.5 m/s^2 31 Wheelhouse: Rel. vert. accel 0.467 m^2/s^4 0.683 m/s^2 1.367 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.082 m^2 0.287 m 0.574 m 33 Wheelhouse: Long. (due to pitch) velocity 0.054 m^2/s^2 0.232 m/s 0.464 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.039 m^2/s^4 0.197 m/s^2 0.394 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m
  • 167.
    36 Wheelhouse: Lat.(due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.132 m^2 0.363 m 0.727 m 40 Workdeck: Rel. vert. motion 0.072 m^2 0.269 m 0.537 m 41 Workdeck: Abs. vert. velocity 0.073 m^2/s^2 0.27 m/s 0.539 m/s 42 Workdeck: Rel. vert. velocity 0.121 m^2/s^2 0.348 m/s 0.696 m/s 43 Workdeck: Abs. vert. accel 0.048 m^2/s^4 0.218 m/s^2 0.436 m/s^2 44 Workdeck: Rel. vert. accel 0.32 m^2/s^4 0.565 m/s^2 1.131 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.01 m^2 0.1 m 0.201 m 46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.081 m/s 0.162 m/s 47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.069 m/s^2 0.138 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 141.403 kN -- -- 17 Heave motion 0.282 m^2 0.531 m 1.061 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00203 rad^2 0.04501 rad 0.09003 rad
  • 168.
    20 Heave velocity0.129 m^2/s^2 0.359 m/s 0.719 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00124 (rad/s)^2 0.0352 rad/s 0.07039 rad/s 23 Heave acceleration 0.074 m^2/s^4 0.272 m/s^2 0.545 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00085 (rad/s/s)^2 0.02919 rad/s/s 0.05839 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.39 m^2 0.625 m 1.25 m 27 Wheelhouse: Rel. vert. motion 0.407 m^2 0.638 m 1.275 m 28 Wheelhouse: Abs. vert. velocity 0.226 m^2/s^2 0.475 m/s 0.95 m/s 29 Wheelhouse: Rel. vert. velocity 0.468 m^2/s^2 0.684 m/s 1.368 m/s 30 Wheelhouse: Abs. vert. accel 0.159 m^2/s^4 0.398 m/s^2 0.797 m/s^2 31 Wheelhouse: Rel. vert. accel 0.985 m^2/s^4 0.992 m/s^2 1.985 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.241 m^2 0.491 m 0.983 m 33 Wheelhouse: Long. (due to pitch) velocity 0.146 m^2/s^2 0.382 m/s 0.765 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.1 m^2/s^4 0.316 m/s^2 0.632 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.473 m^2 0.687 m 1.375 m 40 Workdeck: Rel. vert. motion 0.157 m^2 0.397 m 0.794 m 41 Workdeck: Abs. vert. velocity 0.23 m^2/s^2 0.479 m/s 0.959 m/s 42 Workdeck: Rel. vert. velocity 0.258 m^2/s^2 0.508 m/s 1.015 m/s 43 Workdeck: Abs. vert. accel 0.134 m^2/s^4 0.365 m/s^2 0.731 m/s^2 44 Workdeck: Rel. vert. accel 0.664 m^2/s^4 0.815 m/s^2 1.629 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.172 m 0.344 m 46 Workdeck: Long. (due to pitch) velocity 0.018 m^2/s^2 0.134 m/s 0.267 m/s 47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.11 m/s^2 0.221 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- --
  • 169.
    4 Wave heading0 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 285.385 kN -- -- 17 Heave motion 1.025 m^2 1.012 m 2.025 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00353 rad^2 0.05942 rad 0.11883 rad 20 Heave velocity 0.33 m^2/s^2 0.574 m/s 1.149 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00181 (rad/s)^2 0.04254 rad/s 0.08508 rad/s 23 Heave acceleration 0.135 m^2/s^4 0.367 m/s^2 0.734 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.0011 (rad/s/s)^2 0.03315 rad/s/s 0.0663 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.083 m^2 1.041 m 2.082 m 27 Wheelhouse: Rel. vert. motion 0.488 m^2 0.699 m 1.397 m 28 Wheelhouse: Abs. vert. velocity 0.42 m^2/s^2 0.648 m/s 1.296 m/s 29 Wheelhouse: Rel. vert. velocity 0.489 m^2/s^2 0.699 m/s 1.399 m/s 30 Wheelhouse: Abs. vert. accel 0.222 m^2/s^4 0.471 m/s^2 0.942 m/s^2 31 Wheelhouse: Rel. vert. accel 0.93 m^2/s^4 0.964 m/s^2 1.928 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.428 m^2 0.654 m 1.309 m 33 Wheelhouse: Long. (due to pitch) velocity 0.216 m^2/s^2 0.465 m/s 0.93 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.13 m^2/s^4 0.36 m/s^2 0.72 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.431 m^2 1.196 m 2.392 m 40 Workdeck: Rel. vert. motion 0.156 m^2 0.395 m 0.79 m
  • 170.
    41 Workdeck: Abs.vert. velocity 0.505 m^2/s^2 0.711 m/s 1.421 m/s 42 Workdeck: Rel. vert. velocity 0.245 m^2/s^2 0.495 m/s 0.99 m/s 43 Workdeck: Abs. vert. accel 0.223 m^2/s^4 0.473 m/s^2 0.945 m/s^2 44 Workdeck: Rel. vert. accel 0.608 m^2/s^4 0.78 m/s^2 1.559 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.052 m^2 0.229 m 0.458 m 46 Workdeck: Long. (due to pitch) velocity 0.026 m^2/s^2 0.163 m/s 0.325 m/s 47 Workdeck: Long. (due to pitch) accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 50.304 kN -- -- 17 Heave motion 0.094 m^2 0.307 m 0.614 m 18 Roll motion 0.00166 rad^2 0.04069 rad 0.08138 rad 19 Pitch motion 0.00067 rad^2 0.02584 rad 0.05168 rad 20 Heave velocity 0.052 m^2/s^2 0.227 m/s 0.454 m/s 21 Roll velocity 0.00196 (rad/s)^2 0.04425 rad/s 0.08849 rad/s 22 Pitch velocity 0.00046 (rad/s)^2 0.02147 rad/s 0.04295 rad/s 23 Heave acceleration 0.035 m^2/s^4 0.186 m/s^2 0.372 m/s^2 24 Roll acceleration 0.00349 (rad/s/s)^2 0.05905 rad/s/s 0.1181 rad/s/s)
  • 171.
    25 Pitch acceleration0.00035 (rad/s/s)^2 0.01884 rad/s/s 0.03767 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.117 m^2 0.342 m 0.684 m 27 Wheelhouse: Rel. vert. motion 0.137 m^2 0.371 m 0.741 m 28 Wheelhouse: Abs. vert. velocity 0.08 m^2/s^2 0.283 m/s 0.566 m/s 29 Wheelhouse: Rel. vert. velocity 0.181 m^2/s^2 0.425 m/s 0.85 m/s 30 Wheelhouse: Abs. vert. accel 0.065 m^2/s^4 0.255 m/s^2 0.511 m/s^2 31 Wheelhouse: Rel. vert. accel 0.446 m^2/s^4 0.668 m/s^2 1.336 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.079 m^2 0.281 m 0.563 m 33 Wheelhouse: Long. (due to pitch) velocity 0.054 m^2/s^2 0.233 m/s 0.466 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.042 m^2/s^4 0.204 m/s^2 0.408 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m 36 Wheelhouse: Lat. (due to roll) velocity 0.234 m^2/s^2 0.484 m/s 0.968 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.412 m^2/s^4 0.642 m/s^2 1.283 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.006 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.215 m^2 0.463 m 0.927 m 40 Workdeck: Rel. vert. motion 0.059 m^2 0.244 m 0.488 m 41 Workdeck: Abs. vert. velocity 0.129 m^2/s^2 0.359 m/s 0.719 m/s 42 Workdeck: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s 43 Workdeck: Abs. vert. accel 0.098 m^2/s^4 0.312 m/s^2 0.625 m/s^2 44 Workdeck: Rel. vert. accel 0.393 m^2/s^4 0.627 m/s^2 1.254 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.01 m^2 0.098 m 0.197 m 46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.082 m/s 0.163 m/s 47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.071 m/s^2 0.143 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.024 m^2 0.156 m 0.313 m 49 Workdeck: Lat. (due to roll) velocity 0.029 m^2/s^2 0.169 m/s 0.339 m/s 50 Workdeck: Lat. (due to roll) accel 0.05 m^2/s^4 0.224 m/s^2 0.449 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- --
  • 172.
    9 Transom methodNo transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 144.239 kN -- -- 17 Heave motion 0.348 m^2 0.59 m 1.18 m 18 Roll motion 0.00388 rad^2 0.06227 rad 0.12453 rad 19 Pitch motion 0.0019 rad^2 0.04354 rad 0.08709 rad 20 Heave velocity 0.166 m^2/s^2 0.407 m/s 0.815 m/s 21 Roll velocity 0.00437 (rad/s)^2 0.06611 rad/s 0.13222 rad/s 22 Pitch velocity 0.00122 (rad/s)^2 0.0349 rad/s 0.06979 rad/s 23 Heave acceleration 0.097 m^2/s^4 0.312 m/s^2 0.623 m/s^2 24 Roll acceleration 0.00744 (rad/s/s)^2 0.08625 rad/s/s 0.17249 rad/s/s) 25 Pitch acceleration 0.00089 (rad/s/s)^2 0.02977 rad/s/s 0.05954 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.374 m^2 0.612 m 1.223 m 27 Wheelhouse: Rel. vert. motion 0.325 m^2 0.57 m 1.139 m 28 Wheelhouse: Abs. vert. velocity 0.222 m^2/s^2 0.471 m/s 0.942 m/s 29 Wheelhouse: Rel. vert. velocity 0.4 m^2/s^2 0.632 m/s 1.265 m/s 30 Wheelhouse: Abs. vert. accel 0.163 m^2/s^4 0.404 m/s^2 0.808 m/s^2 31 Wheelhouse: Rel. vert. accel 0.935 m^2/s^4 0.967 m/s^2 1.934 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.226 m^2 0.476 m 0.952 m 33 Wheelhouse: Long. (due to pitch) velocity 0.144 m^2/s^2 0.38 m/s 0.759 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.104 m^2/s^4 0.323 m/s^2 0.645 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.469 m^2 0.685 m 1.37 m 36 Wheelhouse: Lat. (due to roll) velocity 0.524 m^2/s^2 0.724 m/s 1.447 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.879 m^2/s^4 0.938 m/s^2 1.875 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.668 MII/h 0.005 MII/h 39 Workdeck: Abs. vert. motion 0.706 m^2 0.84 m 1.68 m 40 Workdeck: Rel. vert. motion 0.133 m^2 0.365 m 0.73 m 41 Workdeck: Abs. vert. velocity 0.379 m^2/s^2 0.616 m/s 1.231 m/s 42 Workdeck: Rel. vert. velocity 0.26 m^2/s^2 0.51 m/s 1.019 m/s 43 Workdeck: Abs. vert. accel 0.256 m^2/s^4 0.506 m/s^2 1.011 m/s^2 44 Workdeck: Rel. vert. accel 0.809 m^2/s^4 0.899 m/s^2 1.799 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.028 m^2 0.166 m 0.333 m
  • 173.
    46 Workdeck: Long.(due to pitch) velocity 0.018 m^2/s^2 0.133 m/s 0.266 m/s 47 Workdeck: Long. (due to pitch) accel 0.013 m^2/s^4 0.113 m/s^2 0.226 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.057 m^2 0.24 m 0.479 m 49 Workdeck: Lat. (due to roll) velocity 0.064 m^2/s^2 0.253 m/s 0.506 m/s 50 Workdeck: Lat. (due to roll) accel 0.108 m^2/s^4 0.328 m/s^2 0.656 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.015 MII/h 0 MII/h 0, 0 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 290.432 kN -- -- 17 Heave motion 1.156 m^2 1.075 m 2.15 m 18 Roll motion 0.00441 rad^2 0.06644 rad 0.13288 rad 19 Pitch motion 0.00315 rad^2 0.05615 rad 0.11231 rad 20 Heave velocity 0.39 m^2/s^2 0.624 m/s 1.249 m/s 21 Roll velocity 0.00451 (rad/s)^2 0.06717 rad/s 0.13434 rad/s 22 Pitch velocity 0.0017 (rad/s)^2 0.04127 rad/s 0.08254 rad/s 23 Heave acceleration 0.167 m^2/s^4 0.409 m/s^2 0.818 m/s^2 24 Roll acceleration 0.00712 (rad/s/s)^2 0.0844 rad/s/s 0.1688 rad/s/s) 25 Pitch acceleration 0.0011 (rad/s/s)^2 0.03316 rad/s/s 0.06631 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.046 m^2 1.023 m 2.046 m 27 Wheelhouse: Rel. vert. motion 0.377 m^2 0.614 m 1.228 m 28 Wheelhouse: Abs. vert. velocity 0.408 m^2/s^2 0.639 m/s 1.278 m/s 29 Wheelhouse: Rel. vert. velocity 0.41 m^2/s^2 0.64 m/s 1.28 m/s
  • 174.
    30 Wheelhouse: Abs.vert. accel 0.223 m^2/s^4 0.472 m/s^2 0.944 m/s^2 31 Wheelhouse: Rel. vert. accel 0.873 m^2/s^4 0.935 m/s^2 1.869 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.383 m^2 0.619 m 1.238 m 33 Wheelhouse: Long. (due to pitch) velocity 0.204 m^2/s^2 0.452 m/s 0.903 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.13 m^2/s^4 0.361 m/s^2 0.721 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.539 m^2 0.734 m 1.468 m 36 Wheelhouse: Lat. (due to roll) velocity 0.543 m^2/s^2 0.737 m/s 1.474 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.844 m^2/s^4 0.919 m/s^2 1.837 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.523 MII/h 0.003 MII/h 39 Workdeck: Abs. vert. motion 1.816 m^2 1.348 m 2.695 m 40 Workdeck: Rel. vert. motion 0.155 m^2 0.394 m 0.787 m 41 Workdeck: Abs. vert. velocity 0.713 m^2/s^2 0.845 m/s 1.689 m/s 42 Workdeck: Rel. vert. velocity 0.249 m^2/s^2 0.499 m/s 0.998 m/s 43 Workdeck: Abs. vert. accel 0.37 m^2/s^4 0.608 m/s^2 1.216 m/s^2 44 Workdeck: Rel. vert. accel 0.735 m^2/s^4 0.857 m/s^2 1.715 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.047 m^2 0.217 m 0.433 m 46 Workdeck: Long. (due to pitch) velocity 0.025 m^2/s^2 0.158 m/s 0.316 m/s 47 Workdeck: Long. (due to pitch) accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.066 m^2 0.257 m 0.513 m 49 Workdeck: Lat. (due to roll) velocity 0.066 m^2/s^2 0.258 m/s 0.515 m/s 50 Workdeck: Lat. (due to roll) accel 0.103 m^2/s^4 0.321 m/s^2 0.643 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.059 MII/h 0.001 MII/h 0, 0 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- --
  • 175.
    14 Wave spectrum0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 45.402 kN -- -- 17 Heave motion 0.279 m^2 0.529 m 1.057 m 18 Roll motion 0.00671 rad^2 0.08189 rad 0.16378 rad 19 Pitch motion 0.00016 rad^2 0.0125 rad 0.025 rad 20 Heave velocity 0.218 m^2/s^2 0.467 m/s 0.934 m/s 21 Roll velocity 0.00793 (rad/s)^2 0.08905 rad/s 0.1781 rad/s 22 Pitch velocity 0.00012 (rad/s)^2 0.01094 rad/s 0.02187 rad/s 23 Heave acceleration 0.21 m^2/s^4 0.458 m/s^2 0.917 m/s^2 24 Roll acceleration 0.01412 (rad/s/s)^2 0.11884 rad/s/s 0.23768 rad/s/s) 25 Pitch acceleration 0.00011 (rad/s/s)^2 0.01028 rad/s/s 0.02055 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.155 m^2 0.393 m 0.787 m 27 Wheelhouse: Rel. vert. motion 0.111 m^2 0.334 m 0.668 m 28 Wheelhouse: Abs. vert. velocity 0.134 m^2/s^2 0.365 m/s 0.731 m/s 29 Wheelhouse: Rel. vert. velocity 0.2 m^2/s^2 0.448 m/s 0.895 m/s 30 Wheelhouse: Abs. vert. accel 0.149 m^2/s^4 0.386 m/s^2 0.772 m/s^2 31 Wheelhouse: Rel. vert. accel 0.571 m^2/s^4 0.756 m/s^2 1.512 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.019 m^2 0.137 m 0.273 m 33 Wheelhouse: Long. (due to pitch) velocity 0.014 m^2/s^2 0.119 m/s 0.238 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.012 m^2/s^4 0.112 m/s^2 0.223 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.809 m^2 0.9 m 1.799 m 36 Wheelhouse: Lat. (due to roll) velocity 0.949 m^2/s^2 0.974 m/s 1.948 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.667 m^2/s^4 1.291 m/s^2 2.583 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.625 MII/h 0.436 MII/h 39 Workdeck: Abs. vert. motion 0.584 m^2 0.764 m 1.529 m 40 Workdeck: Rel. vert. motion 0.152 m^2 0.39 m 0.78 m 41 Workdeck: Abs. vert. velocity 0.511 m^2/s^2 0.715 m/s 1.429 m/s 42 Workdeck: Rel. vert. velocity 0.173 m^2/s^2 0.415 m/s 0.831 m/s 43 Workdeck: Abs. vert. accel 0.577 m^2/s^4 0.759 m/s^2 1.519 m/s^2 44 Workdeck: Rel. vert. accel 0.377 m^2/s^4 0.614 m/s^2 1.229 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.002 m^2 0.048 m 0.096 m 46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.042 m/s 0.083 m/s 47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.039 m/s^2 0.078 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.099 m^2 0.315 m 0.629 m 49 Workdeck: Lat. (due to roll) velocity 0.116 m^2/s^2 0.341 m/s 0.681 m/s 50 Workdeck: Lat. (due to roll) accel 0.204 m^2/s^4 0.452 m/s^2 0.903 m/s^2
  • 176.
    51 Workdeck: MIIslide; tip f/a; tip s/s 0 MII/h 0.264 MII/h 0.009 MII/h 0, 0 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 135.192 kN -- -- 17 Heave motion 0.826 m^2 0.909 m 1.817 m 18 Roll motion 0.0157 rad^2 0.12531 rad 0.25063 rad 19 Pitch motion 0.00042 rad^2 0.02041 rad 0.04082 rad 20 Heave velocity 0.564 m^2/s^2 0.751 m/s 1.502 m/s 21 Roll velocity 0.0177 (rad/s)^2 0.13305 rad/s 0.2661 rad/s 22 Pitch velocity 0.0003 (rad/s)^2 0.01733 rad/s 0.03466 rad/s 23 Heave acceleration 0.497 m^2/s^4 0.705 m/s^2 1.41 m/s^2 24 Roll acceleration 0.03013 (rad/s/s)^2 0.17357 rad/s/s 0.34715 rad/s/s) 25 Pitch acceleration 0.00025 (rad/s/s)^2 0.01587 rad/s/s 0.03174 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.466 m^2 0.683 m 1.365 m 27 Wheelhouse: Rel. vert. motion 0.242 m^2 0.492 m 0.985 m 28 Wheelhouse: Abs. vert. velocity 0.339 m^2/s^2 0.582 m/s 1.164 m/s 29 Wheelhouse: Rel. vert. velocity 0.423 m^2/s^2 0.651 m/s 1.301 m/s 30 Wheelhouse: Abs. vert. accel 0.342 m^2/s^4 0.585 m/s^2 1.169 m/s^2 31 Wheelhouse: Rel. vert. accel 1.182 m^2/s^4 1.087 m/s^2 2.174 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.05 m^2 0.224 m 0.448 m 33 Wheelhouse: Long. (due to pitch) velocity 0.036 m^2/s^2 0.189 m/s 0.378 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.03 m^2/s^4 0.172 m/s^2 0.345 m/s^2
  • 177.
    35 Wheelhouse: Lat.(due to roll) motion 1.901 m^2 1.379 m 2.758 m 36 Wheelhouse: Lat. (due to roll) velocity 2.122 m^2/s^2 1.457 m/s 2.913 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.561 m^2/s^4 1.887 m/s^2 3.774 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 18.004 MII/h 5.173 MII/h 39 Workdeck: Abs. vert. motion 1.597 m^2 1.264 m 2.527 m 40 Workdeck: Rel. vert. motion 0.375 m^2 0.612 m 1.224 m 41 Workdeck: Abs. vert. velocity 1.252 m^2/s^2 1.119 m/s 2.238 m/s 42 Workdeck: Rel. vert. velocity 0.393 m^2/s^2 0.627 m/s 1.253 m/s 43 Workdeck: Abs. vert. accel 1.311 m^2/s^4 1.145 m/s^2 2.29 m/s^2 44 Workdeck: Rel. vert. accel 0.8 m^2/s^4 0.894 m/s^2 1.788 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.078 m 0.157 m 46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.066 m/s 0.132 m/s 47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.06 m/s^2 0.121 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.233 m^2 0.482 m 0.964 m 49 Workdeck: Lat. (due to roll) velocity 0.26 m^2/s^2 0.509 m/s 1.019 m/s 50 Workdeck: Lat. (due to roll) accel 0.436 m^2/s^4 0.66 m/s^2 1.32 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.967 MII/h 0.577 MII/h 0, 0 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 292.669 kN -- -- 17 Heave motion 1.83 m^2 1.353 m 2.705 m 18 Roll motion 0.01788 rad^2 0.13372 rad 0.26744 rad
  • 178.
    19 Pitch motion0.00059 rad^2 0.02433 rad 0.04866 rad 20 Heave velocity 0.863 m^2/s^2 0.929 m/s 1.858 m/s 21 Roll velocity 0.01827 (rad/s)^2 0.13518 rad/s 0.27036 rad/s 22 Pitch velocity 0.00038 (rad/s)^2 0.0194 rad/s 0.0388 rad/s 23 Heave acceleration 0.594 m^2/s^4 0.771 m/s^2 1.542 m/s^2 24 Roll acceleration 0.02885 (rad/s/s)^2 0.16986 rad/s/s 0.33972 rad/s/s) 25 Pitch acceleration 0.00029 (rad/s/s)^2 0.01695 rad/s/s 0.0339 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.185 m^2 1.088 m 2.177 m 27 Wheelhouse: Rel. vert. motion 0.247 m^2 0.497 m 0.994 m 28 Wheelhouse: Abs. vert. velocity 0.534 m^2/s^2 0.731 m/s 1.462 m/s 29 Wheelhouse: Rel. vert. velocity 0.401 m^2/s^2 0.633 m/s 1.266 m/s 30 Wheelhouse: Abs. vert. accel 0.395 m^2/s^4 0.629 m/s^2 1.257 m/s^2 31 Wheelhouse: Rel. vert. accel 1.078 m^2/s^4 1.038 m/s^2 2.077 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.073 m^2 0.27 m 0.54 m 33 Wheelhouse: Long. (due to pitch) velocity 0.045 m^2/s^2 0.213 m/s 0.426 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.034 m^2/s^4 0.185 m/s^2 0.37 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 2.182 m^2 1.477 m 2.954 m 36 Wheelhouse: Lat. (due to roll) velocity 2.199 m^2/s^2 1.483 m/s 2.966 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.418 m^2/s^4 1.849 m/s^2 3.697 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.467 MII/h 4.448 MII/h 39 Workdeck: Abs. vert. motion 2.899 m^2 1.703 m 3.405 m 40 Workdeck: Rel. vert. motion 0.497 m^2 0.705 m 1.41 m 41 Workdeck: Abs. vert. velocity 1.657 m^2/s^2 1.287 m/s 2.575 m/s 42 Workdeck: Rel. vert. velocity 0.43 m^2/s^2 0.656 m/s 1.311 m/s 43 Workdeck: Abs. vert. accel 1.431 m^2/s^4 1.196 m/s^2 2.393 m/s^2 44 Workdeck: Rel. vert. accel 0.764 m^2/s^4 0.874 m/s^2 1.748 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.009 m^2 0.094 m 0.189 m 46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.075 m/s 0.149 m/s 47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.065 m/s^2 0.129 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.267 m^2 0.517 m 1.033 m 49 Workdeck: Lat. (due to roll) velocity 0.269 m^2/s^2 0.519 m/s 1.037 m/s 50 Workdeck: Lat. (due to roll) accel 0.418 m^2/s^4 0.647 m/s^2 1.293 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0.001 MII/h 3.831 MII/h 0.905 MII/h 0, 0 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- --
  • 179.
    3 Spectrum typeITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 56.972 kN -- -- 17 Heave motion 0.108 m^2 0.329 m 0.658 m 18 Roll motion 0.00279 rad^2 0.05285 rad 0.10571 rad 19 Pitch motion 0.00046 rad^2 0.02151 rad 0.04301 rad 20 Heave velocity 0.059 m^2/s^2 0.243 m/s 0.486 m/s 21 Roll velocity 0.0033 (rad/s)^2 0.05748 rad/s 0.11495 rad/s 22 Pitch velocity 0.00037 (rad/s)^2 0.01926 rad/s 0.03853 rad/s 23 Heave acceleration 0.037 m^2/s^4 0.192 m/s^2 0.383 m/s^2 24 Roll acceleration 0.00588 (rad/s/s)^2 0.0767 rad/s/s 0.15341 rad/s/s) 25 Pitch acceleration 0.00034 (rad/s/s)^2 0.01836 rad/s/s 0.03673 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.194 m^2 0.441 m 0.881 m 27 Wheelhouse: Rel. vert. motion 0.048 m^2 0.219 m 0.437 m 28 Wheelhouse: Abs. vert. velocity 0.126 m^2/s^2 0.355 m/s 0.709 m/s 29 Wheelhouse: Rel. vert. velocity 0.098 m^2/s^2 0.314 m/s 0.627 m/s 30 Wheelhouse: Abs. vert. accel 0.094 m^2/s^4 0.306 m/s^2 0.612 m/s^2 31 Wheelhouse: Rel. vert. accel 0.353 m^2/s^4 0.594 m/s^2 1.188 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.055 m^2 0.235 m 0.47 m 33 Wheelhouse: Long. (due to pitch) velocity 0.044 m^2/s^2 0.21 m/s 0.42 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.04 m^2/s^4 0.199 m/s^2 0.399 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.337 m^2 0.581 m 1.161 m 36 Wheelhouse: Lat. (due to roll) velocity 0.395 m^2/s^2 0.629 m/s 1.257 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.695 m^2/s^4 0.833 m/s^2 1.667 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.24 MII/h 0.001 MII/h 39 Workdeck: Abs. vert. motion 0.155 m^2 0.393 m 0.787 m
  • 180.
    40 Workdeck: Rel.vert. motion 0.04 m^2 0.2 m 0.4 m 41 Workdeck: Abs. vert. velocity 0.1 m^2/s^2 0.316 m/s 0.633 m/s 42 Workdeck: Rel. vert. velocity 0.079 m^2/s^2 0.281 m/s 0.562 m/s 43 Workdeck: Abs. vert. accel 0.094 m^2/s^4 0.306 m/s^2 0.613 m/s^2 44 Workdeck: Rel. vert. accel 0.273 m^2/s^4 0.523 m/s^2 1.046 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.082 m 0.164 m 46 Workdeck: Long. (due to pitch) velocity 0.005 m^2/s^2 0.073 m/s 0.147 m/s 47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.07 m/s^2 0.14 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.041 m^2 0.203 m 0.406 m 49 Workdeck: Lat. (due to roll) velocity 0.048 m^2/s^2 0.22 m/s 0.44 m/s 50 Workdeck: Lat. (due to roll) accel 0.085 m^2/s^4 0.291 m/s^2 0.583 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 163.955 kN -- -- 17 Heave motion 0.389 m^2 0.623 m 1.247 m 18 Roll motion 0.00654 rad^2 0.08088 rad 0.16176 rad 19 Pitch motion 0.00122 rad^2 0.035 rad 0.07 rad 20 Heave velocity 0.187 m^2/s^2 0.433 m/s 0.866 m/s 21 Roll velocity 0.00737 (rad/s)^2 0.08587 rad/s 0.17175 rad/s 22 Pitch velocity 0.00092 (rad/s)^2 0.0303 rad/s 0.0606 rad/s 23 Heave acceleration 0.105 m^2/s^4 0.324 m/s^2 0.648 m/s^2
  • 181.
    24 Roll acceleration0.01255 (rad/s/s)^2 0.11203 rad/s/s 0.22406 rad/s/s) 25 Pitch acceleration 0.00079 (rad/s/s)^2 0.02819 rad/s/s 0.05639 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.615 m^2 0.784 m 1.568 m 27 Wheelhouse: Rel. vert. motion 0.102 m^2 0.32 m 0.639 m 28 Wheelhouse: Abs. vert. velocity 0.353 m^2/s^2 0.595 m/s 1.189 m/s 29 Wheelhouse: Rel. vert. velocity 0.206 m^2/s^2 0.454 m/s 0.908 m/s 30 Wheelhouse: Abs. vert. accel 0.241 m^2/s^4 0.491 m/s^2 0.981 m/s^2 31 Wheelhouse: Rel. vert. accel 0.725 m^2/s^4 0.851 m/s^2 1.703 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.147 m^2 0.383 m 0.767 m 33 Wheelhouse: Long. (due to pitch) velocity 0.109 m^2/s^2 0.331 m/s 0.661 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.094 m^2/s^4 0.307 m/s^2 0.613 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.792 m^2 0.89 m 1.78 m 36 Wheelhouse: Lat. (due to roll) velocity 0.884 m^2/s^2 0.94 m/s 1.88 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.484 m^2/s^4 1.218 m/s^2 2.436 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 3.958 MII/h 0.207 MII/h 39 Workdeck: Abs. vert. motion 0.511 m^2 0.715 m 1.43 m 40 Workdeck: Rel. vert. motion 0.093 m^2 0.305 m 0.611 m 41 Workdeck: Abs. vert. velocity 0.287 m^2/s^2 0.536 m/s 1.071 m/s 42 Workdeck: Rel. vert. velocity 0.168 m^2/s^2 0.41 m/s 0.821 m/s 43 Workdeck: Abs. vert. accel 0.232 m^2/s^4 0.482 m/s^2 0.963 m/s^2 44 Workdeck: Rel. vert. accel 0.563 m^2/s^4 0.75 m/s^2 1.5 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.134 m 0.268 m 46 Workdeck: Long. (due to pitch) velocity 0.013 m^2/s^2 0.116 m/s 0.231 m/s 47 Workdeck: Long. (due to pitch) accel 0.011 m^2/s^4 0.107 m/s^2 0.214 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.097 m^2 0.311 m 0.623 m 49 Workdeck: Lat. (due to roll) velocity 0.108 m^2/s^2 0.329 m/s 0.658 m/s 50 Workdeck: Lat. (due to roll) accel 0.181 m^2/s^4 0.426 m/s^2 0.852 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.17 MII/h 0.002 MII/h 0, 0 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- --
  • 182.
    8 Vessel trim0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 326.228 kN -- -- 17 Heave motion 1.217 m^2 1.103 m 2.207 m 18 Roll motion 0.00745 rad^2 0.08631 rad 0.17261 rad 19 Pitch motion 0.00181 rad^2 0.0425 rad 0.085 rad 20 Heave velocity 0.421 m^2/s^2 0.649 m/s 1.298 m/s 21 Roll velocity 0.00761 (rad/s)^2 0.08725 rad/s 0.1745 rad/s 22 Pitch velocity 0.00115 (rad/s)^2 0.03387 rad/s 0.06774 rad/s 23 Heave acceleration 0.181 m^2/s^4 0.425 m/s^2 0.85 m/s^2 24 Roll acceleration 0.01202 (rad/s/s)^2 0.10963 rad/s/s 0.21927 rad/s/s) 25 Pitch acceleration 0.00089 (rad/s/s)^2 0.02992 rad/s/s 0.05983 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.539 m^2 1.24 m 2.481 m 27 Wheelhouse: Rel. vert. motion 0.1 m^2 0.316 m 0.632 m 28 Wheelhouse: Abs. vert. velocity 0.628 m^2/s^2 0.792 m/s 1.584 m/s 29 Wheelhouse: Rel. vert. velocity 0.192 m^2/s^2 0.438 m/s 0.876 m/s 30 Wheelhouse: Abs. vert. accel 0.336 m^2/s^4 0.579 m/s^2 1.159 m/s^2 31 Wheelhouse: Rel. vert. accel 0.654 m^2/s^4 0.809 m/s^2 1.618 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.219 m^2 0.468 m 0.937 m 33 Wheelhouse: Long. (due to pitch) velocity 0.138 m^2/s^2 0.371 m/s 0.742 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.106 m^2/s^4 0.326 m/s^2 0.652 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.909 m^2 0.953 m 1.907 m 36 Wheelhouse: Lat. (due to roll) velocity 0.916 m^2/s^2 0.957 m/s 1.914 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.424 m^2/s^4 1.193 m/s^2 2.386 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 3.368 MII/h 0.161 MII/h 39 Workdeck: Abs. vert. motion 1.403 m^2 1.185 m 2.369 m 40 Workdeck: Rel. vert. motion 0.118 m^2 0.343 m 0.686 m 41 Workdeck: Abs. vert. velocity 0.544 m^2/s^2 0.737 m/s 1.475 m/s 42 Workdeck: Rel. vert. velocity 0.166 m^2/s^2 0.407 m/s 0.814 m/s 43 Workdeck: Abs. vert. accel 0.312 m^2/s^4 0.559 m/s^2 1.118 m/s^2 44 Workdeck: Rel. vert. accel 0.511 m^2/s^4 0.715 m/s^2 1.43 m/s^2
  • 183.
    45 Workdeck: Long.(due to pitch) motion 0.027 m^2 0.164 m 0.328 m 46 Workdeck: Long. (due to pitch) velocity 0.017 m^2/s^2 0.13 m/s 0.259 m/s 47 Workdeck: Long. (due to pitch) accel 0.013 m^2/s^4 0.114 m/s^2 0.228 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.111 m^2 0.333 m 0.667 m 49 Workdeck: Lat. (due to roll) velocity 0.112 m^2/s^2 0.335 m/s 0.669 m/s 50 Workdeck: Lat. (due to roll) accel 0.174 m^2/s^4 0.417 m/s^2 0.835 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.389 MII/h 0.014 MII/h 0, 0 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 50.195 kN -- -- 17 Heave motion 0.069 m^2 0.263 m 0.525 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00036 rad^2 0.01886 rad 0.03771 rad 20 Heave velocity 0.035 m^2/s^2 0.188 m/s 0.376 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00024 (rad/s)^2 0.01544 rad/s 0.03088 rad/s 23 Heave acceleration 0.021 m^2/s^4 0.146 m/s^2 0.293 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00018 (rad/s/s)^2 0.01336 rad/s/s 0.02671 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.164 m^2 0.405 m 0.809 m 27 Wheelhouse: Rel. vert. motion 0.043 m^2 0.208 m 0.415 m 28 Wheelhouse: Abs. vert. velocity 0.099 m^2/s^2 0.314 m/s 0.628 m/s
  • 184.
    29 Wheelhouse: Rel.vert. velocity 0.088 m^2/s^2 0.297 m/s 0.595 m/s 30 Wheelhouse: Abs. vert. accel 0.068 m^2/s^4 0.261 m/s^2 0.523 m/s^2 31 Wheelhouse: Rel. vert. accel 0.335 m^2/s^4 0.579 m/s^2 1.158 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.042 m^2 0.205 m 0.41 m 33 Wheelhouse: Long. (due to pitch) velocity 0.028 m^2/s^2 0.167 m/s 0.335 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.021 m^2/s^4 0.144 m/s^2 0.289 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.065 m^2 0.254 m 0.509 m 40 Workdeck: Rel. vert. motion 0.114 m^2 0.338 m 0.676 m 41 Workdeck: Abs. vert. velocity 0.032 m^2/s^2 0.18 m/s 0.36 m/s 42 Workdeck: Rel. vert. velocity 0.163 m^2/s^2 0.404 m/s 0.808 m/s 43 Workdeck: Abs. vert. accel 0.019 m^2/s^4 0.139 m/s^2 0.278 m/s^2 44 Workdeck: Rel. vert. accel 0.367 m^2/s^4 0.606 m/s^2 1.212 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.072 m 0.143 m 46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.059 m/s 0.117 m/s 47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.05 m/s^2 0.101 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- --
  • 185.
    13 Roll gyradius4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 147.607 kN -- -- 17 Heave motion 0.268 m^2 0.518 m 1.036 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00103 rad^2 0.03213 rad 0.06426 rad 20 Heave velocity 0.12 m^2/s^2 0.346 m/s 0.693 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00064 (rad/s)^2 0.02531 rad/s 0.05063 rad/s 23 Heave acceleration 0.064 m^2/s^4 0.252 m/s^2 0.505 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00045 (rad/s/s)^2 0.02125 rad/s/s 0.0425 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.545 m^2 0.738 m 1.476 m 27 Wheelhouse: Rel. vert. motion 0.094 m^2 0.307 m 0.615 m 28 Wheelhouse: Abs. vert. velocity 0.29 m^2/s^2 0.539 m/s 1.078 m/s 29 Wheelhouse: Rel. vert. velocity 0.186 m^2/s^2 0.431 m/s 0.863 m/s 30 Wheelhouse: Abs. vert. accel 0.183 m^2/s^4 0.428 m/s^2 0.855 m/s^2 31 Wheelhouse: Rel. vert. accel 0.688 m^2/s^4 0.829 m/s^2 1.659 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.123 m^2 0.35 m 0.701 m 33 Wheelhouse: Long. (due to pitch) velocity 0.076 m^2/s^2 0.275 m/s 0.55 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.053 m^2/s^4 0.23 m/s^2 0.46 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.256 m^2 0.506 m 1.012 m 40 Workdeck: Rel. vert. motion 0.259 m^2 0.509 m 1.019 m 41 Workdeck: Abs. vert. velocity 0.112 m^2/s^2 0.335 m/s 0.67 m/s 42 Workdeck: Rel. vert. velocity 0.354 m^2/s^2 0.595 m/s 1.191 m/s 43 Workdeck: Abs. vert. accel 0.058 m^2/s^4 0.242 m/s^2 0.483 m/s^2 44 Workdeck: Rel. vert. accel 0.77 m^2/s^4 0.877 m/s^2 1.755 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.015 m^2 0.123 m 0.245 m 46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.096 m/s 0.192 m/s 47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.08 m/s^2 0.161 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
  • 186.
    50 Workdeck: Lat.(due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 0, 0 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 0 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 305.034 kN -- -- 17 Heave motion 0.986 m^2 0.993 m 1.986 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00182 rad^2 0.04267 rad 0.08534 rad 20 Heave velocity 0.313 m^2/s^2 0.56 m/s 1.12 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00093 (rad/s)^2 0.03055 rad/s 0.06111 rad/s 23 Heave acceleration 0.123 m^2/s^4 0.35 m/s^2 0.7 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00058 (rad/s/s)^2 0.024 rad/s/s 0.04799 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.482 m^2 1.217 m 2.434 m 27 Wheelhouse: Rel. vert. motion 0.095 m^2 0.308 m 0.617 m 28 Wheelhouse: Abs. vert. velocity 0.564 m^2/s^2 0.751 m/s 1.503 m/s 29 Wheelhouse: Rel. vert. velocity 0.175 m^2/s^2 0.418 m/s 0.836 m/s 30 Wheelhouse: Abs. vert. accel 0.276 m^2/s^4 0.525 m/s^2 1.05 m/s^2 31 Wheelhouse: Rel. vert. accel 0.622 m^2/s^4 0.788 m/s^2 1.577 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.219 m^2 0.468 m 0.937 m 33 Wheelhouse: Long. (due to pitch) velocity 0.111 m^2/s^2 0.333 m/s 0.667 m/s
  • 187.
    34 Wheelhouse: Long.(due to pitch) accel 0.068 m^2/s^4 0.261 m/s^2 0.521 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.963 m^2 0.981 m 1.962 m 40 Workdeck: Rel. vert. motion 0.277 m^2 0.527 m 1.053 m 41 Workdeck: Abs. vert. velocity 0.302 m^2/s^2 0.55 m/s 1.099 m/s 42 Workdeck: Rel. vert. velocity 0.35 m^2/s^2 0.591 m/s 1.183 m/s 43 Workdeck: Abs. vert. accel 0.116 m^2/s^4 0.34 m/s^2 0.68 m/s^2 44 Workdeck: Rel. vert. accel 0.716 m^2/s^4 0.846 m/s^2 1.693 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.027 m^2 0.164 m 0.328 m 46 Workdeck: Long. (due to pitch) velocity 0.014 m^2/s^2 0.117 m/s 0.233 m/s 47 Workdeck: Long. (due to pitch) accel 0.008 m^2/s^4 0.091 m/s^2 0.182 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 54.237 kN -- -- 17 Heave motion 0.054 m^2 0.232 m 0.464 m
  • 188.
    18 Roll motion0 rad^2 0 rad 0 rad 19 Pitch motion 0.00053 rad^2 0.02307 rad 0.04615 rad 20 Heave velocity 0.017 m^2/s^2 0.131 m/s 0.262 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00021 (rad/s)^2 0.01443 rad/s 0.02887 rad/s 23 Heave acceleration 0.006 m^2/s^4 0.077 m/s^2 0.154 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00009 (rad/s/s)^2 0.00928 rad/s/s 0.01855 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.105 m^2 0.325 m 0.649 m 27 Wheelhouse: Rel. vert. motion 0.095 m^2 0.308 m 0.617 m 28 Wheelhouse: Abs. vert. velocity 0.039 m^2/s^2 0.198 m/s 0.397 m/s 29 Wheelhouse: Rel. vert. velocity 0.053 m^2/s^2 0.23 m/s 0.46 m/s 30 Wheelhouse: Abs. vert. accel 0.016 m^2/s^4 0.126 m/s^2 0.252 m/s^2 31 Wheelhouse: Rel. vert. accel 0.033 m^2/s^4 0.181 m/s^2 0.361 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.059 m^2 0.243 m 0.485 m 33 Wheelhouse: Long. (due to pitch) velocity 0.023 m^2/s^2 0.15 m/s 0.301 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.009 m^2/s^4 0.096 m/s^2 0.192 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.088 m^2 0.297 m 0.593 m 40 Workdeck: Rel. vert. motion 0.091 m^2 0.302 m 0.604 m 41 Workdeck: Abs. vert. velocity 0.029 m^2/s^2 0.171 m/s 0.341 m/s 42 Workdeck: Rel. vert. velocity 0.058 m^2/s^2 0.242 m/s 0.483 m/s 43 Workdeck: Abs. vert. accel 0.01 m^2/s^4 0.102 m/s^2 0.203 m/s^2 44 Workdeck: Rel. vert. accel 0.039 m^2/s^4 0.198 m/s^2 0.397 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.085 m 0.17 m 46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.053 m/s 0.105 m/s 47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.067 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- --
  • 189.
    2 Characteristic waveheight 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 151.219 kN -- -- 17 Heave motion 0.219 m^2 0.468 m 0.936 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00159 rad^2 0.03989 rad 0.07977 rad 20 Heave velocity 0.063 m^2/s^2 0.251 m/s 0.501 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00059 (rad/s)^2 0.02421 rad/s 0.04842 rad/s 23 Heave acceleration 0.02 m^2/s^4 0.14 m/s^2 0.28 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00023 (rad/s/s)^2 0.01518 rad/s/s 0.03036 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.354 m^2 0.595 m 1.19 m 27 Wheelhouse: Rel. vert. motion 0.236 m^2 0.485 m 0.971 m 28 Wheelhouse: Abs. vert. velocity 0.12 m^2/s^2 0.346 m/s 0.692 m/s 29 Wheelhouse: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s 30 Wheelhouse: Abs. vert. accel 0.044 m^2/s^4 0.211 m/s^2 0.422 m/s^2 31 Wheelhouse: Rel. vert. accel 0.073 m^2/s^4 0.27 m/s^2 0.539 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.18 m^2 0.424 m 0.848 m 33 Wheelhouse: Long. (due to pitch) velocity 0.065 m^2/s^2 0.255 m/s 0.509 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.025 m^2/s^4 0.158 m/s^2 0.316 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
  • 190.
    39 Workdeck: Abs.vert. motion 0.334 m^2 0.578 m 1.156 m 40 Workdeck: Rel. vert. motion 0.201 m^2 0.448 m 0.896 m 41 Workdeck: Abs. vert. velocity 0.1 m^2/s^2 0.317 m/s 0.634 m/s 42 Workdeck: Rel. vert. velocity 0.127 m^2/s^2 0.356 m/s 0.712 m/s 43 Workdeck: Abs. vert. accel 0.033 m^2/s^4 0.181 m/s^2 0.362 m/s^2 44 Workdeck: Rel. vert. accel 0.085 m^2/s^4 0.291 m/s^2 0.581 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.022 m^2 0.148 m 0.296 m 46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.089 m/s 0.178 m/s 47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.055 m/s^2 0.111 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m 16 Added resistance 290.941 kN -- -- 17 Heave motion 0.88 m^2 0.938 m 1.877 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00293 rad^2 0.05417 rad 0.10835 rad 20 Heave velocity 0.192 m^2/s^2 0.438 m/s 0.876 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00093 (rad/s)^2 0.03048 rad/s 0.06096 rad/s
  • 191.
    23 Heave acceleration0.047 m^2/s^4 0.216 m/s^2 0.433 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00033 (rad/s/s)^2 0.01805 rad/s/s 0.03609 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.043 m^2 1.021 m 2.043 m 27 Wheelhouse: Rel. vert. motion 0.31 m^2 0.557 m 1.114 m 28 Wheelhouse: Abs. vert. velocity 0.261 m^2/s^2 0.51 m/s 1.021 m/s 29 Wheelhouse: Rel. vert. velocity 0.141 m^2/s^2 0.376 m/s 0.752 m/s 30 Wheelhouse: Abs. vert. accel 0.076 m^2/s^4 0.276 m/s^2 0.552 m/s^2 31 Wheelhouse: Rel. vert. accel 0.076 m^2/s^4 0.276 m/s^2 0.552 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.345 m^2 0.587 m 1.174 m 33 Wheelhouse: Long. (due to pitch) velocity 0.106 m^2/s^2 0.326 m/s 0.652 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.036 m^2/s^4 0.191 m/s^2 0.381 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.15 m^2 1.072 m 2.145 m 40 Workdeck: Rel. vert. motion 0.202 m^2 0.449 m 0.898 m 41 Workdeck: Abs. vert. velocity 0.265 m^2/s^2 0.515 m/s 1.031 m/s 42 Workdeck: Rel. vert. velocity 0.124 m^2/s^2 0.353 m/s 0.705 m/s 43 Workdeck: Abs. vert. accel 0.069 m^2/s^4 0.263 m/s^2 0.526 m/s^2 44 Workdeck: Rel. vert. accel 0.081 m^2/s^4 0.285 m/s^2 0.57 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.042 m^2 0.205 m 0.411 m 46 Workdeck: Long. (due to pitch) velocity 0.013 m^2/s^2 0.114 m/s 0.228 m/s 47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.067 m/s^2 0.133 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- --
  • 192.
    7 Vessel GMt2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 54.636 kN -- -- 17 Heave motion 0.069 m^2 0.263 m 0.526 m 18 Roll motion 0.00637 rad^2 0.07984 rad 0.15968 rad 19 Pitch motion 0.00054 rad^2 0.02316 rad 0.04632 rad 20 Heave velocity 0.024 m^2/s^2 0.156 m/s 0.312 m/s 21 Roll velocity 0.00576 (rad/s)^2 0.07589 rad/s 0.15177 rad/s 22 Pitch velocity 0.00023 (rad/s)^2 0.0153 rad/s 0.03061 rad/s 23 Heave acceleration 0.009 m^2/s^4 0.097 m/s^2 0.194 m/s^2 24 Roll acceleration 0.0057 (rad/s/s)^2 0.07552 rad/s/s 0.15103 rad/s/s) 25 Pitch acceleration 0.00011 (rad/s/s)^2 0.01045 rad/s/s 0.0209 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.106 m^2 0.326 m 0.651 m 27 Wheelhouse: Rel. vert. motion 0.082 m^2 0.286 m 0.571 m 28 Wheelhouse: Abs. vert. velocity 0.044 m^2/s^2 0.21 m/s 0.42 m/s 29 Wheelhouse: Rel. vert. velocity 0.052 m^2/s^2 0.228 m/s 0.455 m/s 30 Wheelhouse: Abs. vert. accel 0.02 m^2/s^4 0.142 m/s^2 0.284 m/s^2 31 Wheelhouse: Rel. vert. accel 0.038 m^2/s^4 0.196 m/s^2 0.391 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.06 m^2 0.245 m 0.491 m 33 Wheelhouse: Long. (due to pitch) velocity 0.026 m^2/s^2 0.161 m/s 0.321 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.012 m^2/s^4 0.109 m/s^2 0.218 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.778 m^2 0.882 m 1.764 m 36 Wheelhouse: Lat. (due to roll) velocity 0.7 m^2/s^2 0.837 m/s 1.674 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.692 m^2/s^4 0.832 m/s^2 1.664 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.186 m^2 0.431 m 0.862 m 40 Workdeck: Rel. vert. motion 0.089 m^2 0.298 m 0.596 m 41 Workdeck: Abs. vert. velocity 0.097 m^2/s^2 0.312 m/s 0.624 m/s 42 Workdeck: Rel. vert. velocity 0.081 m^2/s^2 0.285 m/s 0.57 m/s 43 Workdeck: Abs. vert. accel 0.068 m^2/s^4 0.261 m/s^2 0.521 m/s^2
  • 193.
    44 Workdeck: Rel.vert. accel 0.081 m^2/s^4 0.285 m/s^2 0.57 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.086 m 0.172 m 46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.056 m/s 0.112 m/s 47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.038 m/s^2 0.076 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.095 m^2 0.308 m 0.617 m 49 Workdeck: Lat. (due to roll) velocity 0.086 m^2/s^2 0.293 m/s 0.585 m/s 50 Workdeck: Lat. (due to roll) accel 0.085 m^2/s^4 0.291 m/s^2 0.582 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.276 MII/h 0.002 MII/h 5, 5 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 152.617 kN -- -- 17 Heave motion 0.268 m^2 0.518 m 1.035 m 18 Roll motion 0.01336 rad^2 0.11559 rad 0.23117 rad 19 Pitch motion 0.00156 rad^2 0.03947 rad 0.07894 rad 20 Heave velocity 0.085 m^2/s^2 0.291 m/s 0.582 m/s 21 Roll velocity 0.01193 (rad/s)^2 0.10922 rad/s 0.21843 rad/s 22 Pitch velocity 0.00064 (rad/s)^2 0.02528 rad/s 0.05056 rad/s 23 Heave acceleration 0.03 m^2/s^4 0.172 m/s^2 0.344 m/s^2 24 Roll acceleration 0.01174 (rad/s/s)^2 0.10833 rad/s/s 0.21666 rad/s/s) 25 Pitch acceleration 0.00028 (rad/s/s)^2 0.01683 rad/s/s 0.03366 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.35 m^2 0.591 m 1.183 m 27 Wheelhouse: Rel. vert. motion 0.201 m^2 0.449 m 0.898 m
  • 194.
    28 Wheelhouse: Abs.vert. velocity 0.13 m^2/s^2 0.361 m/s 0.722 m/s 29 Wheelhouse: Rel. vert. velocity 0.12 m^2/s^2 0.346 m/s 0.692 m/s 30 Wheelhouse: Abs. vert. accel 0.055 m^2/s^4 0.234 m/s^2 0.467 m/s^2 31 Wheelhouse: Rel. vert. accel 0.084 m^2/s^4 0.29 m/s^2 0.581 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.178 m^2 0.422 m 0.844 m 33 Wheelhouse: Long. (due to pitch) velocity 0.072 m^2/s^2 0.267 m/s 0.535 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.031 m^2/s^4 0.176 m/s^2 0.353 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 1.633 m^2 1.278 m 2.556 m 36 Wheelhouse: Lat. (due to roll) velocity 1.452 m^2/s^2 1.205 m/s 2.41 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.425 m^2/s^4 1.194 m/s^2 2.387 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.002 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.581 m^2 0.763 m 1.525 m 40 Workdeck: Rel. vert. motion 0.189 m^2 0.435 m 0.869 m 41 Workdeck: Abs. vert. velocity 0.258 m^2/s^2 0.508 m/s 1.017 m/s 42 Workdeck: Rel. vert. velocity 0.169 m^2/s^2 0.411 m/s 0.822 m/s 43 Workdeck: Abs. vert. accel 0.158 m^2/s^4 0.397 m/s^2 0.794 m/s^2 44 Workdeck: Rel. vert. accel 0.167 m^2/s^4 0.409 m/s^2 0.818 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.022 m^2 0.148 m 0.295 m 46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.094 m/s 0.187 m/s 47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.062 m/s^2 0.123 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m 49 Workdeck: Lat. (due to roll) velocity 0.178 m^2/s^2 0.421 m/s 0.843 m/s 50 Workdeck: Lat. (due to roll) accel 0.174 m^2/s^4 0.417 m/s^2 0.835 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.808 MII/h 0.306 MII/h 5, 5 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- --
  • 195.
    12 Pitch gyradius16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m 16 Added resistance 294.492 kN -- -- 17 Heave motion 0.985 m^2 0.992 m 1.985 m 18 Roll motion 0.01264 rad^2 0.11242 rad 0.22483 rad 19 Pitch motion 0.00272 rad^2 0.05217 rad 0.10434 rad 20 Heave velocity 0.233 m^2/s^2 0.483 m/s 0.966 m/s 21 Roll velocity 0.01096 (rad/s)^2 0.10471 rad/s 0.20941 rad/s 22 Pitch velocity 0.00096 (rad/s)^2 0.03094 rad/s 0.06189 rad/s 23 Heave acceleration 0.063 m^2/s^4 0.251 m/s^2 0.503 m/s^2 24 Roll acceleration 0.01065 (rad/s/s)^2 0.1032 rad/s/s 0.2064 rad/s/s) 25 Pitch acceleration 0.00038 (rad/s/s)^2 0.01946 rad/s/s 0.03892 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.017 m^2 1.008 m 2.017 m 27 Wheelhouse: Rel. vert. motion 0.26 m^2 0.51 m 1.02 m 28 Wheelhouse: Abs. vert. velocity 0.272 m^2/s^2 0.521 m/s 1.043 m/s 29 Wheelhouse: Rel. vert. velocity 0.135 m^2/s^2 0.367 m/s 0.734 m/s 30 Wheelhouse: Abs. vert. accel 0.088 m^2/s^4 0.297 m/s^2 0.593 m/s^2 31 Wheelhouse: Rel. vert. accel 0.086 m^2/s^4 0.293 m/s^2 0.587 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.323 m^2 0.569 m 1.137 m 33 Wheelhouse: Long. (due to pitch) velocity 0.111 m^2/s^2 0.333 m/s 0.665 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.043 m^2/s^4 0.206 m/s^2 0.413 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 1.551 m^2 1.246 m 2.491 m 36 Wheelhouse: Lat. (due to roll) velocity 1.337 m^2/s^2 1.156 m/s 2.313 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.294 m^2/s^4 1.137 m/s^2 2.275 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.005 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.515 m^2 1.231 m 2.461 m 40 Workdeck: Rel. vert. motion 0.192 m^2 0.438 m 0.877 m 41 Workdeck: Abs. vert. velocity 0.456 m^2/s^2 0.675 m/s 1.35 m/s 42 Workdeck: Rel. vert. velocity 0.158 m^2/s^2 0.398 m/s 0.796 m/s 43 Workdeck: Abs. vert. accel 0.198 m^2/s^4 0.445 m/s^2 0.89 m/s^2 44 Workdeck: Rel. vert. accel 0.152 m^2/s^4 0.39 m/s^2 0.78 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.04 m^2 0.199 m 0.398 m 46 Workdeck: Long. (due to pitch) velocity 0.014 m^2/s^2 0.116 m/s 0.233 m/s 47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.072 m/s^2 0.144 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.19 m^2 0.436 m 0.871 m
  • 196.
    49 Workdeck: Lat.(due to roll) velocity 0.164 m^2/s^2 0.404 m/s 0.809 m/s 50 Workdeck: Lat. (due to roll) accel 0.158 m^2/s^4 0.398 m/s^2 0.796 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.486 MII/h 0.286 MII/h 5, 5 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 47.469 kN -- -- 17 Heave motion 0.221 m^2 0.47 m 0.94 m 18 Roll motion 0.00595 rad^2 0.07716 rad 0.15433 rad 19 Pitch motion 0.00022 rad^2 0.01469 rad 0.02939 rad 20 Heave velocity 0.168 m^2/s^2 0.41 m/s 0.82 m/s 21 Roll velocity 0.00714 (rad/s)^2 0.08452 rad/s 0.16904 rad/s 22 Pitch velocity 0.00017 (rad/s)^2 0.01299 rad/s 0.02598 rad/s 23 Heave acceleration 0.162 m^2/s^4 0.403 m/s^2 0.805 m/s^2 24 Roll acceleration 0.01321 (rad/s/s)^2 0.11495 rad/s/s 0.2299 rad/s/s) 25 Pitch acceleration 0.00015 (rad/s/s)^2 0.0121 rad/s/s 0.02421 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.093 m^2 0.305 m 0.61 m 27 Wheelhouse: Rel. vert. motion 0.097 m^2 0.311 m 0.622 m 28 Wheelhouse: Abs. vert. velocity 0.075 m^2/s^2 0.274 m/s 0.548 m/s 29 Wheelhouse: Rel. vert. velocity 0.165 m^2/s^2 0.406 m/s 0.813 m/s 30 Wheelhouse: Abs. vert. accel 0.084 m^2/s^4 0.29 m/s^2 0.579 m/s^2 31 Wheelhouse: Rel. vert. accel 0.507 m^2/s^4 0.712 m/s^2 1.424 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.026 m^2 0.16 m 0.319 m
  • 197.
    33 Wheelhouse: Long.(due to pitch) velocity 0.019 m^2/s^2 0.139 m/s 0.278 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.016 m^2/s^4 0.128 m/s^2 0.255 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.706 m 36 Wheelhouse: Lat. (due to roll) velocity 0.85 m^2/s^2 0.922 m/s 1.844 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.553 m^2/s^4 1.246 m/s^2 2.492 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.358 MII/h 0.379 MII/h 39 Workdeck: Abs. vert. motion 0.517 m^2 0.719 m 1.438 m 40 Workdeck: Rel. vert. motion 0.115 m^2 0.338 m 0.677 m 41 Workdeck: Abs. vert. velocity 0.448 m^2/s^2 0.67 m/s 1.339 m/s 42 Workdeck: Rel. vert. velocity 0.139 m^2/s^2 0.373 m/s 0.746 m/s 43 Workdeck: Abs. vert. accel 0.516 m^2/s^4 0.718 m/s^2 1.437 m/s^2 44 Workdeck: Rel. vert. accel 0.395 m^2/s^4 0.628 m/s^2 1.257 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.003 m^2 0.056 m 0.112 m 46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.049 m/s 0.097 m/s 47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.045 m/s^2 0.089 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.298 m 0.597 m 49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s 50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.167 MII/h 0.004 MII/h 5, 5 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 138.649 kN -- --
  • 198.
    17 Heave motion0.673 m^2 0.821 m 1.641 m 18 Roll motion 0.01403 rad^2 0.11844 rad 0.23688 rad 19 Pitch motion 0.00056 rad^2 0.02375 rad 0.0475 rad 20 Heave velocity 0.443 m^2/s^2 0.666 m/s 1.331 m/s 21 Roll velocity 0.01595 (rad/s)^2 0.12629 rad/s 0.25257 rad/s 22 Pitch velocity 0.00042 (rad/s)^2 0.02045 rad/s 0.0409 rad/s 23 Heave acceleration 0.386 m^2/s^4 0.621 m/s^2 1.242 m/s^2 24 Roll acceleration 0.02812 (rad/s/s)^2 0.16768 rad/s/s 0.33537 rad/s/s) 25 Pitch acceleration 0.00035 (rad/s/s)^2 0.01867 rad/s/s 0.03734 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.307 m^2 0.554 m 1.107 m 27 Wheelhouse: Rel. vert. motion 0.219 m^2 0.468 m 0.937 m 28 Wheelhouse: Abs. vert. velocity 0.2 m^2/s^2 0.448 m/s 0.895 m/s 29 Wheelhouse: Rel. vert. velocity 0.353 m^2/s^2 0.594 m/s 1.189 m/s 30 Wheelhouse: Abs. vert. accel 0.195 m^2/s^4 0.442 m/s^2 0.883 m/s^2 31 Wheelhouse: Rel. vert. accel 1.048 m^2/s^4 1.024 m/s^2 2.047 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.068 m^2 0.261 m 0.521 m 33 Wheelhouse: Long. (due to pitch) velocity 0.049 m^2/s^2 0.22 m/s 0.441 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.039 m^2/s^4 0.198 m/s^2 0.396 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 1.731 m^2 1.316 m 2.631 m 36 Wheelhouse: Lat. (due to roll) velocity 1.91 m^2/s^2 1.382 m/s 2.764 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.312 m^2/s^4 1.82 m/s^2 3.64 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.647 MII/h 4.866 MII/h 39 Workdeck: Abs. vert. motion 1.433 m^2 1.197 m 2.394 m 40 Workdeck: Rel. vert. motion 0.285 m^2 0.534 m 1.068 m 41 Workdeck: Abs. vert. velocity 1.107 m^2/s^2 1.052 m/s 2.104 m/s 42 Workdeck: Rel. vert. velocity 0.315 m^2/s^2 0.562 m/s 1.123 m/s 43 Workdeck: Abs. vert. accel 1.172 m^2/s^4 1.083 m/s^2 2.165 m/s^2 44 Workdeck: Rel. vert. accel 0.827 m^2/s^4 0.909 m/s^2 1.818 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.008 m^2 0.091 m 0.182 m 46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.077 m/s 0.154 m/s 47 Workdeck: Long. (due to pitch) accel 0.005 m^2/s^4 0.069 m/s^2 0.138 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.92 m 49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.483 m/s 0.967 m/s 50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.48 MII/h 0.411 MII/h 5, 5 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units
  • 199.
    1 Modal period12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 290.756 kN -- -- 17 Heave motion 1.617 m^2 1.272 m 2.543 m 18 Roll motion 0.01621 rad^2 0.1273 rad 0.2546 rad 19 Pitch motion 0.00077 rad^2 0.02772 rad 0.05544 rad 20 Heave velocity 0.717 m^2/s^2 0.847 m/s 1.693 m/s 21 Roll velocity 0.01651 (rad/s)^2 0.1285 rad/s 0.25699 rad/s 22 Pitch velocity 0.00051 (rad/s)^2 0.02259 rad/s 0.04517 rad/s 23 Heave acceleration 0.472 m^2/s^4 0.687 m/s^2 1.374 m/s^2 24 Roll acceleration 0.02685 (rad/s/s)^2 0.16386 rad/s/s 0.32772 rad/s/s) 25 Pitch acceleration 0.00039 (rad/s/s)^2 0.01985 rad/s/s 0.0397 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.96 m^2 0.98 m 1.959 m 27 Wheelhouse: Rel. vert. motion 0.242 m^2 0.492 m 0.984 m 28 Wheelhouse: Abs. vert. velocity 0.371 m^2/s^2 0.609 m/s 1.219 m/s 29 Wheelhouse: Rel. vert. velocity 0.344 m^2/s^2 0.586 m/s 1.173 m/s 30 Wheelhouse: Abs. vert. accel 0.241 m^2/s^4 0.491 m/s^2 0.981 m/s^2 31 Wheelhouse: Rel. vert. accel 0.958 m^2/s^4 0.979 m/s^2 1.957 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.097 m^2 0.311 m 0.622 m 33 Wheelhouse: Long. (due to pitch) velocity 0.061 m^2/s^2 0.247 m/s 0.494 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.045 m^2/s^4 0.212 m/s^2 0.425 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 2.039 m^2 1.428 m 2.856 m 36 Wheelhouse: Lat. (due to roll) velocity 2 m^2/s^2 1.414 m/s 2.828 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.176 m^2/s^4 1.782 m/s^2 3.564 m/s^2
  • 200.
    38 Wheelhouse: MIIslide; tip f/a; tip s/s 0 MII/h 16.078 MII/h 4.14 MII/h 39 Workdeck: Abs. vert. motion 2.693 m^2 1.641 m 3.282 m 40 Workdeck: Rel. vert. motion 0.391 m^2 0.625 m 1.251 m 41 Workdeck: Abs. vert. velocity 1.495 m^2/s^2 1.223 m/s 2.445 m/s 42 Workdeck: Rel. vert. velocity 0.345 m^2/s^2 0.587 m/s 1.174 m/s 43 Workdeck: Abs. vert. accel 1.285 m^2/s^4 1.134 m/s^2 2.267 m/s^2 44 Workdeck: Rel. vert. accel 0.775 m^2/s^4 0.88 m/s^2 1.76 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.012 m^2 0.109 m 0.218 m 46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.086 m/s 0.173 m/s 47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.074 m/s^2 0.149 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.249 m^2 0.499 m 0.999 m 49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.989 m/s 50 Workdeck: Lat. (due to roll) accel 0.388 m^2/s^4 0.623 m/s^2 1.247 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.384 MII/h 0.716 MII/h 5, 5 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 54.728 kN -- -- 17 Heave motion 0.145 m^2 0.381 m 0.762 m 18 Roll motion 0.00179 rad^2 0.04227 rad 0.08454 rad 19 Pitch motion 0.0005 rad^2 0.02243 rad 0.04486 rad 20 Heave velocity 0.114 m^2/s^2 0.338 m/s 0.675 m/s 21 Roll velocity 0.00224 (rad/s)^2 0.04737 rad/s 0.09475 rad/s
  • 201.
    22 Pitch velocity0.00053 (rad/s)^2 0.02295 rad/s 0.0459 rad/s 23 Heave acceleration 0.104 m^2/s^4 0.322 m/s^2 0.645 m/s^2 24 Roll acceleration 0.00425 (rad/s/s)^2 0.0652 rad/s/s 0.1304 rad/s/s) 25 Pitch acceleration 0.00063 (rad/s/s)^2 0.02505 rad/s/s 0.0501 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.267 m^2 0.517 m 1.034 m 27 Wheelhouse: Rel. vert. motion 0.116 m^2 0.341 m 0.682 m 28 Wheelhouse: Abs. vert. velocity 0.238 m^2/s^2 0.488 m/s 0.977 m/s 29 Wheelhouse: Rel. vert. velocity 0.253 m^2/s^2 0.503 m/s 1.006 m/s 30 Wheelhouse: Abs. vert. accel 0.243 m^2/s^4 0.493 m/s^2 0.987 m/s^2 31 Wheelhouse: Rel. vert. accel 0.986 m^2/s^4 0.993 m/s^2 1.986 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.06 m^2 0.246 m 0.491 m 33 Wheelhouse: Long. (due to pitch) velocity 0.063 m^2/s^2 0.251 m/s 0.501 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.075 m^2/s^4 0.273 m/s^2 0.546 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.215 m^2 0.464 m 0.927 m 36 Wheelhouse: Lat. (due to roll) velocity 0.268 m^2/s^2 0.518 m/s 1.036 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.503 m^2/s^4 0.709 m/s^2 1.418 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.04 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.207 m^2 0.455 m 0.909 m 40 Workdeck: Rel. vert. motion 0.057 m^2 0.238 m 0.477 m 41 Workdeck: Abs. vert. velocity 0.179 m^2/s^2 0.423 m/s 0.845 m/s 42 Workdeck: Rel. vert. velocity 0.168 m^2/s^2 0.41 m/s 0.82 m/s 43 Workdeck: Abs. vert. accel 0.189 m^2/s^4 0.435 m/s^2 0.871 m/s^2 44 Workdeck: Rel. vert. accel 0.99 m^2/s^4 0.995 m/s^2 1.99 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.086 m 0.172 m 46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.088 m/s 0.175 m/s 47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.095 m/s^2 0.191 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.026 m^2 0.162 m 0.324 m 49 Workdeck: Lat. (due to roll) velocity 0.033 m^2/s^2 0.181 m/s 0.362 m/s 50 Workdeck: Lat. (due to roll) accel 0.061 m^2/s^4 0.248 m/s^2 0.496 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 5 kts -- --
  • 202.
    6 Vessel displacement2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 160.574 kN -- -- 17 Heave motion 0.491 m^2 0.701 m 1.401 m 18 Roll motion 0.00452 rad^2 0.06725 rad 0.13451 rad 19 Pitch motion 0.00135 rad^2 0.03674 rad 0.07348 rad 20 Heave velocity 0.338 m^2/s^2 0.581 m/s 1.163 m/s 21 Roll velocity 0.00534 (rad/s)^2 0.07307 rad/s 0.14614 rad/s 22 Pitch velocity 0.00132 (rad/s)^2 0.03634 rad/s 0.07269 rad/s 23 Heave acceleration 0.279 m^2/s^4 0.529 m/s^2 1.057 m/s^2 24 Roll acceleration 0.00944 (rad/s/s)^2 0.09715 rad/s/s 0.19429 rad/s/s) 25 Pitch acceleration 0.0015 (rad/s/s)^2 0.03874 rad/s/s 0.07748 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.815 m^2 0.903 m 1.805 m 27 Wheelhouse: Rel. vert. motion 0.26 m^2 0.51 m 1.019 m 28 Wheelhouse: Abs. vert. velocity 0.651 m^2/s^2 0.807 m/s 1.613 m/s 29 Wheelhouse: Rel. vert. velocity 0.547 m^2/s^2 0.74 m/s 1.479 m/s 30 Wheelhouse: Abs. vert. accel 0.617 m^2/s^4 0.785 m/s^2 1.571 m/s^2 31 Wheelhouse: Rel. vert. accel 2.061 m^2/s^4 1.436 m/s^2 2.871 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.162 m^2 0.403 m 0.806 m 33 Wheelhouse: Long. (due to pitch) velocity 0.158 m^2/s^2 0.397 m/s 0.795 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.179 m^2/s^4 0.423 m/s^2 0.845 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.546 m^2 0.739 m 1.477 m 36 Wheelhouse: Lat. (due to roll) velocity 0.639 m^2/s^2 0.799 m/s 1.599 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.118 m^2/s^4 1.057 m/s^2 2.114 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 1.371 MII/h 0.05 MII/h 39 Workdeck: Abs. vert. motion 0.655 m^2 0.809 m 1.619 m 40 Workdeck: Rel. vert. motion 0.13 m^2 0.36 m 0.72 m 41 Workdeck: Abs. vert. velocity 0.499 m^2/s^2 0.707 m/s 1.413 m/s 42 Workdeck: Rel. vert. velocity 0.357 m^2/s^2 0.597 m/s 1.194 m/s
  • 203.
    43 Workdeck: Abs.vert. accel 0.481 m^2/s^4 0.693 m/s^2 1.386 m/s^2 44 Workdeck: Rel. vert. accel 2.041 m^2/s^4 1.429 m/s^2 2.857 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.02 m^2 0.141 m 0.282 m 46 Workdeck: Long. (due to pitch) velocity 0.019 m^2/s^2 0.139 m/s 0.278 m/s 47 Workdeck: Long. (due to pitch) accel 0.022 m^2/s^4 0.148 m/s^2 0.296 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.067 m^2 0.258 m 0.517 m 49 Workdeck: Lat. (due to roll) velocity 0.078 m^2/s^2 0.28 m/s 0.559 m/s 50 Workdeck: Lat. (due to roll) accel 0.137 m^2/s^4 0.37 m/s^2 0.74 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.044 MII/h 0.001 MII/h 5, 5 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 328.089 kN -- -- 17 Heave motion 1.384 m^2 1.176 m 2.353 m 18 Roll motion 0.00582 rad^2 0.07627 rad 0.15255 rad 19 Pitch motion 0.002 rad^2 0.04476 rad 0.08952 rad 20 Heave velocity 0.659 m^2/s^2 0.812 m/s 1.623 m/s 21 Roll velocity 0.00608 (rad/s)^2 0.07801 rad/s 0.15601 rad/s 22 Pitch velocity 0.00167 (rad/s)^2 0.04081 rad/s 0.08162 rad/s 23 Heave acceleration 0.418 m^2/s^4 0.647 m/s^2 1.293 m/s^2 24 Roll acceleration 0.00963 (rad/s/s)^2 0.09813 rad/s/s 0.19626 rad/s/s) 25 Pitch acceleration 0.00171 (rad/s/s)^2 0.0414 rad/s/s 0.08279 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.843 m^2 1.358 m 2.715 m
  • 204.
    27 Wheelhouse: Rel.vert. motion 0.267 m^2 0.517 m 1.034 m 28 Wheelhouse: Abs. vert. velocity 1.049 m^2/s^2 1.024 m/s 2.049 m/s 29 Wheelhouse: Rel. vert. velocity 0.532 m^2/s^2 0.729 m/s 1.458 m/s 30 Wheelhouse: Abs. vert. accel 0.808 m^2/s^4 0.899 m/s^2 1.798 m/s^2 31 Wheelhouse: Rel. vert. accel 1.907 m^2/s^4 1.381 m/s^2 2.762 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.243 m^2 0.492 m 0.985 m 33 Wheelhouse: Long. (due to pitch) velocity 0.2 m^2/s^2 0.447 m/s 0.894 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.204 m^2/s^4 0.452 m/s^2 0.904 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.707 m^2 0.841 m 1.681 m 36 Wheelhouse: Lat. (due to roll) velocity 0.731 m^2/s^2 0.855 m/s 1.71 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.143 m^2/s^4 1.069 m/s^2 2.139 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 1.226 MII/h 0.04 MII/h 39 Workdeck: Abs. vert. motion 1.626 m^2 1.275 m 2.551 m 40 Workdeck: Rel. vert. motion 0.153 m^2 0.391 m 0.783 m 41 Workdeck: Abs. vert. velocity 0.862 m^2/s^2 0.928 m/s 1.857 m/s 42 Workdeck: Rel. vert. velocity 0.344 m^2/s^2 0.587 m/s 1.173 m/s 43 Workdeck: Abs. vert. accel 0.643 m^2/s^4 0.802 m/s^2 1.604 m/s^2 44 Workdeck: Rel. vert. accel 1.854 m^2/s^4 1.362 m/s^2 2.723 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.172 m 0.344 m 46 Workdeck: Long. (due to pitch) velocity 0.024 m^2/s^2 0.156 m/s 0.313 m/s 47 Workdeck: Long. (due to pitch) accel 0.025 m^2/s^4 0.158 m/s^2 0.316 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.086 m^2 0.294 m 0.588 m 49 Workdeck: Lat. (due to roll) velocity 0.089 m^2/s^2 0.299 m/s 0.598 m/s 50 Workdeck: Lat. (due to roll) accel 0.14 m^2/s^4 0.374 m/s^2 0.748 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.198 MII/h 0.01 MII/h 5, 5 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- --
  • 205.
    11 Added res.method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 46.965 kN -- -- 17 Heave motion 0.102 m^2 0.32 m 0.64 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00041 rad^2 0.02022 rad 0.04044 rad 20 Heave velocity 0.078 m^2/s^2 0.279 m/s 0.559 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00039 (rad/s)^2 0.01965 rad/s 0.03931 rad/s 23 Heave acceleration 0.068 m^2/s^4 0.261 m/s^2 0.522 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00041 (rad/s/s)^2 0.02021 rad/s/s 0.04042 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.243 m^2 0.493 m 0.986 m 27 Wheelhouse: Rel. vert. motion 0.134 m^2 0.366 m 0.731 m 28 Wheelhouse: Abs. vert. velocity 0.21 m^2/s^2 0.458 m/s 0.917 m/s 29 Wheelhouse: Rel. vert. velocity 0.273 m^2/s^2 0.522 m/s 1.045 m/s 30 Wheelhouse: Abs. vert. accel 0.206 m^2/s^4 0.453 m/s^2 0.907 m/s^2 31 Wheelhouse: Rel. vert. accel 1.083 m^2/s^4 1.041 m/s^2 2.082 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.049 m^2 0.221 m 0.442 m 33 Wheelhouse: Long. (due to pitch) velocity 0.046 m^2/s^2 0.214 m/s 0.428 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.048 m^2/s^4 0.22 m/s^2 0.44 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.082 m^2 0.287 m 0.574 m 40 Workdeck: Rel. vert. motion 0.089 m^2 0.299 m 0.597 m 41 Workdeck: Abs. vert. velocity 0.059 m^2/s^2 0.243 m/s 0.487 m/s 42 Workdeck: Rel. vert. velocity 0.251 m^2/s^2 0.501 m/s 1.001 m/s 43 Workdeck: Abs. vert. accel 0.049 m^2/s^4 0.222 m/s^2 0.443 m/s^2 44 Workdeck: Rel. vert. accel 1.373 m^2/s^4 1.172 m/s^2 2.343 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.077 m 0.154 m 46 Workdeck: Long. (due to pitch) velocity 0.006 m^2/s^2 0.075 m/s 0.15 m/s 47 Workdeck: Long. (due to pitch) accel 0.006 m^2/s^4 0.077 m/s^2 0.154 m/s^2
  • 206.
    48 Workdeck: Lat.(due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 142.863 kN -- -- 17 Heave motion 0.37 m^2 0.609 m 1.217 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.0012 rad^2 0.03466 rad 0.06931 rad 20 Heave velocity 0.248 m^2/s^2 0.498 m/s 0.995 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00105 (rad/s)^2 0.03239 rad/s 0.06478 rad/s 23 Heave acceleration 0.195 m^2/s^4 0.442 m/s^2 0.883 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00105 (rad/s/s)^2 0.03236 rad/s/s 0.06473 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.782 m^2 0.884 m 1.768 m 27 Wheelhouse: Rel. vert. motion 0.313 m^2 0.56 m 1.119 m 28 Wheelhouse: Abs. vert. velocity 0.606 m^2/s^2 0.779 m/s 1.557 m/s 29 Wheelhouse: Rel. vert. velocity 0.604 m^2/s^2 0.777 m/s 1.554 m/s 30 Wheelhouse: Abs. vert. accel 0.549 m^2/s^4 0.741 m/s^2 1.482 m/s^2 31 Wheelhouse: Rel. vert. accel 2.258 m^2/s^4 1.503 m/s^2 3.006 m/s^2
  • 207.
    32 Wheelhouse: Long.(due to pitch) motion 0.144 m^2 0.379 m 0.758 m 33 Wheelhouse: Long. (due to pitch) velocity 0.125 m^2/s^2 0.353 m/s 0.707 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.124 m^2/s^4 0.352 m/s^2 0.705 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.313 m^2 0.559 m 1.118 m 40 Workdeck: Rel. vert. motion 0.2 m^2 0.447 m 0.895 m 41 Workdeck: Abs. vert. velocity 0.197 m^2/s^2 0.444 m/s 0.887 m/s 42 Workdeck: Rel. vert. velocity 0.535 m^2/s^2 0.732 m/s 1.463 m/s 43 Workdeck: Abs. vert. accel 0.146 m^2/s^4 0.382 m/s^2 0.764 m/s^2 44 Workdeck: Rel. vert. accel 2.823 m^2/s^4 1.68 m/s^2 3.361 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.133 m 0.265 m 46 Workdeck: Long. (due to pitch) velocity 0.015 m^2/s^2 0.124 m/s 0.247 m/s 47 Workdeck: Long. (due to pitch) accel 0.015 m^2/s^4 0.123 m/s^2 0.246 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 5, 5 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 5 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m
  • 208.
    16 Added resistance308.117 kN -- -- 17 Heave motion 1.183 m^2 1.088 m 2.175 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00212 rad^2 0.04604 rad 0.09207 rad 20 Heave velocity 0.548 m^2/s^2 0.74 m/s 1.48 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00153 (rad/s)^2 0.03907 rad/s 0.07813 rad/s 23 Heave acceleration 0.328 m^2/s^4 0.573 m/s^2 1.145 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00134 (rad/s/s)^2 0.03665 rad/s/s 0.0733 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.899 m^2 1.378 m 2.756 m 27 Wheelhouse: Rel. vert. motion 0.348 m^2 0.59 m 1.179 m 28 Wheelhouse: Abs. vert. velocity 1.067 m^2/s^2 1.033 m/s 2.066 m/s 29 Wheelhouse: Rel. vert. velocity 0.612 m^2/s^2 0.782 m/s 1.565 m/s 30 Wheelhouse: Abs. vert. accel 0.783 m^2/s^4 0.885 m/s^2 1.77 m/s^2 31 Wheelhouse: Rel. vert. accel 2.117 m^2/s^4 1.455 m/s^2 2.91 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.256 m^2 0.506 m 1.011 m 33 Wheelhouse: Long. (due to pitch) velocity 0.183 m^2/s^2 0.427 m/s 0.855 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.16 m^2/s^4 0.4 m/s^2 0.799 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.088 m^2 1.043 m 2.086 m 40 Workdeck: Rel. vert. motion 0.208 m^2 0.456 m 0.913 m 41 Workdeck: Abs. vert. velocity 0.476 m^2/s^2 0.69 m/s 1.38 m/s 42 Workdeck: Rel. vert. velocity 0.515 m^2/s^2 0.718 m/s 1.435 m/s 43 Workdeck: Abs. vert. accel 0.265 m^2/s^4 0.515 m/s^2 1.029 m/s^2 44 Workdeck: Rel. vert. accel 2.584 m^2/s^4 1.608 m/s^2 3.215 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.031 m^2 0.177 m 0.354 m 46 Workdeck: Long. (due to pitch) velocity 0.022 m^2/s^2 0.149 m/s 0.299 m/s 47 Workdeck: Long. (due to pitch) accel 0.02 m^2/s^4 0.14 m/s^2 0.28 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m)
  • 209.
    Item m0 unitsRMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 60.263 kN -- -- 17 Heave motion 0.05 m^2 0.223 m 0.445 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00046 rad^2 0.02142 rad 0.04284 rad 20 Heave velocity 0.009 m^2/s^2 0.097 m/s 0.195 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.0001 (rad/s)^2 0.00978 rad/s 0.01956 rad/s 23 Heave acceleration 0.002 m^2/s^4 0.046 m/s^2 0.093 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00002 (rad/s/s)^2 0.0047 rad/s/s 0.0094 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.108 m^2 0.329 m 0.657 m 27 Wheelhouse: Rel. vert. motion 0.075 m^2 0.273 m 0.547 m 28 Wheelhouse: Abs. vert. velocity 0.022 m^2/s^2 0.148 m/s 0.295 m/s 29 Wheelhouse: Rel. vert. velocity 0.019 m^2/s^2 0.137 m/s 0.275 m/s 30 Wheelhouse: Abs. vert. accel 0.005 m^2/s^4 0.069 m/s^2 0.137 m/s^2 31 Wheelhouse: Rel. vert. accel 0.115 m^2/s^4 0.339 m/s^2 0.678 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.05 m^2 0.224 m 0.449 m 33 Wheelhouse: Long. (due to pitch) velocity 0.01 m^2/s^2 0.102 m/s 0.204 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.049 m/s^2 0.098 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s
  • 210.
    37 Wheelhouse: Lat.(due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.072 m^2 0.268 m 0.536 m 40 Workdeck: Rel. vert. motion 0.096 m^2 0.309 m 0.619 m 41 Workdeck: Abs. vert. velocity 0.014 m^2/s^2 0.118 m/s 0.237 m/s 42 Workdeck: Rel. vert. velocity 0.027 m^2/s^2 0.165 m/s 0.331 m/s 43 Workdeck: Abs. vert. accel 0.003 m^2/s^4 0.058 m/s^2 0.116 m/s^2 44 Workdeck: Rel. vert. accel 0.226 m^2/s^4 0.475 m/s^2 0.95 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.078 m 0.157 m 46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.036 m/s 0.071 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.017 m/s^2 0.034 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 163.748 kN -- -- 17 Heave motion 0.202 m^2 0.45 m 0.899 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00139 rad^2 0.03729 rad 0.07459 rad 20 Heave velocity 0.036 m^2/s^2 0.19 m/s 0.38 m/s
  • 211.
    21 Roll velocity0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00028 (rad/s)^2 0.01673 rad/s 0.03347 rad/s 23 Heave acceleration 0.007 m^2/s^4 0.085 m/s^2 0.17 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00006 (rad/s/s)^2 0.00782 rad/s/s 0.01565 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.365 m^2 0.604 m 1.209 m 27 Wheelhouse: Rel. vert. motion 0.185 m^2 0.43 m 0.86 m 28 Wheelhouse: Abs. vert. velocity 0.07 m^2/s^2 0.264 m/s 0.528 m/s 29 Wheelhouse: Rel. vert. velocity 0.045 m^2/s^2 0.211 m/s 0.423 m/s 30 Wheelhouse: Abs. vert. accel 0.014 m^2/s^4 0.119 m/s^2 0.238 m/s^2 31 Wheelhouse: Rel. vert. accel 0.237 m^2/s^4 0.487 m/s^2 0.974 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.156 m^2 0.395 m 0.789 m 33 Wheelhouse: Long. (due to pitch) velocity 0.031 m^2/s^2 0.176 m/s 0.353 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.007 m^2/s^4 0.082 m/s^2 0.165 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.279 m^2 0.529 m 1.057 m 40 Workdeck: Rel. vert. motion 0.215 m^2 0.463 m 0.927 m 41 Workdeck: Abs. vert. velocity 0.051 m^2/s^2 0.226 m/s 0.451 m/s 42 Workdeck: Rel. vert. velocity 0.06 m^2/s^2 0.244 m/s 0.489 m/s 43 Workdeck: Abs. vert. accel 0.011 m^2/s^4 0.103 m/s^2 0.207 m/s^2 44 Workdeck: Rel. vert. accel 0.461 m^2/s^4 0.679 m/s^2 1.358 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.276 m 46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.062 m/s 0.123 m/s 47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.029 m/s^2 0.058 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- --
  • 212.
    5 Vessel Speed10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m 16 Added resistance 300.968 kN -- -- 17 Heave motion 0.827 m^2 0.909 m 1.819 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00265 rad^2 0.0515 rad 0.103 rad 20 Heave velocity 0.121 m^2/s^2 0.348 m/s 0.696 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00048 (rad/s)^2 0.02202 rad/s 0.04404 rad/s 23 Heave acceleration 0.019 m^2/s^4 0.139 m/s^2 0.277 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.0001 (rad/s/s)^2 0.00976 rad/s/s 0.01952 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.067 m^2 1.033 m 2.066 m 27 Wheelhouse: Rel. vert. motion 0.25 m^2 0.5 m 1 m 28 Wheelhouse: Abs. vert. velocity 0.169 m^2/s^2 0.411 m/s 0.823 m/s 29 Wheelhouse: Rel. vert. velocity 0.055 m^2/s^2 0.234 m/s 0.467 m/s 30 Wheelhouse: Abs. vert. accel 0.029 m^2/s^4 0.17 m/s^2 0.34 m/s^2 31 Wheelhouse: Rel. vert. accel 0.207 m^2/s^4 0.455 m/s^2 0.909 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.309 m^2 0.556 m 1.111 m 33 Wheelhouse: Long. (due to pitch) velocity 0.056 m^2/s^2 0.236 m/s 0.472 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.011 m^2/s^4 0.104 m/s^2 0.208 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.022 m^2 1.011 m 2.022 m 40 Workdeck: Rel. vert. motion 0.224 m^2 0.474 m 0.947 m 41 Workdeck: Abs. vert. velocity 0.154 m^2/s^2 0.392 m/s 0.785 m/s
  • 213.
    42 Workdeck: Rel.vert. velocity 0.06 m^2/s^2 0.244 m/s 0.489 m/s 43 Workdeck: Abs. vert. accel 0.025 m^2/s^4 0.16 m/s^2 0.319 m/s^2 44 Workdeck: Rel. vert. accel 0.403 m^2/s^4 0.635 m/s^2 1.27 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.038 m^2 0.194 m 0.389 m 46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.083 m/s 0.165 m/s 47 Workdeck: Long. (due to pitch) accel 0.001 m^2/s^4 0.036 m/s^2 0.073 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 59.918 kN -- -- 17 Heave motion 0.061 m^2 0.247 m 0.493 m 18 Roll motion 0.00165 rad^2 0.04057 rad 0.08114 rad 19 Pitch motion 0.00047 rad^2 0.02164 rad 0.04329 rad 20 Heave velocity 0.014 m^2/s^2 0.117 m/s 0.233 m/s 21 Roll velocity 0.0007 (rad/s)^2 0.02642 rad/s 0.05285 rad/s 22 Pitch velocity 0.00012 (rad/s)^2 0.0109 rad/s 0.02179 rad/s 23 Heave acceleration 0.003 m^2/s^4 0.058 m/s^2 0.115 m/s^2 24 Roll acceleration 0.001 (rad/s/s)^2 0.03157 rad/s/s 0.06314 rad/s/s) 25 Pitch acceleration 0.00003 (rad/s/s)^2 0.00567 rad/s/s 0.01133 rad/s/s)
  • 214.
    26 Wheelhouse: Abs.vert. motion 0.107 m^2 0.327 m 0.654 m 27 Wheelhouse: Rel. vert. motion 0.071 m^2 0.267 m 0.533 m 28 Wheelhouse: Abs. vert. velocity 0.026 m^2/s^2 0.161 m/s 0.322 m/s 29 Wheelhouse: Rel. vert. velocity 0.02 m^2/s^2 0.142 m/s 0.284 m/s 30 Wheelhouse: Abs. vert. accel 0.007 m^2/s^4 0.081 m/s^2 0.162 m/s^2 31 Wheelhouse: Rel. vert. accel 0.047 m^2/s^4 0.218 m/s^2 0.436 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.052 m^2 0.228 m 0.457 m 33 Wheelhouse: Long. (due to pitch) velocity 0.013 m^2/s^2 0.114 m/s 0.229 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.004 m^2/s^4 0.059 m/s^2 0.119 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.2 m^2 0.447 m 0.894 m 36 Wheelhouse: Lat. (due to roll) velocity 0.083 m^2/s^2 0.289 m/s 0.578 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.117 m^2/s^4 0.342 m/s^2 0.685 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.001 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.117 m^2 0.342 m 0.684 m 40 Workdeck: Rel. vert. motion 0.055 m^2 0.235 m 0.47 m 41 Workdeck: Abs. vert. velocity 0.03 m^2/s^2 0.172 m/s 0.345 m/s 42 Workdeck: Rel. vert. velocity 0.022 m^2/s^2 0.147 m/s 0.293 m/s 43 Workdeck: Abs. vert. accel 0.014 m^2/s^4 0.119 m/s^2 0.239 m/s^2 44 Workdeck: Rel. vert. accel 0.105 m^2/s^4 0.324 m/s^2 0.647 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.08 m 0.16 m 46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.04 m/s 0.08 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.021 m/s^2 0.042 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.024 m^2 0.156 m 0.313 m 49 Workdeck: Lat. (due to roll) velocity 0.01 m^2/s^2 0.101 m/s 0.202 m/s 50 Workdeck: Lat. (due to roll) accel 0.014 m^2/s^4 0.12 m/s^2 0.239 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- --
  • 215.
    10 Wave forcemethod Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.813 m 1.625 m 16 Added resistance 163.612 kN -- -- 17 Heave motion 0.239 m^2 0.489 m 0.978 m 18 Roll motion 0.00357 rad^2 0.05971 rad 0.11942 rad 19 Pitch motion 0.00138 rad^2 0.03718 rad 0.07436 rad 20 Heave velocity 0.05 m^2/s^2 0.223 m/s 0.445 m/s 21 Roll velocity 0.00147 (rad/s)^2 0.03836 rad/s 0.07673 rad/s 22 Pitch velocity 0.00034 (rad/s)^2 0.01834 rad/s 0.03667 rad/s 23 Heave acceleration 0.011 m^2/s^4 0.105 m/s^2 0.21 m/s^2 24 Roll acceleration 0.00204 (rad/s/s)^2 0.04511 rad/s/s 0.09023 rad/s/s) 25 Pitch acceleration 0.00009 (rad/s/s)^2 0.00932 rad/s/s 0.01864 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.356 m^2 0.596 m 1.193 m 27 Wheelhouse: Rel. vert. motion 0.176 m^2 0.42 m 0.839 m 28 Wheelhouse: Abs. vert. velocity 0.081 m^2/s^2 0.284 m/s 0.568 m/s 29 Wheelhouse: Rel. vert. velocity 0.048 m^2/s^2 0.22 m/s 0.44 m/s 30 Wheelhouse: Abs. vert. accel 0.019 m^2/s^4 0.138 m/s^2 0.277 m/s^2 31 Wheelhouse: Rel. vert. accel 0.099 m^2/s^4 0.315 m/s^2 0.63 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.157 m^2 0.396 m 0.792 m 33 Wheelhouse: Long. (due to pitch) velocity 0.038 m^2/s^2 0.194 m/s 0.388 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.01 m^2/s^4 0.098 m/s^2 0.196 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.434 m^2 0.659 m 1.318 m 36 Wheelhouse: Lat. (due to roll) velocity 0.176 m^2/s^2 0.42 m/s 0.84 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.239 m^2/s^4 0.489 m/s^2 0.979 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.283 MII/h 0.001 MII/h 39 Workdeck: Abs. vert. motion 0.408 m^2 0.639 m 1.277 m 40 Workdeck: Rel. vert. motion 0.125 m^2 0.354 m 0.708 m 41 Workdeck: Abs. vert. velocity 0.094 m^2/s^2 0.306 m/s 0.612 m/s 42 Workdeck: Rel. vert. velocity 0.047 m^2/s^2 0.217 m/s 0.434 m/s 43 Workdeck: Abs. vert. accel 0.036 m^2/s^4 0.189 m/s^2 0.378 m/s^2 44 Workdeck: Rel. vert. accel 0.214 m^2/s^4 0.463 m/s^2 0.925 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.277 m 46 Workdeck: Long. (due to pitch) velocity 0.005 m^2/s^2 0.068 m/s 0.136 m/s
  • 216.
    47 Workdeck: Long.(due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.069 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.053 m^2 0.23 m 0.461 m 49 Workdeck: Lat. (due to roll) velocity 0.022 m^2/s^2 0.147 m/s 0.294 m/s 50 Workdeck: Lat. (due to roll) accel 0.029 m^2/s^4 0.171 m/s^2 0.342 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.189 MII/h 0.001 MII/h 10, 10 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.562 m^2 1.25 m 2.5 m 16 Added resistance 303.586 kN -- -- 17 Heave motion 0.91 m^2 0.954 m 1.908 m 18 Roll motion 0.00365 rad^2 0.06044 rad 0.12088 rad 19 Pitch motion 0.0025 rad^2 0.04996 rad 0.09992 rad 20 Heave velocity 0.152 m^2/s^2 0.389 m/s 0.779 m/s 21 Roll velocity 0.00141 (rad/s)^2 0.03759 rad/s 0.07518 rad/s 22 Pitch velocity 0.00054 (rad/s)^2 0.02333 rad/s 0.04666 rad/s 23 Heave acceleration 0.027 m^2/s^4 0.165 m/s^2 0.331 m/s^2 24 Roll acceleration 0.00183 (rad/s/s)^2 0.04275 rad/s/s 0.0855 rad/s/s) 25 Pitch acceleration 0.00013 (rad/s/s)^2 0.01128 rad/s/s 0.02256 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.032 m^2 1.016 m 2.032 m 27 Wheelhouse: Rel. vert. motion 0.234 m^2 0.483 m 0.967 m 28 Wheelhouse: Abs. vert. velocity 0.186 m^2/s^2 0.432 m/s 0.864 m/s 29 Wheelhouse: Rel. vert. velocity 0.059 m^2/s^2 0.243 m/s 0.486 m/s 30 Wheelhouse: Abs. vert. accel 0.037 m^2/s^4 0.192 m/s^2 0.384 m/s^2
  • 217.
    31 Wheelhouse: Rel.vert. accel 0.089 m^2/s^4 0.298 m/s^2 0.596 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.294 m^2 0.542 m 1.085 m 33 Wheelhouse: Long. (due to pitch) velocity 0.063 m^2/s^2 0.251 m/s 0.502 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.015 m^2/s^4 0.121 m/s^2 0.241 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.448 m^2 0.669 m 1.339 m 36 Wheelhouse: Lat. (due to roll) velocity 0.17 m^2/s^2 0.412 m/s 0.825 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.215 m^2/s^4 0.464 m/s^2 0.928 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.255 MII/h 0.001 MII/h 39 Workdeck: Abs. vert. motion 1.253 m^2 1.119 m 2.239 m 40 Workdeck: Rel. vert. motion 0.141 m^2 0.375 m 0.75 m 41 Workdeck: Abs. vert. velocity 0.226 m^2/s^2 0.475 m/s 0.95 m/s 42 Workdeck: Rel. vert. velocity 0.048 m^2/s^2 0.219 m/s 0.439 m/s 43 Workdeck: Abs. vert. accel 0.056 m^2/s^4 0.236 m/s^2 0.473 m/s^2 44 Workdeck: Rel. vert. accel 0.189 m^2/s^4 0.435 m/s^2 0.87 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.036 m^2 0.19 m 0.379 m 46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.088 m/s 0.176 m/s 47 Workdeck: Long. (due to pitch) accel 0.002 m^2/s^4 0.042 m/s^2 0.084 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.055 m^2 0.234 m 0.468 m 49 Workdeck: Lat. (due to roll) velocity 0.021 m^2/s^2 0.144 m/s 0.288 m/s 50 Workdeck: Lat. (due to roll) accel 0.026 m^2/s^4 0.162 m/s^2 0.324 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.22 MII/h 0.001 MII/h 10, 10 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m
  • 218.
    15 Encountered wavespectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 50.046 kN -- -- 17 Heave motion 0.178 m^2 0.422 m 0.844 m 18 Roll motion 0.00596 rad^2 0.07718 rad 0.15437 rad 19 Pitch motion 0.00029 rad^2 0.01691 rad 0.03382 rad 20 Heave velocity 0.135 m^2/s^2 0.367 m/s 0.734 m/s 21 Roll velocity 0.00715 (rad/s)^2 0.08454 rad/s 0.16908 rad/s 22 Pitch velocity 0.00023 (rad/s)^2 0.01522 rad/s 0.03043 rad/s 23 Heave acceleration 0.132 m^2/s^4 0.364 m/s^2 0.728 m/s^2 24 Roll acceleration 0.01322 (rad/s/s)^2 0.11496 rad/s/s 0.22992 rad/s/s) 25 Pitch acceleration 0.00021 (rad/s/s)^2 0.01444 rad/s/s 0.02887 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.061 m^2 0.247 m 0.494 m 27 Wheelhouse: Rel. vert. motion 0.097 m^2 0.312 m 0.624 m 28 Wheelhouse: Abs. vert. velocity 0.048 m^2/s^2 0.219 m/s 0.438 m/s 29 Wheelhouse: Rel. vert. velocity 0.148 m^2/s^2 0.385 m/s 0.77 m/s 30 Wheelhouse: Abs. vert. accel 0.055 m^2/s^4 0.235 m/s^2 0.471 m/s^2 31 Wheelhouse: Rel. vert. accel 0.467 m^2/s^4 0.683 m/s^2 1.366 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.034 m^2 0.184 m 0.369 m 33 Wheelhouse: Long. (due to pitch) velocity 0.027 m^2/s^2 0.163 m/s 0.327 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.023 m^2/s^4 0.153 m/s^2 0.305 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.706 m 36 Wheelhouse: Lat. (due to roll) velocity 0.851 m^2/s^2 0.922 m/s 1.845 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.553 m^2/s^4 1.246 m/s^2 2.493 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.342 MII/h 0.371 MII/h 39 Workdeck: Abs. vert. motion 0.473 m^2 0.688 m 1.376 m 40 Workdeck: Rel. vert. motion 0.096 m^2 0.31 m 0.621 m 41 Workdeck: Abs. vert. velocity 0.418 m^2/s^2 0.646 m/s 1.292 m/s 42 Workdeck: Rel. vert. velocity 0.123 m^2/s^2 0.351 m/s 0.702 m/s 43 Workdeck: Abs. vert. accel 0.493 m^2/s^4 0.702 m/s^2 1.404 m/s^2 44 Workdeck: Rel. vert. accel 0.378 m^2/s^4 0.615 m/s^2 1.23 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.004 m^2 0.064 m 0.129 m 46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.057 m/s 0.114 m/s 47 Workdeck: Long. (due to pitch) accel 0.003 m^2/s^4 0.053 m/s^2 0.107 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.298 m 0.597 m 49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s 50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.159 MII/h 0.003 MII/h
  • 219.
    10, 10 kts;90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 143.89 kN -- -- 17 Heave motion 0.557 m^2 0.746 m 1.493 m 18 Roll motion 0.01403 rad^2 0.11847 rad 0.23693 rad 19 Pitch motion 0.00074 rad^2 0.02714 rad 0.05427 rad 20 Heave velocity 0.359 m^2/s^2 0.599 m/s 1.199 m/s 21 Roll velocity 0.01595 (rad/s)^2 0.12631 rad/s 0.25262 rad/s 22 Pitch velocity 0.00057 (rad/s)^2 0.0238 rad/s 0.04759 rad/s 23 Heave acceleration 0.315 m^2/s^4 0.561 m/s^2 1.122 m/s^2 24 Roll acceleration 0.02812 (rad/s/s)^2 0.1677 rad/s/s 0.3354 rad/s/s) 25 Pitch acceleration 0.00049 (rad/s/s)^2 0.02214 rad/s/s 0.04428 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.217 m^2 0.466 m 0.933 m 27 Wheelhouse: Rel. vert. motion 0.233 m^2 0.483 m 0.966 m 28 Wheelhouse: Abs. vert. velocity 0.133 m^2/s^2 0.364 m/s 0.729 m/s 29 Wheelhouse: Rel. vert. velocity 0.325 m^2/s^2 0.57 m/s 1.14 m/s 30 Wheelhouse: Abs. vert. accel 0.129 m^2/s^4 0.359 m/s^2 0.719 m/s^2 31 Wheelhouse: Rel. vert. accel 0.968 m^2/s^4 0.984 m/s^2 1.967 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.089 m^2 0.299 m 0.597 m 33 Wheelhouse: Long. (due to pitch) velocity 0.066 m^2/s^2 0.257 m/s 0.514 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.055 m^2/s^4 0.235 m/s^2 0.471 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 1.732 m^2 1.316 m 2.632 m
  • 220.
    36 Wheelhouse: Lat.(due to roll) velocity 1.911 m^2/s^2 1.382 m/s 2.765 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.313 m^2/s^4 1.82 m/s^2 3.64 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.628 MII/h 4.833 MII/h 39 Workdeck: Abs. vert. motion 1.312 m^2 1.146 m 2.291 m 40 Workdeck: Rel. vert. motion 0.239 m^2 0.489 m 0.978 m 41 Workdeck: Abs. vert. velocity 1.027 m^2/s^2 1.013 m/s 2.027 m/s 42 Workdeck: Rel. vert. velocity 0.277 m^2/s^2 0.526 m/s 1.053 m/s 43 Workdeck: Abs. vert. accel 1.115 m^2/s^4 1.056 m/s^2 2.112 m/s^2 44 Workdeck: Rel. vert. accel 0.789 m^2/s^4 0.888 m/s^2 1.776 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.011 m^2 0.104 m 0.209 m 46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.09 m/s 0.18 m/s 47 Workdeck: Long. (due to pitch) accel 0.007 m^2/s^4 0.082 m/s^2 0.165 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.921 m 49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.483 m/s 0.967 m/s 50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.472 MII/h 0.39 MII/h 10, 10 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 294.033 kN -- -- 17 Heave motion 1.437 m^2 1.199 m 2.398 m 18 Roll motion 0.01621 rad^2 0.12732 rad 0.25464 rad 19 Pitch motion 0.00097 rad^2 0.03122 rad 0.06244 rad
  • 221.
    20 Heave velocity0.608 m^2/s^2 0.78 m/s 1.56 m/s 21 Roll velocity 0.01652 (rad/s)^2 0.12851 rad/s 0.25703 rad/s 22 Pitch velocity 0.00068 (rad/s)^2 0.02598 rad/s 0.05196 rad/s 23 Heave acceleration 0.391 m^2/s^4 0.625 m/s^2 1.25 m/s^2 24 Roll acceleration 0.02686 (rad/s/s)^2 0.16388 rad/s/s 0.32775 rad/s/s) 25 Pitch acceleration 0.00054 (rad/s/s)^2 0.02332 rad/s/s 0.04664 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.812 m^2 0.901 m 1.802 m 27 Wheelhouse: Rel. vert. motion 0.282 m^2 0.531 m 1.063 m 28 Wheelhouse: Abs. vert. velocity 0.283 m^2/s^2 0.532 m/s 1.063 m/s 29 Wheelhouse: Rel. vert. velocity 0.33 m^2/s^2 0.575 m/s 1.15 m/s 30 Wheelhouse: Abs. vert. accel 0.168 m^2/s^4 0.409 m/s^2 0.819 m/s^2 31 Wheelhouse: Rel. vert. accel 0.89 m^2/s^4 0.943 m/s^2 1.886 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.123 m^2 0.351 m 0.702 m 33 Wheelhouse: Long. (due to pitch) velocity 0.081 m^2/s^2 0.285 m/s 0.57 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.063 m^2/s^4 0.25 m/s^2 0.5 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 2.039 m^2 1.428 m 2.856 m 36 Wheelhouse: Lat. (due to roll) velocity 2.001 m^2/s^2 1.414 m/s 2.829 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.176 m^2/s^4 1.782 m/s^2 3.564 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.053 MII/h 4.104 MII/h 39 Workdeck: Abs. vert. motion 2.505 m^2 1.583 m 3.166 m 40 Workdeck: Rel. vert. motion 0.328 m^2 0.573 m 1.146 m 41 Workdeck: Abs. vert. velocity 1.388 m^2/s^2 1.178 m/s 2.356 m/s 42 Workdeck: Rel. vert. velocity 0.3 m^2/s^2 0.547 m/s 1.095 m/s 43 Workdeck: Abs. vert. accel 1.215 m^2/s^4 1.102 m/s^2 2.204 m/s^2 44 Workdeck: Rel. vert. accel 0.734 m^2/s^4 0.857 m/s^2 1.714 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.015 m^2 0.123 m 0.246 m 46 Workdeck: Long. (due to pitch) velocity 0.01 m^2/s^2 0.1 m/s 0.199 m/s 47 Workdeck: Long. (due to pitch) accel 0.008 m^2/s^4 0.087 m/s^2 0.175 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.249 m^2 0.499 m 0.999 m 49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.989 m/s 50 Workdeck: Lat. (due to roll) accel 0.389 m^2/s^4 0.623 m/s^2 1.247 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.388 MII/h 0.688 MII/h 10, 10 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- --
  • 222.
    4 Wave heading2.44 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 51.238 kN -- -- 17 Heave motion 0.197 m^2 0.444 m 0.889 m 18 Roll motion 0.0012 rad^2 0.03464 rad 0.06929 rad 19 Pitch motion 0.00048 rad^2 0.02193 rad 0.04386 rad 20 Heave velocity 0.203 m^2/s^2 0.45 m/s 0.9 m/s 21 Roll velocity 0.00162 (rad/s)^2 0.04025 rad/s 0.08049 rad/s 22 Pitch velocity 0.0006 (rad/s)^2 0.02447 rad/s 0.04894 rad/s 23 Heave acceleration 0.237 m^2/s^4 0.487 m/s^2 0.974 m/s^2 24 Roll acceleration 0.00338 (rad/s/s)^2 0.05813 rad/s/s 0.11626 rad/s/s) 25 Pitch acceleration 0.00085 (rad/s/s)^2 0.02908 rad/s/s 0.05815 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.326 m^2 0.571 m 1.143 m 27 Wheelhouse: Rel. vert. motion 0.201 m^2 0.449 m 0.898 m 28 Wheelhouse: Abs. vert. velocity 0.354 m^2/s^2 0.595 m/s 1.191 m/s 29 Wheelhouse: Rel. vert. velocity 0.479 m^2/s^2 0.692 m/s 1.384 m/s 30 Wheelhouse: Abs. vert. accel 0.433 m^2/s^4 0.658 m/s^2 1.316 m/s^2 31 Wheelhouse: Rel. vert. accel 2.204 m^2/s^4 1.485 m/s^2 2.969 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.058 m^2 0.24 m 0.48 m 33 Wheelhouse: Long. (due to pitch) velocity 0.072 m^2/s^2 0.267 m/s 0.535 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.101 m^2/s^4 0.317 m/s^2 0.634 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.144 m^2 0.379 m 0.759 m 36 Wheelhouse: Lat. (due to roll) velocity 0.193 m^2/s^2 0.439 m/s 0.879 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.399 m^2/s^4 0.632 m/s^2 1.264 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.022 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.264 m^2 0.514 m 1.028 m 40 Workdeck: Rel. vert. motion 0.105 m^2 0.324 m 0.647 m
  • 223.
    41 Workdeck: Abs.vert. velocity 0.282 m^2/s^2 0.531 m/s 1.062 m/s 42 Workdeck: Rel. vert. velocity 0.323 m^2/s^2 0.569 m/s 1.137 m/s 43 Workdeck: Abs. vert. accel 0.35 m^2/s^4 0.591 m/s^2 1.183 m/s^2 44 Workdeck: Rel. vert. accel 2.04 m^2/s^4 1.428 m/s^2 2.856 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.084 m 0.168 m 46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.094 m/s 0.187 m/s 47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.111 m/s^2 0.222 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.018 m^2 0.133 m 0.265 m 49 Workdeck: Lat. (due to roll) velocity 0.024 m^2/s^2 0.154 m/s 0.307 m/s 50 Workdeck: Lat. (due to roll) accel 0.049 m^2/s^4 0.221 m/s^2 0.442 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 154.64 kN -- -- 17 Heave motion 0.641 m^2 0.8 m 1.601 m 18 Roll motion 0.00329 rad^2 0.05735 rad 0.11469 rad 19 Pitch motion 0.00133 rad^2 0.03649 rad 0.07297 rad 20 Heave velocity 0.584 m^2/s^2 0.764 m/s 1.528 m/s 21 Roll velocity 0.00411 (rad/s)^2 0.06407 rad/s 0.12814 rad/s 22 Pitch velocity 0.00155 (rad/s)^2 0.03935 rad/s 0.0787 rad/s 23 Heave acceleration 0.631 m^2/s^4 0.795 m/s^2 1.589 m/s^2 24 Roll acceleration 0.00777 (rad/s/s)^2 0.08816 rad/s/s 0.17631 rad/s/s)
  • 224.
    25 Pitch acceleration0.00208 (rad/s/s)^2 0.04563 rad/s/s 0.09126 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.998 m^2 0.999 m 1.998 m 27 Wheelhouse: Rel. vert. motion 0.471 m^2 0.687 m 1.373 m 28 Wheelhouse: Abs. vert. velocity 0.983 m^2/s^2 0.991 m/s 1.983 m/s 29 Wheelhouse: Rel. vert. velocity 1.065 m^2/s^2 1.032 m/s 2.064 m/s 30 Wheelhouse: Abs. vert. accel 1.126 m^2/s^4 1.061 m/s^2 2.122 m/s^2 31 Wheelhouse: Rel. vert. accel 4.616 m^2/s^4 2.149 m/s^2 4.297 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.16 m^2 0.4 m 0.8 m 33 Wheelhouse: Long. (due to pitch) velocity 0.185 m^2/s^2 0.43 m/s 0.861 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.248 m^2/s^4 0.498 m/s^2 0.996 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.396 m^2 0.629 m 1.258 m 36 Wheelhouse: Lat. (due to roll) velocity 0.491 m^2/s^2 0.7 m/s 1.401 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.92 m^2/s^4 0.959 m/s^2 1.918 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.889 MII/h 0.049 MII/h 39 Workdeck: Abs. vert. motion 0.826 m^2 0.909 m 1.818 m 40 Workdeck: Rel. vert. motion 0.244 m^2 0.494 m 0.987 m 41 Workdeck: Abs. vert. velocity 0.792 m^2/s^2 0.89 m/s 1.78 m/s 42 Workdeck: Rel. vert. velocity 0.7 m^2/s^2 0.837 m/s 1.673 m/s 43 Workdeck: Abs. vert. accel 0.91 m^2/s^4 0.954 m/s^2 1.908 m/s^2 44 Workdeck: Rel. vert. accel 4.202 m^2/s^4 2.05 m/s^2 4.1 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.02 m^2 0.14 m 0.28 m 46 Workdeck: Long. (due to pitch) velocity 0.023 m^2/s^2 0.151 m/s 0.301 m/s 47 Workdeck: Long. (due to pitch) accel 0.03 m^2/s^4 0.174 m/s^2 0.348 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.048 m^2 0.22 m 0.44 m 49 Workdeck: Lat. (due to roll) velocity 0.06 m^2/s^2 0.245 m/s 0.49 m/s 50 Workdeck: Lat. (due to roll) accel 0.113 m^2/s^4 0.335 m/s^2 0.671 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.02 MII/h 0 MII/h 10, 10 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- --
  • 225.
    9 Transom methodNo transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 327.847 kN -- -- 17 Heave motion 1.627 m^2 1.276 m 2.551 m 18 Roll motion 0.00479 rad^2 0.06923 rad 0.13846 rad 19 Pitch motion 0.00205 rad^2 0.04533 rad 0.09066 rad 20 Heave velocity 1.037 m^2/s^2 1.018 m/s 2.037 m/s 21 Roll velocity 0.00518 (rad/s)^2 0.07199 rad/s 0.14397 rad/s 22 Pitch velocity 0.00203 (rad/s)^2 0.0451 rad/s 0.0902 rad/s 23 Heave acceleration 0.895 m^2/s^4 0.946 m/s^2 1.892 m/s^2 24 Roll acceleration 0.00845 (rad/s/s)^2 0.09191 rad/s/s 0.18382 rad/s/s) 25 Pitch acceleration 0.00248 (rad/s/s)^2 0.04975 rad/s/s 0.09951 rad/s/s) 26 Wheelhouse: Abs. vert. motion 2.165 m^2 1.472 m 2.943 m 27 Wheelhouse: Rel. vert. motion 0.518 m^2 0.719 m 1.439 m 28 Wheelhouse: Abs. vert. velocity 1.565 m^2/s^2 1.251 m/s 2.502 m/s 29 Wheelhouse: Rel. vert. velocity 1.084 m^2/s^2 1.041 m/s 2.082 m/s 30 Wheelhouse: Abs. vert. accel 1.5 m^2/s^4 1.225 m/s^2 2.449 m/s^2 31 Wheelhouse: Rel. vert. accel 4.351 m^2/s^4 2.086 m/s^2 4.172 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.248 m^2 0.498 m 0.996 m 33 Wheelhouse: Long. (due to pitch) velocity 0.244 m^2/s^2 0.494 m/s 0.988 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.296 m^2/s^4 0.544 m/s^2 1.087 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.58 m^2 0.762 m 1.524 m 36 Wheelhouse: Lat. (due to roll) velocity 0.622 m^2/s^2 0.789 m/s 1.577 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.003 m^2/s^4 1.002 m/s^2 2.003 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.865 MII/h 0.049 MII/h 39 Workdeck: Abs. vert. motion 1.913 m^2 1.383 m 2.766 m 40 Workdeck: Rel. vert. motion 0.281 m^2 0.53 m 1.06 m 41 Workdeck: Abs. vert. velocity 1.315 m^2/s^2 1.147 m/s 2.293 m/s 42 Workdeck: Rel. vert. velocity 0.694 m^2/s^2 0.833 m/s 1.666 m/s 43 Workdeck: Abs. vert. accel 1.228 m^2/s^4 1.108 m/s^2 2.217 m/s^2 44 Workdeck: Rel. vert. accel 3.877 m^2/s^4 1.969 m/s^2 3.938 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.03 m^2 0.174 m 0.348 m
  • 226.
    46 Workdeck: Long.(due to pitch) velocity 0.03 m^2/s^2 0.173 m/s 0.346 m/s 47 Workdeck: Long. (due to pitch) accel 0.036 m^2/s^4 0.19 m/s^2 0.38 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.071 m^2 0.266 m 0.533 m 49 Workdeck: Lat. (due to roll) velocity 0.076 m^2/s^2 0.276 m/s 0.552 m/s 50 Workdeck: Lat. (due to roll) accel 0.123 m^2/s^4 0.35 m/s^2 0.701 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.161 MII/h 0.012 MII/h 10, 10 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 43.148 kN -- -- 17 Heave motion 0.154 m^2 0.392 m 0.784 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00039 rad^2 0.01984 rad 0.03968 rad 20 Heave velocity 0.158 m^2/s^2 0.397 m/s 0.794 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00046 (rad/s)^2 0.02155 rad/s 0.04311 rad/s 23 Heave acceleration 0.18 m^2/s^4 0.425 m/s^2 0.85 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00061 (rad/s/s)^2 0.02471 rad/s/s 0.04942 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.305 m^2 0.552 m 1.104 m 27 Wheelhouse: Rel. vert. motion 0.259 m^2 0.509 m 1.019 m 28 Wheelhouse: Abs. vert. velocity 0.33 m^2/s^2 0.574 m/s 1.148 m/s 29 Wheelhouse: Rel. vert. velocity 0.587 m^2/s^2 0.766 m/s 1.532 m/s
  • 227.
    30 Wheelhouse: Abs.vert. accel 0.396 m^2/s^4 0.629 m/s^2 1.258 m/s^2 31 Wheelhouse: Rel. vert. accel 2.746 m^2/s^4 1.657 m/s^2 3.314 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.047 m^2 0.217 m 0.434 m 33 Wheelhouse: Long. (due to pitch) velocity 0.055 m^2/s^2 0.235 m/s 0.47 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.072 m^2/s^4 0.269 m/s^2 0.538 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.127 m^2 0.356 m 0.711 m 40 Workdeck: Rel. vert. motion 0.116 m^2 0.341 m 0.682 m 41 Workdeck: Abs. vert. velocity 0.129 m^2/s^2 0.359 m/s 0.717 m/s 42 Workdeck: Rel. vert. velocity 0.414 m^2/s^2 0.644 m/s 1.287 m/s 43 Workdeck: Abs. vert. accel 0.147 m^2/s^4 0.384 m/s^2 0.768 m/s^2 44 Workdeck: Rel. vert. accel 2.808 m^2/s^4 1.676 m/s^2 3.351 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.006 m^2 0.076 m 0.152 m 46 Workdeck: Long. (due to pitch) velocity 0.007 m^2/s^2 0.082 m/s 0.165 m/s 47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.094 m/s^2 0.188 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- --
  • 228.
    14 Wave spectrum0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 136.862 kN -- -- 17 Heave motion 0.533 m^2 0.73 m 1.46 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.0012 rad^2 0.03464 rad 0.06928 rad 20 Heave velocity 0.489 m^2/s^2 0.699 m/s 1.398 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00131 (rad/s)^2 0.0362 rad/s 0.07239 rad/s 23 Heave acceleration 0.517 m^2/s^4 0.719 m/s^2 1.438 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00163 (rad/s/s)^2 0.04033 rad/s/s 0.08065 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.997 m^2 0.999 m 1.997 m 27 Wheelhouse: Rel. vert. motion 0.648 m^2 0.805 m 1.61 m 28 Wheelhouse: Abs. vert. velocity 0.981 m^2/s^2 0.99 m/s 1.981 m/s 29 Wheelhouse: Rel. vert. velocity 1.36 m^2/s^2 1.166 m/s 2.333 m/s 30 Wheelhouse: Abs. vert. accel 1.101 m^2/s^4 1.049 m/s^2 2.099 m/s^2 31 Wheelhouse: Rel. vert. accel 5.889 m^2/s^4 2.427 m/s^2 4.854 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.144 m^2 0.379 m 0.758 m 33 Wheelhouse: Long. (due to pitch) velocity 0.156 m^2/s^2 0.395 m/s 0.791 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.193 m^2/s^4 0.44 m/s^2 0.879 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.449 m^2 0.67 m 1.34 m 40 Workdeck: Rel. vert. motion 0.264 m^2 0.514 m 1.027 m 41 Workdeck: Abs. vert. velocity 0.404 m^2/s^2 0.635 m/s 1.271 m/s 42 Workdeck: Rel. vert. velocity 0.899 m^2/s^2 0.948 m/s 1.896 m/s 43 Workdeck: Abs. vert. accel 0.424 m^2/s^4 0.651 m/s^2 1.302 m/s^2 44 Workdeck: Rel. vert. accel 5.874 m^2/s^4 2.424 m/s^2 4.847 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.018 m^2 0.133 m 0.265 m 46 Workdeck: Long. (due to pitch) velocity 0.019 m^2/s^2 0.138 m/s 0.277 m/s 47 Workdeck: Long. (due to pitch) accel 0.024 m^2/s^4 0.154 m/s^2 0.308 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2
  • 229.
    51 Workdeck: MIIslide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 10, 10 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 10 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 310.662 kN -- -- 17 Heave motion 1.492 m^2 1.221 m 2.443 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00222 rad^2 0.04707 rad 0.09414 rad 20 Heave velocity 0.972 m^2/s^2 0.986 m/s 1.971 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.002 (rad/s)^2 0.04472 rad/s 0.08943 rad/s 23 Heave acceleration 0.822 m^2/s^4 0.907 m/s^2 1.813 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00219 (rad/s/s)^2 0.04682 rad/s/s 0.09365 rad/s/s) 26 Wheelhouse: Abs. vert. motion 2.346 m^2 1.532 m 3.063 m 27 Wheelhouse: Rel. vert. motion 0.792 m^2 0.89 m 1.78 m 28 Wheelhouse: Abs. vert. velocity 1.733 m^2/s^2 1.317 m/s 2.633 m/s 29 Wheelhouse: Rel. vert. velocity 1.479 m^2/s^2 1.216 m/s 2.433 m/s 30 Wheelhouse: Abs. vert. accel 1.629 m^2/s^4 1.276 m/s^2 2.552 m/s^2 31 Wheelhouse: Rel. vert. accel 5.681 m^2/s^4 2.383 m/s^2 4.767 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.267 m^2 0.517 m 1.033 m 33 Wheelhouse: Long. (due to pitch) velocity 0.24 m^2/s^2 0.489 m/s 0.979 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.261 m^2/s^4 0.511 m/s^2 1.023 m/s^2
  • 230.
    35 Wheelhouse: Lat.(due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.34 m^2 1.158 m 2.315 m 40 Workdeck: Rel. vert. motion 0.276 m^2 0.525 m 1.05 m 41 Workdeck: Abs. vert. velocity 0.838 m^2/s^2 0.915 m/s 1.831 m/s 42 Workdeck: Rel. vert. velocity 0.878 m^2/s^2 0.937 m/s 1.875 m/s 43 Workdeck: Abs. vert. accel 0.688 m^2/s^4 0.83 m/s^2 1.659 m/s^2 44 Workdeck: Rel. vert. accel 5.439 m^2/s^4 2.332 m/s^2 4.664 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.033 m^2 0.181 m 0.361 m 46 Workdeck: Long. (due to pitch) velocity 0.029 m^2/s^2 0.171 m/s 0.342 m/s 47 Workdeck: Long. (due to pitch) accel 0.032 m^2/s^4 0.179 m/s^2 0.358 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 0, 0 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 48.544 kN -- -- 17 Heave motion 0.047 m^2 0.217 m 0.433 m 18 Roll motion 0 rad^2 0 rad 0 rad
  • 231.
    19 Pitch motion0.00051 rad^2 0.02247 rad 0.04495 rad 20 Heave velocity 0.004 m^2/s^2 0.061 m/s 0.122 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00003 (rad/s)^2 0.00568 rad/s 0.01137 rad/s 23 Heave acceleration 0 m^2/s^4 0.02 m/s^2 0.039 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0 (rad/s/s)^2 0.00189 rad/s/s 0.00377 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.13 m^2 0.36 m 0.72 m 27 Wheelhouse: Rel. vert. motion 0.051 m^2 0.226 m 0.451 m 28 Wheelhouse: Abs. vert. velocity 0.009 m^2/s^2 0.093 m/s 0.185 m/s 29 Wheelhouse: Rel. vert. velocity 0.042 m^2/s^2 0.204 m/s 0.408 m/s 30 Wheelhouse: Abs. vert. accel 0.001 m^2/s^4 0.028 m/s^2 0.056 m/s^2 31 Wheelhouse: Rel. vert. accel 2.184 m^2/s^4 1.478 m/s^2 2.956 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.056 m^2 0.237 m 0.474 m 33 Wheelhouse: Long. (due to pitch) velocity 0.004 m^2/s^2 0.06 m/s 0.121 m/s 34 Wheelhouse: Long. (due to pitch) accel 0 m^2/s^4 0.02 m/s^2 0.04 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.063 m^2 0.251 m 0.502 m 40 Workdeck: Rel. vert. motion 0.088 m^2 0.296 m 0.592 m 41 Workdeck: Abs. vert. velocity 0.005 m^2/s^2 0.071 m/s 0.142 m/s 42 Workdeck: Rel. vert. velocity 0.067 m^2/s^2 0.258 m/s 0.516 m/s 43 Workdeck: Abs. vert. accel 0.001 m^2/s^4 0.024 m/s^2 0.049 m/s^2 44 Workdeck: Rel. vert. accel 4.24 m^2/s^4 2.059 m/s^2 4.118 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.083 m 0.166 m 46 Workdeck: Long. (due to pitch) velocity 0 m^2/s^2 0.021 m/s 0.042 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.007 m/s^2 0.014 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 0, 0 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- --
  • 232.
    3 Spectrum typeITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 138.599 kN -- -- 17 Heave motion 0.19 m^2 0.436 m 0.873 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00149 rad^2 0.03855 rad 0.07709 rad 20 Heave velocity 0.016 m^2/s^2 0.125 m/s 0.25 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.0001 (rad/s)^2 0.01008 rad/s 0.02016 rad/s 23 Heave acceleration 0.001 m^2/s^4 0.038 m/s^2 0.076 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00001 (rad/s/s)^2 0.00319 rad/s/s 0.00637 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.416 m^2 0.645 m 1.291 m 27 Wheelhouse: Rel. vert. motion 0.133 m^2 0.365 m 0.73 m 28 Wheelhouse: Abs. vert. velocity 0.03 m^2/s^2 0.173 m/s 0.345 m/s 29 Wheelhouse: Rel. vert. velocity 0.087 m^2/s^2 0.295 m/s 0.59 m/s 30 Wheelhouse: Abs. vert. accel 0.003 m^2/s^4 0.051 m/s^2 0.102 m/s^2 31 Wheelhouse: Rel. vert. accel 4.471 m^2/s^4 2.115 m/s^2 4.229 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.168 m^2 0.41 m 0.819 m 33 Wheelhouse: Long. (due to pitch) velocity 0.012 m^2/s^2 0.108 m/s 0.216 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.001 m^2/s^4 0.034 m/s^2 0.069 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.249 m^2 0.499 m 0.998 m
  • 233.
    40 Workdeck: Rel.vert. motion 0.201 m^2 0.448 m 0.896 m 41 Workdeck: Abs. vert. velocity 0.02 m^2/s^2 0.143 m/s 0.286 m/s 42 Workdeck: Rel. vert. velocity 0.137 m^2/s^2 0.37 m/s 0.739 m/s 43 Workdeck: Abs. vert. accel 0.002 m^2/s^4 0.046 m/s^2 0.091 m/s^2 44 Workdeck: Rel. vert. accel 8.633 m^2/s^4 2.938 m/s^2 5.877 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.021 m^2 0.143 m 0.287 m 46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.038 m/s 0.076 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.012 m/s^2 0.024 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 0, 0 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 274.465 kN -- -- 17 Heave motion 0.78 m^2 0.883 m 1.766 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00272 rad^2 0.0522 rad 0.1044 rad 20 Heave velocity 0.063 m^2/s^2 0.252 m/s 0.504 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.0002 (rad/s)^2 0.0143 rad/s 0.0286 rad/s 23 Heave acceleration 0.005 m^2/s^4 0.073 m/s^2 0.146 m/s^2
  • 234.
    24 Roll acceleration0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00002 (rad/s/s)^2 0.0043 rad/s/s 0.0086 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.106 m^2 1.052 m 2.103 m 27 Wheelhouse: Rel. vert. motion 0.206 m^2 0.454 m 0.908 m 28 Wheelhouse: Abs. vert. velocity 0.086 m^2/s^2 0.293 m/s 0.586 m/s 29 Wheelhouse: Rel. vert. velocity 0.084 m^2/s^2 0.29 m/s 0.58 m/s 30 Wheelhouse: Abs. vert. accel 0.007 m^2/s^4 0.085 m/s^2 0.17 m/s^2 31 Wheelhouse: Rel. vert. accel 3.869 m^2/s^4 1.967 m/s^2 3.934 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.318 m^2 0.564 m 1.127 m 33 Wheelhouse: Long. (due to pitch) velocity 0.024 m^2/s^2 0.155 m/s 0.311 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.047 m/s^2 0.093 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.94 m^2 0.97 m 1.939 m 40 Workdeck: Rel. vert. motion 0.219 m^2 0.468 m 0.937 m 41 Workdeck: Abs. vert. velocity 0.077 m^2/s^2 0.277 m/s 0.554 m/s 42 Workdeck: Rel. vert. velocity 0.124 m^2/s^2 0.352 m/s 0.703 m/s 43 Workdeck: Abs. vert. accel 0.007 m^2/s^4 0.082 m/s^2 0.163 m/s^2 44 Workdeck: Rel. vert. accel 7.557 m^2/s^4 2.749 m/s^2 5.498 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.039 m^2 0.197 m 0.394 m 46 Workdeck: Long. (due to pitch) velocity 0.003 m^2/s^2 0.054 m/s 0.109 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.016 m/s^2 0.033 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 30, 0.52 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- --
  • 235.
    8 Vessel trim0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 57.902 kN -- -- 17 Heave motion 0.055 m^2 0.234 m 0.468 m 18 Roll motion 0.00102 rad^2 0.03198 rad 0.06396 rad 19 Pitch motion 0.00048 rad^2 0.02182 rad 0.04363 rad 20 Heave velocity 0.006 m^2/s^2 0.078 m/s 0.156 m/s 21 Roll velocity 0.00051 (rad/s)^2 0.02265 rad/s 0.04529 rad/s 22 Pitch velocity 0.00005 (rad/s)^2 0.00699 rad/s 0.01397 rad/s 23 Heave acceleration 0.001 m^2/s^4 0.028 m/s^2 0.055 m/s^2 24 Roll acceleration 0.00134 (rad/s/s)^2 0.0366 rad/s/s 0.07321 rad/s/s) 25 Pitch acceleration 0.00001 (rad/s/s)^2 0.00235 rad/s/s 0.00471 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.116 m^2 0.341 m 0.682 m 27 Wheelhouse: Rel. vert. motion 0.069 m^2 0.264 m 0.527 m 28 Wheelhouse: Abs. vert. velocity 0.012 m^2/s^2 0.11 m/s 0.219 m/s 29 Wheelhouse: Rel. vert. velocity 0.031 m^2/s^2 0.177 m/s 0.354 m/s 30 Wheelhouse: Abs. vert. accel 0.001 m^2/s^4 0.038 m/s^2 0.075 m/s^2 31 Wheelhouse: Rel. vert. accel 1.094 m^2/s^4 1.046 m/s^2 2.092 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.053 m^2 0.231 m 0.462 m 33 Wheelhouse: Long. (due to pitch) velocity 0.006 m^2/s^2 0.074 m/s 0.148 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.001 m^2/s^4 0.025 m/s^2 0.05 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.124 m^2 0.353 m 0.705 m 36 Wheelhouse: Lat. (due to roll) velocity 0.06 m^2/s^2 0.246 m/s 0.491 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.156 m^2/s^4 0.395 m/s^2 0.789 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.003 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.095 m^2 0.309 m 0.617 m 40 Workdeck: Rel. vert. motion 0.065 m^2 0.256 m 0.512 m 41 Workdeck: Abs. vert. velocity 0.015 m^2/s^2 0.12 m/s 0.241 m/s 42 Workdeck: Rel. vert. velocity 0.05 m^2/s^2 0.224 m/s 0.448 m/s 43 Workdeck: Abs. vert. accel 0.013 m^2/s^4 0.115 m/s^2 0.229 m/s^2 44 Workdeck: Rel. vert. accel 2.256 m^2/s^4 1.502 m/s^2 3.004 m/s^2
  • 236.
    45 Workdeck: Long.(due to pitch) motion 0.007 m^2 0.081 m 0.161 m 46 Workdeck: Long. (due to pitch) velocity 0.001 m^2/s^2 0.026 m/s 0.052 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.009 m/s^2 0.018 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.015 m^2 0.123 m 0.247 m 49 Workdeck: Lat. (due to roll) velocity 0.007 m^2/s^2 0.086 m/s 0.172 m/s 50 Workdeck: Lat. (due to roll) accel 0.019 m^2/s^4 0.138 m/s^2 0.276 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 30, 0.52 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 159.834 kN -- -- 17 Heave motion 0.217 m^2 0.465 m 0.931 m 18 Roll motion 0.00224 rad^2 0.04737 rad 0.09475 rad 19 Pitch motion 0.00139 rad^2 0.03726 rad 0.07452 rad 20 Heave velocity 0.024 m^2/s^2 0.155 m/s 0.31 m/s 21 Roll velocity 0.00106 (rad/s)^2 0.03254 rad/s 0.06509 rad/s 22 Pitch velocity 0.00015 (rad/s)^2 0.01207 rad/s 0.02415 rad/s 23 Heave acceleration 0.003 m^2/s^4 0.053 m/s^2 0.106 m/s^2 24 Roll acceleration 0.00272 (rad/s/s)^2 0.05218 rad/s/s 0.10436 rad/s/s) 25 Pitch acceleration 0.00002 (rad/s/s)^2 0.00406 rad/s/s 0.00812 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.376 m^2 0.613 m 1.226 m 27 Wheelhouse: Rel. vert. motion 0.175 m^2 0.418 m 0.836 m 28 Wheelhouse: Abs. vert. velocity 0.04 m^2/s^2 0.199 m/s 0.398 m/s
  • 237.
    29 Wheelhouse: Rel.vert. velocity 0.067 m^2/s^2 0.259 m/s 0.519 m/s 30 Wheelhouse: Abs. vert. accel 0.005 m^2/s^4 0.068 m/s^2 0.135 m/s^2 31 Wheelhouse: Rel. vert. accel 2.238 m^2/s^4 1.496 m/s^2 2.992 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.158 m^2 0.397 m 0.795 m 33 Wheelhouse: Long. (due to pitch) velocity 0.017 m^2/s^2 0.129 m/s 0.258 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.002 m^2/s^4 0.044 m/s^2 0.087 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.273 m^2 0.523 m 1.046 m 36 Wheelhouse: Lat. (due to roll) velocity 0.125 m^2/s^2 0.353 m/s 0.706 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.317 m^2/s^4 0.563 m/s^2 1.125 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.543 MII/h 0.003 MII/h 39 Workdeck: Abs. vert. motion 0.342 m^2 0.585 m 1.17 m 40 Workdeck: Rel. vert. motion 0.149 m^2 0.386 m 0.772 m 41 Workdeck: Abs. vert. velocity 0.046 m^2/s^2 0.214 m/s 0.429 m/s 42 Workdeck: Rel. vert. velocity 0.103 m^2/s^2 0.321 m/s 0.643 m/s 43 Workdeck: Abs. vert. accel 0.028 m^2/s^4 0.169 m/s^2 0.337 m/s^2 44 Workdeck: Rel. vert. accel 4.59 m^2/s^4 2.143 m/s^2 4.285 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.139 m 0.278 m 46 Workdeck: Long. (due to pitch) velocity 0.002 m^2/s^2 0.045 m/s 0.09 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.015 m/s^2 0.03 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.033 m^2 0.183 m 0.366 m 49 Workdeck: Lat. (due to roll) velocity 0.015 m^2/s^2 0.123 m/s 0.247 m/s 50 Workdeck: Lat. (due to roll) accel 0.039 m^2/s^4 0.197 m/s^2 0.394 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.013 MII/h 0 MII/h 16, 16 kts; 30, 0.52 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 0.52 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- --
  • 238.
    13 Roll gyradius4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 299.27 kN -- -- 17 Heave motion 0.843 m^2 0.918 m 1.837 m 18 Roll motion 0.00238 rad^2 0.04878 rad 0.09757 rad 19 Pitch motion 0.00248 rad^2 0.04977 rad 0.09954 rad 20 Heave velocity 0.086 m^2/s^2 0.293 m/s 0.587 m/s 21 Roll velocity 0.00098 (rad/s)^2 0.03136 rad/s 0.06272 rad/s 22 Pitch velocity 0.00026 (rad/s)^2 0.01623 rad/s 0.03247 rad/s 23 Heave acceleration 0.009 m^2/s^4 0.095 m/s^2 0.19 m/s^2 24 Roll acceleration 0.00242 (rad/s/s)^2 0.04923 rad/s/s 0.09846 rad/s/s) 25 Pitch acceleration 0.00003 (rad/s/s)^2 0.00541 rad/s/s 0.01081 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.032 m^2 1.016 m 2.032 m 27 Wheelhouse: Rel. vert. motion 0.244 m^2 0.494 m 0.988 m 28 Wheelhouse: Abs. vert. velocity 0.106 m^2/s^2 0.325 m/s 0.65 m/s 29 Wheelhouse: Rel. vert. velocity 0.069 m^2/s^2 0.263 m/s 0.525 m/s 30 Wheelhouse: Abs. vert. accel 0.011 m^2/s^4 0.106 m/s^2 0.212 m/s^2 31 Wheelhouse: Rel. vert. accel 1.94 m^2/s^4 1.393 m/s^2 2.786 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.292 m^2 0.54 m 1.08 m 33 Wheelhouse: Long. (due to pitch) velocity 0.031 m^2/s^2 0.176 m/s 0.353 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.003 m^2/s^4 0.059 m/s^2 0.118 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.292 m^2 0.54 m 1.08 m 36 Wheelhouse: Lat. (due to roll) velocity 0.116 m^2/s^2 0.341 m/s 0.681 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.282 m^2/s^4 0.531 m/s^2 1.062 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.478 MII/h 0.002 MII/h 39 Workdeck: Abs. vert. motion 1.118 m^2 1.057 m 2.115 m 40 Workdeck: Rel. vert. motion 0.166 m^2 0.408 m 0.816 m 41 Workdeck: Abs. vert. velocity 0.123 m^2/s^2 0.35 m/s 0.701 m/s 42 Workdeck: Rel. vert. velocity 0.095 m^2/s^2 0.308 m/s 0.616 m/s 43 Workdeck: Abs. vert. accel 0.034 m^2/s^4 0.184 m/s^2 0.367 m/s^2 44 Workdeck: Rel. vert. accel 4.026 m^2/s^4 2.006 m/s^2 4.013 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.036 m^2 0.189 m 0.378 m 46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.062 m/s 0.123 m/s 47 Workdeck: Long. (due to pitch) accel 0 m^2/s^4 0.021 m/s^2 0.041 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.036 m^2 0.189 m 0.378 m 49 Workdeck: Lat. (due to roll) velocity 0.014 m^2/s^2 0.119 m/s 0.238 m/s
  • 239.
    50 Workdeck: Lat.(due to roll) accel 0.034 m^2/s^4 0.186 m/s^2 0.371 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.022 MII/h 0 MII/h 16, 16 kts; 90, 1.57 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 52.538 kN -- -- 17 Heave motion 0.144 m^2 0.379 m 0.758 m 18 Roll motion 0.00596 rad^2 0.07721 rad 0.15442 rad 19 Pitch motion 0.00034 rad^2 0.01832 rad 0.03665 rad 20 Heave velocity 0.11 m^2/s^2 0.331 m/s 0.662 m/s 21 Roll velocity 0.00715 (rad/s)^2 0.08456 rad/s 0.16913 rad/s 22 Pitch velocity 0.00028 (rad/s)^2 0.01684 rad/s 0.03369 rad/s 23 Heave acceleration 0.112 m^2/s^4 0.334 m/s^2 0.668 m/s^2 24 Roll acceleration 0.01322 (rad/s/s)^2 0.11498 rad/s/s 0.22996 rad/s/s) 25 Pitch acceleration 0.00027 (rad/s/s)^2 0.0164 rad/s/s 0.0328 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.058 m^2 0.24 m 0.48 m 27 Wheelhouse: Rel. vert. motion 0.11 m^2 0.332 m 0.663 m 28 Wheelhouse: Abs. vert. velocity 0.048 m^2/s^2 0.218 m/s 0.437 m/s 29 Wheelhouse: Rel. vert. velocity 0.144 m^2/s^2 0.38 m/s 0.759 m/s 30 Wheelhouse: Abs. vert. accel 0.056 m^2/s^4 0.236 m/s^2 0.472 m/s^2 31 Wheelhouse: Rel. vert. accel 0.44 m^2/s^4 0.664 m/s^2 1.327 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.04 m^2 0.2 m 0.4 m 33 Wheelhouse: Long. (due to pitch) velocity 0.033 m^2/s^2 0.181 m/s 0.363 m/s
  • 240.
    34 Wheelhouse: Long.(due to pitch) accel 0.03 m^2/s^4 0.174 m/s^2 0.348 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.728 m^2 0.853 m 1.707 m 36 Wheelhouse: Lat. (due to roll) velocity 0.851 m^2/s^2 0.923 m/s 1.845 m/s 37 Wheelhouse: Lat. (due to roll) accel 1.554 m^2/s^4 1.247 m/s^2 2.493 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 5.342 MII/h 0.371 MII/h 39 Workdeck: Abs. vert. motion 0.428 m^2 0.654 m 1.309 m 40 Workdeck: Rel. vert. motion 0.081 m^2 0.285 m 0.571 m 41 Workdeck: Abs. vert. velocity 0.388 m^2/s^2 0.623 m/s 1.245 m/s 42 Workdeck: Rel. vert. velocity 0.109 m^2/s^2 0.33 m/s 0.66 m/s 43 Workdeck: Abs. vert. accel 0.474 m^2/s^4 0.688 m/s^2 1.376 m/s^2 44 Workdeck: Rel. vert. accel 0.362 m^2/s^4 0.602 m/s^2 1.203 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.07 m 0.14 m 46 Workdeck: Long. (due to pitch) velocity 0.004 m^2/s^2 0.063 m/s 0.127 m/s 47 Workdeck: Long. (due to pitch) accel 0.004 m^2/s^4 0.061 m/s^2 0.122 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.089 m^2 0.299 m 0.597 m 49 Workdeck: Lat. (due to roll) velocity 0.104 m^2/s^2 0.323 m/s 0.645 m/s 50 Workdeck: Lat. (due to roll) accel 0.19 m^2/s^4 0.436 m/s^2 0.872 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.151 MII/h 0.003 MII/h 16, 16 kts; 90, 1.57 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 149.234 kN -- -- 17 Heave motion 0.459 m^2 0.678 m 1.355 m
  • 241.
    18 Roll motion0.01404 rad^2 0.1185 rad 0.237 rad 19 Pitch motion 0.00085 rad^2 0.02922 rad 0.05844 rad 20 Heave velocity 0.294 m^2/s^2 0.542 m/s 1.084 m/s 21 Roll velocity 0.01596 (rad/s)^2 0.12634 rad/s 0.25269 rad/s 22 Pitch velocity 0.00068 (rad/s)^2 0.02616 rad/s 0.05232 rad/s 23 Heave acceleration 0.264 m^2/s^4 0.514 m/s^2 1.028 m/s^2 24 Roll acceleration 0.02813 (rad/s/s)^2 0.16772 rad/s/s 0.33545 rad/s/s) 25 Pitch acceleration 0.00062 (rad/s/s)^2 0.02498 rad/s/s 0.04996 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.197 m^2 0.444 m 0.888 m 27 Wheelhouse: Rel. vert. motion 0.276 m^2 0.526 m 1.051 m 28 Wheelhouse: Abs. vert. velocity 0.128 m^2/s^2 0.357 m/s 0.715 m/s 29 Wheelhouse: Rel. vert. velocity 0.325 m^2/s^2 0.57 m/s 1.14 m/s 30 Wheelhouse: Abs. vert. accel 0.129 m^2/s^4 0.359 m/s^2 0.717 m/s^2 31 Wheelhouse: Rel. vert. accel 0.918 m^2/s^4 0.958 m/s^2 1.916 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.104 m^2 0.322 m 0.644 m 33 Wheelhouse: Long. (due to pitch) velocity 0.08 m^2/s^2 0.283 m/s 0.567 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.071 m^2/s^4 0.266 m/s^2 0.533 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 1.733 m^2 1.316 m 2.633 m 36 Wheelhouse: Lat. (due to roll) velocity 1.912 m^2/s^2 1.383 m/s 2.765 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.314 m^2/s^4 1.82 m/s^2 3.641 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 17.626 MII/h 4.831 MII/h 39 Workdeck: Abs. vert. motion 1.184 m^2 1.088 m 2.177 m 40 Workdeck: Rel. vert. motion 0.202 m^2 0.449 m 0.898 m 41 Workdeck: Abs. vert. velocity 0.947 m^2/s^2 0.973 m/s 1.946 m/s 42 Workdeck: Rel. vert. velocity 0.243 m^2/s^2 0.493 m/s 0.986 m/s 43 Workdeck: Abs. vert. accel 1.065 m^2/s^4 1.032 m/s^2 2.064 m/s^2 44 Workdeck: Rel. vert. accel 0.752 m^2/s^4 0.867 m/s^2 1.734 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.013 m^2 0.113 m 0.225 m 46 Workdeck: Long. (due to pitch) velocity 0.01 m^2/s^2 0.099 m/s 0.198 m/s 47 Workdeck: Long. (due to pitch) accel 0.009 m^2/s^4 0.093 m/s^2 0.186 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.212 m^2 0.46 m 0.921 m 49 Workdeck: Lat. (due to roll) velocity 0.234 m^2/s^2 0.484 m/s 0.967 m/s 50 Workdeck: Lat. (due to roll) accel 0.405 m^2/s^4 0.637 m/s^2 1.273 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 2.467 MII/h 0.368 MII/h 16, 16 kts; 90, 1.57 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- --
  • 242.
    2 Characteristic waveheight 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 1.57 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 298.541 kN -- -- 17 Heave motion 1.27 m^2 1.127 m 2.254 m 18 Roll motion 0.01622 rad^2 0.12734 rad 0.25468 rad 19 Pitch motion 0.00111 rad^2 0.03327 rad 0.06653 rad 20 Heave velocity 0.517 m^2/s^2 0.719 m/s 1.438 m/s 21 Roll velocity 0.01652 (rad/s)^2 0.12854 rad/s 0.25708 rad/s 22 Pitch velocity 0.0008 (rad/s)^2 0.02827 rad/s 0.05654 rad/s 23 Heave acceleration 0.33 m^2/s^4 0.574 m/s^2 1.148 m/s^2 24 Roll acceleration 0.02686 (rad/s/s)^2 0.16389 rad/s/s 0.32778 rad/s/s) 25 Pitch acceleration 0.00068 (rad/s/s)^2 0.02605 rad/s/s 0.05209 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.742 m^2 0.861 m 1.723 m 27 Wheelhouse: Rel. vert. motion 0.359 m^2 0.599 m 1.198 m 28 Wheelhouse: Abs. vert. velocity 0.262 m^2/s^2 0.512 m/s 1.023 m/s 29 Wheelhouse: Rel. vert. velocity 0.348 m^2/s^2 0.59 m/s 1.18 m/s 30 Wheelhouse: Abs. vert. accel 0.162 m^2/s^4 0.402 m/s^2 0.805 m/s^2 31 Wheelhouse: Rel. vert. accel 0.853 m^2/s^4 0.924 m/s^2 1.847 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.14 m^2 0.374 m 0.748 m 33 Wheelhouse: Long. (due to pitch) velocity 0.096 m^2/s^2 0.31 m/s 0.62 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.078 m^2/s^4 0.28 m/s^2 0.56 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 2.04 m^2 1.428 m 2.857 m 36 Wheelhouse: Lat. (due to roll) velocity 2.001 m^2/s^2 1.415 m/s 2.829 m/s 37 Wheelhouse: Lat. (due to roll) accel 3.177 m^2/s^4 1.782 m/s^2 3.565 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 16.05 MII/h 4.101 MII/h
  • 243.
    39 Workdeck: Abs.vert. motion 2.295 m^2 1.515 m 3.03 m 40 Workdeck: Rel. vert. motion 0.278 m^2 0.528 m 1.055 m 41 Workdeck: Abs. vert. velocity 1.275 m^2/s^2 1.129 m/s 2.258 m/s 42 Workdeck: Rel. vert. velocity 0.261 m^2/s^2 0.511 m/s 1.022 m/s 43 Workdeck: Abs. vert. accel 1.149 m^2/s^4 1.072 m/s^2 2.143 m/s^2 44 Workdeck: Rel. vert. accel 0.696 m^2/s^4 0.834 m/s^2 1.668 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.017 m^2 0.131 m 0.262 m 46 Workdeck: Long. (due to pitch) velocity 0.012 m^2/s^2 0.108 m/s 0.217 m/s 47 Workdeck: Long. (due to pitch) accel 0.01 m^2/s^4 0.098 m/s^2 0.196 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.25 m^2 0.5 m 0.999 m 49 Workdeck: Lat. (due to roll) velocity 0.245 m^2/s^2 0.495 m/s 0.99 m/s 50 Workdeck: Lat. (due to roll) accel 0.389 m^2/s^4 0.623 m/s^2 1.247 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 3.396 MII/h 0.66 MII/h 16, 16 kts; 140, 2.44 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 46.935 kN -- -- 17 Heave motion 0.252 m^2 0.502 m 1.004 m 18 Roll motion 0.00076 rad^2 0.02752 rad 0.05504 rad 19 Pitch motion 0.00045 rad^2 0.02113 rad 0.04227 rad 20 Heave velocity 0.315 m^2/s^2 0.561 m/s 1.123 m/s 21 Roll velocity 0.00112 (rad/s)^2 0.03348 rad/s 0.06696 rad/s 22 Pitch velocity 0.00065 (rad/s)^2 0.02546 rad/s 0.05092 rad/s
  • 244.
    23 Heave acceleration0.44 m^2/s^4 0.663 m/s^2 1.326 m/s^2 24 Roll acceleration 0.00266 (rad/s/s)^2 0.05156 rad/s/s 0.10312 rad/s/s) 25 Pitch acceleration 0.00106 (rad/s/s)^2 0.03252 rad/s/s 0.06504 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.371 m^2 0.609 m 1.219 m 27 Wheelhouse: Rel. vert. motion 0.297 m^2 0.545 m 1.09 m 28 Wheelhouse: Abs. vert. velocity 0.475 m^2/s^2 0.69 m/s 1.379 m/s 29 Wheelhouse: Rel. vert. velocity 0.774 m^2/s^2 0.88 m/s 1.759 m/s 30 Wheelhouse: Abs. vert. accel 0.675 m^2/s^4 0.821 m/s^2 1.643 m/s^2 31 Wheelhouse: Rel. vert. accel 3.938 m^2/s^4 1.984 m/s^2 3.969 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.054 m^2 0.231 m 0.463 m 33 Wheelhouse: Long. (due to pitch) velocity 0.077 m^2/s^2 0.278 m/s 0.557 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.126 m^2/s^4 0.355 m/s^2 0.71 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.091 m^2 0.301 m 0.602 m 36 Wheelhouse: Lat. (due to roll) velocity 0.133 m^2/s^2 0.365 m/s 0.731 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.314 m^2/s^4 0.56 m/s^2 1.12 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.017 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.317 m^2 0.563 m 1.126 m 40 Workdeck: Rel. vert. motion 0.181 m^2 0.425 m 0.85 m 41 Workdeck: Abs. vert. velocity 0.402 m^2/s^2 0.634 m/s 1.269 m/s 42 Workdeck: Rel. vert. velocity 0.561 m^2/s^2 0.749 m/s 1.498 m/s 43 Workdeck: Abs. vert. accel 0.575 m^2/s^4 0.758 m/s^2 1.517 m/s^2 44 Workdeck: Rel. vert. accel 3.505 m^2/s^4 1.872 m/s^2 3.745 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.007 m^2 0.081 m 0.162 m 46 Workdeck: Long. (due to pitch) velocity 0.009 m^2/s^2 0.097 m/s 0.195 m/s 47 Workdeck: Long. (due to pitch) accel 0.015 m^2/s^4 0.124 m/s^2 0.248 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.011 m^2 0.105 m 0.211 m 49 Workdeck: Lat. (due to roll) velocity 0.016 m^2/s^2 0.128 m/s 0.256 m/s 50 Workdeck: Lat. (due to roll) accel 0.038 m^2/s^4 0.196 m/s^2 0.392 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 140, 2.44 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- --
  • 245.
    7 Vessel GMt2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 147.322 kN -- -- 17 Heave motion 0.818 m^2 0.904 m 1.808 m 18 Roll motion 0.00228 rad^2 0.0478 rad 0.0956 rad 19 Pitch motion 0.00129 rad^2 0.03589 rad 0.07178 rad 20 Heave velocity 0.925 m^2/s^2 0.962 m/s 1.924 m/s 21 Roll velocity 0.00306 (rad/s)^2 0.05531 rad/s 0.11063 rad/s 22 Pitch velocity 0.00175 (rad/s)^2 0.04183 rad/s 0.08367 rad/s 23 Heave acceleration 1.207 m^2/s^4 1.099 m/s^2 2.197 m/s^2 24 Roll acceleration 0.00637 (rad/s/s)^2 0.07984 rad/s/s 0.15968 rad/s/s) 25 Pitch acceleration 0.00272 (rad/s/s)^2 0.05212 rad/s/s 0.10425 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.169 m^2 1.081 m 2.162 m 27 Wheelhouse: Rel. vert. motion 0.732 m^2 0.856 m 1.711 m 28 Wheelhouse: Abs. vert. velocity 1.371 m^2/s^2 1.171 m/s 2.342 m/s 29 Wheelhouse: Rel. vert. velocity 1.787 m^2/s^2 1.337 m/s 2.674 m/s 30 Wheelhouse: Abs. vert. accel 1.833 m^2/s^4 1.354 m/s^2 2.708 m/s^2 31 Wheelhouse: Rel. vert. accel 8.471 m^2/s^4 2.911 m/s^2 5.821 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.155 m^2 0.393 m 0.787 m 33 Wheelhouse: Long. (due to pitch) velocity 0.209 m^2/s^2 0.458 m/s 0.915 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.324 m^2/s^4 0.569 m/s^2 1.139 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.274 m^2 0.524 m 1.047 m 36 Wheelhouse: Lat. (due to roll) velocity 0.365 m^2/s^2 0.604 m/s 1.208 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.754 m^2/s^4 0.868 m/s^2 1.737 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.732 MII/h 0.071 MII/h 39 Workdeck: Abs. vert. motion 1.013 m^2 1.006 m 2.012 m 40 Workdeck: Rel. vert. motion 0.441 m^2 0.664 m 1.328 m 41 Workdeck: Abs. vert. velocity 1.17 m^2/s^2 1.081 m/s 2.163 m/s 42 Workdeck: Rel. vert. velocity 1.265 m^2/s^2 1.125 m/s 2.249 m/s 43 Workdeck: Abs. vert. accel 1.563 m^2/s^4 1.25 m/s^2 2.501 m/s^2
  • 246.
    44 Workdeck: Rel.vert. accel 7.437 m^2/s^4 2.727 m/s^2 5.454 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.019 m^2 0.138 m 0.275 m 46 Workdeck: Long. (due to pitch) velocity 0.026 m^2/s^2 0.16 m/s 0.32 m/s 47 Workdeck: Long. (due to pitch) accel 0.04 m^2/s^4 0.199 m/s^2 0.398 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.034 m^2 0.183 m 0.366 m 49 Workdeck: Lat. (due to roll) velocity 0.045 m^2/s^2 0.211 m/s 0.423 m/s 50 Workdeck: Lat. (due to roll) accel 0.092 m^2/s^4 0.304 m/s^2 0.607 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.009 MII/h 0 MII/h 16, 16 kts; 140, 2.44 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 2.44 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 327.986 kN -- -- 17 Heave motion 1.958 m^2 1.399 m 2.799 m 18 Roll motion 0.00389 rad^2 0.06237 rad 0.12475 rad 19 Pitch motion 0.0021 rad^2 0.04578 rad 0.09156 rad 20 Heave velocity 1.614 m^2/s^2 1.271 m/s 2.541 m/s 21 Roll velocity 0.00438 (rad/s)^2 0.0662 rad/s 0.1324 rad/s 22 Pitch velocity 0.00244 (rad/s)^2 0.04936 rad/s 0.09873 rad/s 23 Heave acceleration 1.747 m^2/s^4 1.322 m/s^2 2.644 m/s^2 24 Roll acceleration 0.00747 (rad/s/s)^2 0.08643 rad/s/s 0.17286 rad/s/s) 25 Pitch acceleration 0.00343 (rad/s/s)^2 0.05853 rad/s/s 0.11705 rad/s/s) 26 Wheelhouse: Abs. vert. motion 2.532 m^2 1.591 m 3.182 m 27 Wheelhouse: Rel. vert. motion 0.869 m^2 0.932 m 1.864 m
  • 247.
    28 Wheelhouse: Abs.vert. velocity 2.255 m^2/s^2 1.502 m/s 3.003 m/s 29 Wheelhouse: Rel. vert. velocity 1.923 m^2/s^2 1.387 m/s 2.773 m/s 30 Wheelhouse: Abs. vert. accel 2.574 m^2/s^4 1.604 m/s^2 3.209 m/s^2 31 Wheelhouse: Rel. vert. accel 8.197 m^2/s^4 2.863 m/s^2 5.726 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.253 m^2 0.503 m 1.006 m 33 Wheelhouse: Long. (due to pitch) velocity 0.293 m^2/s^2 0.541 m/s 1.082 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.409 m^2/s^4 0.64 m/s^2 1.28 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0.47 m^2 0.686 m 1.371 m 36 Wheelhouse: Lat. (due to roll) velocity 0.525 m^2/s^2 0.725 m/s 1.45 m/s 37 Wheelhouse: Lat. (due to roll) accel 0.887 m^2/s^4 0.942 m/s^2 1.883 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0.816 MII/h 0.1 MII/h 39 Workdeck: Abs. vert. motion 2.288 m^2 1.512 m 3.025 m 40 Workdeck: Rel. vert. motion 0.531 m^2 0.728 m 1.457 m 41 Workdeck: Abs. vert. velocity 1.972 m^2/s^2 1.404 m/s 2.809 m/s 42 Workdeck: Rel. vert. velocity 1.323 m^2/s^2 1.15 m/s 2.301 m/s 43 Workdeck: Abs. vert. accel 2.215 m^2/s^4 1.488 m/s^2 2.976 m/s^2 44 Workdeck: Rel. vert. accel 7.045 m^2/s^4 2.654 m/s^2 5.308 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.031 m^2 0.176 m 0.352 m 46 Workdeck: Long. (due to pitch) velocity 0.036 m^2/s^2 0.189 m/s 0.378 m/s 47 Workdeck: Long. (due to pitch) accel 0.05 m^2/s^4 0.224 m/s^2 0.448 m/s^2 48 Workdeck: Lat. (due to roll) motion 0.057 m^2 0.24 m 0.48 m 49 Workdeck: Lat. (due to roll) velocity 0.064 m^2/s^2 0.254 m/s 0.507 m/s 50 Workdeck: Lat. (due to roll) accel 0.108 m^2/s^4 0.329 m/s^2 0.659 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0.148 MII/h 0.018 MII/h 16, 16 kts; 180, 3.142 rad; Sea State 4 (ITTC (2 Param. Bretschneider): 8.8 s, 1.88 m) Item m0 units RMS units Significant amplitude units 1 Modal period 8.792 s -- -- 2 Characteristic wave height 1.88 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- --
  • 248.
    12 Pitch gyradius16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.221 m^2 0.47 m 0.94 m 15 Encountered wave spectrum 0.221 m^2 0.47 m 0.94 m 16 Added resistance 38.416 kN -- -- 17 Heave motion 0.203 m^2 0.451 m 0.902 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00036 rad^2 0.01907 rad 0.03814 rad 20 Heave velocity 0.259 m^2/s^2 0.509 m/s 1.019 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00052 (rad/s)^2 0.02287 rad/s 0.04573 rad/s 23 Heave acceleration 0.361 m^2/s^4 0.601 m/s^2 1.202 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00083 (rad/s/s)^2 0.02876 rad/s/s 0.05752 rad/s/s) 26 Wheelhouse: Abs. vert. motion 0.338 m^2 0.581 m 1.163 m 27 Wheelhouse: Rel. vert. motion 0.38 m^2 0.617 m 1.234 m 28 Wheelhouse: Abs. vert. velocity 0.441 m^2/s^2 0.664 m/s 1.328 m/s 29 Wheelhouse: Rel. vert. velocity 0.975 m^2/s^2 0.987 m/s 1.974 m/s 30 Wheelhouse: Abs. vert. accel 0.629 m^2/s^4 0.793 m/s^2 1.587 m/s^2 31 Wheelhouse: Rel. vert. accel 5.146 m^2/s^4 2.269 m/s^2 4.537 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.044 m^2 0.209 m 0.417 m 33 Wheelhouse: Long. (due to pitch) velocity 0.062 m^2/s^2 0.25 m/s 0.5 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.098 m^2/s^4 0.314 m/s^2 0.627 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.181 m^2 0.425 m 0.851 m 40 Workdeck: Rel. vert. motion 0.201 m^2 0.448 m 0.896 m 41 Workdeck: Abs. vert. velocity 0.233 m^2/s^2 0.482 m/s 0.965 m/s 42 Workdeck: Rel. vert. velocity 0.713 m^2/s^2 0.844 m/s 1.688 m/s 43 Workdeck: Abs. vert. accel 0.328 m^2/s^4 0.573 m/s^2 1.146 m/s^2 44 Workdeck: Rel. vert. accel 4.996 m^2/s^4 2.235 m/s^2 4.47 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.005 m^2 0.073 m 0.146 m 46 Workdeck: Long. (due to pitch) velocity 0.008 m^2/s^2 0.087 m/s 0.175 m/s 47 Workdeck: Long. (due to pitch) accel 0.012 m^2/s^4 0.11 m/s^2 0.219 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m
  • 249.
    49 Workdeck: Lat.(due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 180, 3.142 rad; Sea State 5 (ITTC (2 Param. Bretschneider): 9.7 s, 3.25 m) Item m0 units RMS units Significant amplitude units 1 Modal period 9.691 s -- -- 2 Characteristic wave height 3.25 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 0.66 m^2 0.812 m 1.625 m 15 Encountered wave spectrum 0.66 m^2 0.812 m 1.625 m 16 Added resistance 128.861 kN -- -- 17 Heave motion 0.719 m^2 0.848 m 1.696 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00116 rad^2 0.0341 rad 0.06821 rad 20 Heave velocity 0.836 m^2/s^2 0.914 m/s 1.828 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00155 (rad/s)^2 0.03943 rad/s 0.07886 rad/s 23 Heave acceleration 1.089 m^2/s^4 1.044 m/s^2 2.087 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00233 (rad/s/s)^2 0.04824 rad/s/s 0.09649 rad/s/s) 26 Wheelhouse: Abs. vert. motion 1.163 m^2 1.078 m 2.157 m 27 Wheelhouse: Rel. vert. motion 1.021 m^2 1.01 m 2.021 m 28 Wheelhouse: Abs. vert. velocity 1.395 m^2/s^2 1.181 m/s 2.362 m/s 29 Wheelhouse: Rel. vert. velocity 2.378 m^2/s^2 1.542 m/s 3.084 m/s 30 Wheelhouse: Abs. vert. accel 1.87 m^2/s^4 1.367 m/s^2 2.735 m/s^2 31 Wheelhouse: Rel. vert. accel 11.306 m^2/s^4 3.362 m/s^2 6.725 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.139 m^2 0.373 m 0.747 m
  • 250.
    33 Wheelhouse: Long.(due to pitch) velocity 0.186 m^2/s^2 0.431 m/s 0.862 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.277 m^2/s^4 0.527 m/s^2 1.053 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 0.641 m^2 0.801 m 1.601 m 40 Workdeck: Rel. vert. motion 0.495 m^2 0.704 m 1.407 m 41 Workdeck: Abs. vert. velocity 0.748 m^2/s^2 0.865 m/s 1.729 m/s 42 Workdeck: Rel. vert. velocity 1.627 m^2/s^2 1.275 m/s 2.551 m/s 43 Workdeck: Abs. vert. accel 0.984 m^2/s^4 0.992 m/s^2 1.984 m/s^2 44 Workdeck: Rel. vert. accel 10.682 m^2/s^4 3.268 m/s^2 6.537 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.017 m^2 0.131 m 0.261 m 46 Workdeck: Long. (due to pitch) velocity 0.023 m^2/s^2 0.151 m/s 0.302 m/s 47 Workdeck: Long. (due to pitch) accel 0.034 m^2/s^4 0.184 m/s^2 0.368 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 16, 16 kts; 180, 3.142 rad; Sea State 6 (ITTC (2 Param. Bretschneider): 12.4 s, 5 m) Item m0 units RMS units Significant amplitude units 1 Modal period 12.388 s -- -- 2 Characteristic wave height 5 m -- -- 3 Spectrum type ITTC (2 Param. Bretschneid -- -- 4 Wave heading 3.142 rad -- -- 5 Vessel Speed 16 kts -- -- 6 Vessel displacement 2867.584 m^3 -- -- 7 Vessel GMt 2.924 m -- -- 8 Vessel trim 0 rad -- -- 9 Transom method No transom terms -- -- 10 Wave force method Arbitrary wave heading -- -- 11 Added res. method Salvesen -- -- 12 Pitch gyradius 16.711 m -- -- 13 Roll gyradius 4.58 m -- -- 14 Wave spectrum 1.563 m^2 1.25 m 2.5 m 15 Encountered wave spectrum 1.563 m^2 1.25 m 2.5 m 16 Added resistance 313.213 kN -- --
  • 251.
    17 Heave motion1.918 m^2 1.385 m 2.77 m 18 Roll motion 0 rad^2 0 rad 0 rad 19 Pitch motion 0.00227 rad^2 0.04768 rad 0.09536 rad 20 Heave velocity 1.666 m^2/s^2 1.291 m/s 2.581 m/s 21 Roll velocity 0 (rad/s)^2 0 rad/s 0 rad/s 22 Pitch velocity 0.00254 (rad/s)^2 0.05038 rad/s 0.10075 rad/s 23 Heave acceleration 1.812 m^2/s^4 1.346 m/s^2 2.692 m/s^2 24 Roll acceleration 0 (rad/s/s)^2 0 rad/s/s 0 rad/s/s) 25 Pitch acceleration 0.00338 (rad/s/s)^2 0.05812 rad/s/s 0.11623 rad/s/s) 26 Wheelhouse: Abs. vert. motion 2.815 m^2 1.678 m 3.355 m 27 Wheelhouse: Rel. vert. motion 1.388 m^2 1.178 m 2.356 m 28 Wheelhouse: Abs. vert. velocity 2.621 m^2/s^2 1.619 m/s 3.238 m/s 29 Wheelhouse: Rel. vert. velocity 2.809 m^2/s^2 1.676 m/s 3.352 m/s 30 Wheelhouse: Abs. vert. accel 3.002 m^2/s^4 1.733 m/s^2 3.465 m/s^2 31 Wheelhouse: Rel. vert. accel 11.357 m^2/s^4 3.37 m/s^2 6.74 m/s^2 32 Wheelhouse: Long. (due to pitch) motion 0.274 m^2 0.523 m 1.046 m 33 Wheelhouse: Long. (due to pitch) velocity 0.304 m^2/s^2 0.552 m/s 1.103 m/s 34 Wheelhouse: Long. (due to pitch) accel 0.403 m^2/s^4 0.635 m/s^2 1.27 m/s^2 35 Wheelhouse: Lat. (due to roll) motion 0 m^2 0 m 0 m 36 Wheelhouse: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 37 Wheelhouse: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 38 Wheelhouse: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h 39 Workdeck: Abs. vert. motion 1.752 m^2 1.324 m 2.647 m 40 Workdeck: Rel. vert. motion 0.587 m^2 0.766 m 1.533 m 41 Workdeck: Abs. vert. velocity 1.502 m^2/s^2 1.225 m/s 2.451 m/s 42 Workdeck: Rel. vert. velocity 1.723 m^2/s^2 1.313 m/s 2.626 m/s 43 Workdeck: Abs. vert. accel 1.633 m^2/s^4 1.278 m/s^2 2.556 m/s^2 44 Workdeck: Rel. vert. accel 10.23 m^2/s^4 3.198 m/s^2 6.397 m/s^2 45 Workdeck: Long. (due to pitch) motion 0.033 m^2 0.183 m 0.366 m 46 Workdeck: Long. (due to pitch) velocity 0.037 m^2/s^2 0.193 m/s 0.386 m/s 47 Workdeck: Long. (due to pitch) accel 0.049 m^2/s^4 0.222 m/s^2 0.444 m/s^2 48 Workdeck: Lat. (due to roll) motion 0 m^2 0 m 0 m 49 Workdeck: Lat. (due to roll) velocity 0 m^2/s^2 0 m/s 0 m/s 50 Workdeck: Lat. (due to roll) accel 0 m^2/s^4 0 m/s^2 0 m/s^2 51 Workdeck: MII slide; tip f/a; tip s/s 0 MII/h 0 MII/h 0 MII/h
  • 252.
    69 Appendix M – Structural Calculations  Contents: Weights and Centers..............................................................................................................M-1 Excel Calculations Spreadsheet.............................................................................................M-2 Net Load, Shear and Moment Diagram Full Load ................................................................M-3 Net Load, Shear and Moment Diagram 50% Fuel.................................................................M-4 Net Load, Shear and Moment Diagram 10% Fuel.................................................................M-5
  • 254.
    N-1: Parameters Figure N.1:Parameters used for structural Calculations
  • 255.
    N-2: ABS Regulations FigureN.1: Section Modulus Equations Figure N.2: Wave Load Equations
  • 256.
    Figure N.3: RequiredSection Modulus and Wave Load Calculations
  • 257.
    Figure N.4: RequiredSection Modulus Calculations and Equations
  • 258.
    Figure N.5: SideShell Plating Equations Figure N.6: Bottom Shell Plating Equations
  • 259.
    Figure N.7: SideShell and Bottom Shell Plating Calculations
  • 260.
    Figure N.8: SideShell End Plating Equations Figure N.9: Forecastle and Poop Side Plating Equations Figure N.10: Bow and Stern Thruster Tunnel Plating Equations
  • 261.
    Figure N.11: SideShell Plating at Ends, Forecastle/Poop Side Plating, and Tunnel Plating
  • 262.
    Figure N.12 N.13: Deck Plating Equations
  • 263.
    Figure N.15 N.16: Strength Deck Plating Equations
  • 264.
    Figure N.17: VariousTypes of Deck Plating
  • 265.
    Figure N.18 N.19: Deck Transverse Sizing Equations
  • 266.
    Figure N.20 N.21: Deck Transverse Sizing Equations
  • 267.
    Figure N.22: DeckGirder Sizing and Proportions Equations
  • 268.
    Figure N.23: DeckFrame and Girder Sizing Calculations
  • 269.
    Figure N.24: VisualDefinition of Proportions Figure N.24: Bottom Transverse Equations and Calculations
  • 270.
    Figure N.25: CollisionBulkhead Location Equations and Definitions
  • 271.
    Figure N.25: BulkheadPlating Equations
  • 272.
    Figure N.26: BulkheadStiffener Sizing Equations Figure N.27: Bulkhead Girder Sizing Equations
  • 273.
  • 274.
    Figure N.29: SideFrame Equations
  • 275.
    Figure N.30: SideFrame Calculations and Visual Definitions
  • 276.
    Figure N.31: DeckhouseStiffener Equations
  • 277.
    Figure N.32 N.33: Tween Deck Frame Equations and Visual Definitions
  • 278.
    Figure N.34 N.35: Deckhouse Plating Equations
  • 279.
    Figure N.36: TweenDeck Frame and Deckhouse Plating Calculations
  • 280.
    Figure N.37 N.38: Deckhouse Plating Equations
  • 281.
    Figure N.39 N.40: Deckhouse Deck Beam Equations
  • 282.
    Figure N.41: DeckhouseDeck Beam Calculations Figure N.42: Deckhouse Deck Girder Equations
  • 283.
    Figure N.43: DeckhouseDeck Girder Calculations
  • 284.
    Figure N.44 N.45: Deep Tank Plating Equations
  • 285.
    Figure N.46: DeepTank Stiffener Equations
  • 286.
    Figure N.47: DeepTank Stiffener Equations
  • 287.
    N-3: Finnish SwedishIce Class Regulations Figure N.48: Height of Load Area Figure N.49: Ice Pressure Equations
  • 288.
    Figure N.49: IcePressure Parameters
  • 289.
    Figure N.49: IcePressure Calculations Figure N.50: Ice Belt Plate Thickness Equations
  • 290.
    Figure N.51: IceBelt Plate Thickness Calculations for Normal and High Strength Steel Figure N.52: Ice Belt Framing Extension Definitions
  • 291.
    Figure N.53: IceBelt Framing Equations
  • 292.
    Figure N.54: IceBelt Framing Calculations
  • 293.
    N-4: Midship SectionAnalysis Figure N.55: Midship Section Analysis
  • 294.
    ‐10 0 10 20 30 40 50 Magnitude Load, Shear and Moment Curves ‐ Full Load Departure Net Load (ton/m) Shear (ton) x 100Moment (ton‐m) x 10 ‐50 ‐40 ‐30 ‐20 ‐10 0 10 20 30 40 50 ‐80 ‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0 Magnitude Location (Aft of F.P.) Load, Shear and Moment Curves ‐ Full Load Departure Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
  • 295.
    ‐10 0 10 20 30 40 50 60 Magnitude Load, Shear and Moment Curves ‐ 50% Fuel Used Net Load (ton/m) Shear (ton) x 100Moment (ton‐m) x 10 ‐50 ‐40 ‐30 ‐20 ‐10 0 10 20 30 40 50 60 ‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0 Magnitude Location (Aft of F.P.) Load, Shear and Moment Curves ‐ 50% Fuel Used Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10
  • 296.
    ‐10 0 10 20 30 40 50 60 Magnitude Load, Shear and Moment Curves ‐ 90% Fuel used Net Load (ton/m) Shear (ton) x 100Moment (ton‐m) x 10 ‐50 ‐40 ‐30 ‐20 ‐10 0 10 20 30 40 50 60 ‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0 Magnitude Location (Aft of F.P.) Load, Shear and Moment Curves ‐ 90% Fuel used Net Load (ton/m) Shear (ton) x 100 Moment (ton‐m) x 10