SlideShare a Scribd company logo
1 of 26
Running head: GETTING A WRITTEN STATEMENT
1
GETTING A WRITTEN STATEMENT
5
Getting a Written Statement
Rhoshanna Glover
Argosy University
Getting a Written Statement
Whether Videotaping is Applicable
Videotaping or recording is applicable to interrogation or
interview situations in which a written statement is needed from
some potential suspect. The interrogation personnel point out
that, videotaping suspect’s statements is quite significant
because it helps in reducing doubts concerning the nature of
confessions. It also helps in avoiding the attorney’s challenges
of the accuracy of audiotapes and also the completeness of the
written statement confessions. In addition, the videotapes help
in jogging detectives’ memories when testifying, and also it
helps in countering the defense criticism of softening up
techniques for interrogating suspects. Using videotaping in an
interrogating situation that needs a written statement also helps
in showing the physical condition of the suspect when booked
and also to document the notification of suspect’s constitutional
rights. It also assists in mental health evaluations of the suspect
that have issues with sanity. Videotaping or recording helps
improve the reliability and credibility of the authentic
confessions, and it protects the rights of the innocent suspects
(Geller, 1993).
In essence, a suspect can provide information, in which case it
can be recorded in the form of audiotape, videotape, a written
record of the interview, a written note or statement of verbal
comments that the suspect makes before or even after the formal
interview. Most often, police videotape interviews, although it
is sometimes audiotaped and recorded in writing. Videotaping is
significant in situations where a written statement is needed,
and this is to show some relevance and connect what the suspect
says in the video resembles what he or she writes in the
statement.
Statements, whether recorded or written, are vitally the work-
product of the suspect’s interviews and interrogations. Such
statements lock the suspect into his or her story and also make
it difficult to change the description of the events. Videotaping
or recoding can be applicable in interrogation situation that
requires a written statement because all of them follow the same
pattern and they all have distinct parts. Recording and
videotaping currently are quite easy to obtain and also they are
quite powerful than the written statements when it is produced
in the courts. Videotaping will allow the investigators to focus
on the communication, and it also serve to protect the
interviewer from the claims of using threats or misconduct.
Videotaping or recording are quite transcribed into some written
word, and the transcriptionist ensures that he or she completely
understands everything on the tape (Geller, 1993).
Potential Pitfalls Interrogators Face
One of the challenges investigators face is in understanding how
to read the behavior of the suspect. Understanding the behavior
of the suspect is crucial in getting his or her statement, and
failing which things might go wrong. In essence, not every
person reacts the same way under pressure. Investigators ought
to align their instincts with the evidence and facts available.
The other challenge involves removing an emotional model and
just deciding to operate under some rational model whenever
the investigator encounters a lot of injustice and wrongdoings.
The other challenge involves the struggle to ensure they do not
contaminate the statement or confessions. In essence, a
statement or confession is tampered or contaminated when
queries are asked that uses some particular crime scene data and
results. For instance, using crime scene pictures that have not
been made public can no longer be valid, and this is because the
suspect might become quite educated on the crime via
interrogation and simply goes ahead to repeat the knowledge
learned. This might appear the suspect offered the statement or
confession when, in essence, it was motivated by desire to end
interrogation. There is a need to preserve the evidence.
Investigators should not lead the suspect rather they should
allow the suspect to record the statement and provide the
information.
References:
Geller, W. (1993). Videotaping Interrogations and Confessions.
The National Criminal Justice
Reference Service. Retrieved from
https://www.ncjrs.gov/pdffiles1/Digitization/139962NCJRS.pdf
Zulawski, D, Sturman, S & Hoover, W. (2001). Practical
Aspects of Interview and Interrogation,
Second Edition. CRC Press
, 20130104, published 27 March 20139 2013 Biol. Lett.
Matthew L. Niemiller, Dennis M. Higgs and Daphne Soares
Evidence for hearing loss in amblyopsid cavefishes
References
http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full
.html#ref-list-1
This article cites 13 articles, 1 of which can be accessed free
Subject collections
(75 articles)neuroscience �
(642 articles)evolution �
(629 articles)ecology �
Articles on similar topics can be found in the following
collections
Email alerting service
hereright-hand corner of the article or click
Receive free email alerts when new articles cite this article -
sign up in the box at the top
http://rsbl.royalsocietypublishing.org/subscriptions go to: Biol.
Lett.To subscribe to
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full
.html#ref-list-1
http://rsbl.royalsocietypublishing.org/cgi/collection/ecology
http://rsbl.royalsocietypublishing.org/cgi/collection/evolution
http://rsbl.royalsocietypublishing.org/cgi/collection/neuroscienc
e
http://rsbl.royalsocietypublishing.org/cgi/alerts/ctalert?alertTyp
e=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria
_resid=roybiolett;9/3/20130104&return_type=article&return_url
=http://rsbl.royalsocietypublishing.org/content/9/3/20130104.ful
l.pdf
http://rsbl.royalsocietypublishing.org/subscriptions
http://rsbl.royalsocietypublishing.org/
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
rsbl.royalsocietypublishing.org
Research
Cite this article: Niemiller ML, Higgs DM,
Soares D. 2013 Evidence for hearing loss in
amblyopsid cavefishes. Biol Lett 9: 20130104.
http://dx.doi.org/10.1098/rsbl.2013.0104
Received: 1 February 2013
Accepted: 5 March 2013
Subject Areas:
evolution, neuroscience, ecology
Keywords:
auditory, evolution, fish, subterranean
Author for correspondence:
Daphne Soares
e-mail: [email protected]
& 2013 The Author(s) Published by the Royal Society. All
rights reserved.
Neurobiology
Evidence for hearing loss in amblyopsid
cavefishes
Matthew L. Niemiller1, Dennis M. Higgs2 and Daphne Soares3
1Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT 06520, USA
2Department of Biological Sciences, University of Windsor,
Windsor, Ontario, Canada N9B 3P4
3Department of Biology, University of Maryland, College Park,
MD 20742, USA
The constant darkness of caves and other subterranean habitats
imposes sen-
sory constraints that offer a unique opportunity to examine
evolution of
sensory modalities. Hearing in cavefishes has not been well
explored, and
here we show that cavefishes in the family Amblyopsidae are
not only
blind but have also lost a significant portion of their hearing
range. Our
results showed that cave and surface amblyopsids shared the
same audio-
gram profile at low frequencies but only surface amblyopsids
were able to
hear frequencies higher than 800 Hz and up to 2 kHz. We
measured ambient
noise in aquatic cave and surface habitats and found high
intensity peaks
near 1 kHz for streams underground, suggesting no adaptive
advantage in
hearing in those frequencies. In addition, cave amblyopsids had
lower hair
cell densities compared with their surface relative. These traits
may have
evolved in response to the loud high-frequency background
noise found
in subterranean pools and streams. This study represents the
first report of
auditory regression in a subterranean organism.
1. Introduction
Animals that live in continual darkness are faced with unique
challenges in
order to locate and identify food, predators and each other [1].
Without
visual information, independent lineages of obligate cave-
dwelling organisms
have evolved regressive features, such as the loss or reduction
of eyes and pig-
mentation and constructive traits, such as longer appendages
and hypertrophy
of non-visual sensory systems [2]. Aside from darkness being
common to all
subterranean habitats, several other abiotic factors influence
subterranean
organisms, such as relatively stable temperature, high humidity
and hydro-
logical factors (for example, periodic flooding) [2]. However,
little to nothing
is known about how the diverse abiotic characteristics of caves
affect the sen-
sory ecology of cave animals. Here, we examine the relationship
between the
acoustic environment of caves and hearing in amblyopsid
cavefishes.
Aquatic cave organisms, such as cavefishes, survive in
perpetual darkness.
An important sensory modality in such environments may be the
sense of hear-
ing. In above-ground aquatic habitats, hearing is important for
many aspects of
fish behaviour (reviewed in [3]) and is effective over relatively
long distances
owing to the nature of underwater sound travel. Sound may play
an especially
important role in subterranean habitats owing to the lack of
visual signals yet
the acoustic properties of these habitats have been largely
ignored to date.
Hypertrophy of hearing characteristics could be adaptive in
caves for several
reasons, including working in association with other non-visual
senses to
detect prey, conspecifics or predators. However, the degree to
which hearing
abilities are modified in cavefishes is largely unknown, as
behavioural and
neurophysiological studies on the acoustical biology of
cavefishes are extremely
limited. Popper [4] showed that the cave and surface forms of
the characid
Astyanax mexicanus do not differ in hearing. Similarly, no
differences were
found between cave and surface forms of the molly Poecilia
mexicana [5].
http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2013.010
4&domain=pdf&date_stamp=2013-03-27
mailto:[email protected]
http://rsbl.royalsocietypublishing.org/
50
40
A. spelaea T. subterraneus F. agassizii
30
ha
ir
c
el
l
de
ns
it
y
(u
ni
ts
1
00
m
m
–2
)
20
10
0
Chologaster Troglichthys Speoplatyrhinus(i) (ii) (iii)
(b)(a)
(i)
(ii)
(iii)
Figure 1. (a) The phylogenetic relationships of the two obligate
cave species (white) (i) Typhlichthys and (ii) Amblyopsis and
one surface species (black) (iii)
Forbesichthys. (b) Cell density counts for the three species
show fewer hair cells in the cavefishes (*F2,23 ¼ 15.3, p ¼
0.0007). Inserts show photomicrograms
of the ears stained with phalloidin. Scale bar, 100 mm. (Online
version in colour.)
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
2
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
Here, we show the first report of differences in hearing
characteristics in a cavefish compared with its surface rela-
tive. We compared the auditory evoked potentials (AEPs)
of three species in the family Amblyopsidae, as well as the
acoustic profiles of their subterranean habitats in order to
investigate whether a relationship exists between noise in
cave habitats and cavefish hearing. Amblyopsid caveshes
are a model system for studying the ecological and evolution-
ary processes of cave adaptation because the cave-restricted
species in the family represent a range of troglomorphy
that reflects variable durations of isolation in caves [6].
Cave amblyopsids are one of the most comprehensively
studied caveshes, with six genera and eight species [7]. In
this study, we examine the hearing characteristics of three
related amblyopsids: the surface dwelling, Forbesichthys
agassizii and two cave species, Typhlichthys subterraneus and
Amblyopsis spelaea (figure 1a).
2. Material and methods
All procedures followed IACUC guidelines dictated by the Uni-
versity of Windsor. All data are available in http://datadryad.
org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected
under scientific permits issued by the states of TN (no. 1605)
and KY (no. SC1211135), USA. We collected nine individuals
of Forbesichthys agassizii from a quiet pool (10 m2, mean depth
0.6 m, mud/silt substrate with abundant vegetation) of a
spring run fed by Jarrell’s Spring, Coffee Co., TN, USA; seven
individuals for each of the two cave-dwelling species:
Amblyopsis
spelaea from several quiet pools (20 – 150 m2, 0.2 – 2þ m
depth,
silt/sand/cobble substrate) in Under the Road Cave, Breckin-
ridge Co., KY, USA and Typhlichthys subterraneus from several
pools with some current (4 – 12 m2, 0.1 – 0.8 m depth,
0 – 0.6 ms21 (low flow), cobble/bedrock substrate) in L&N
Railroad Cave, Barren Co., KY, USA.
(a) Auditory evoked potentials
This method measures the compound electrical potential created
by the eighth cranial nerve and auditory brainstem nuclei in
response to sound [9,10]. We restrained submerged fish and
played 10 msec tones, ranging from 0.1 to 2 kHz at 0.1 Hz
inter-
vals. We increased the sound level in 5 dB intervals until a
stereotypical evoked potential waveform was detected (figure 2,
insert). We determined auditory threshold to be the lowest
inten-
sity for which AEP traces were detected [11]. Sound output
was measured with a hydrophone (model LC-10, Reson Inc;
Calibration sensitivity of 2208.9 dB re 1V uPa21, 0 – 100 kHz)
and an accelerometer (model 4524 cubic triaxial deltatron,
Brüel & Kjær). We calibrated sound level and particle accelera-
tion at the beginning of each trial. Thresholds were compared
between species and frequencies with a two-way ANOVA.
(b) Hair cell histology
Fish were euthanized with an overdose of 2-phenoxy-ethanol
and fixed in 4 per cent paraformaldehyde. Epithelia were dis-
sected and stained with Oregon Green phalloidin (Invitrogen)
followed by fluorescent imaging. Hair cells were manually
counted across eight different regions of saccular epithelia and
quantified as density (hair cells/2500 mm2) to correct for differ-
ences in epithelium size. There were no apparent differences in
fluorescent intensity sufficient to affect manual counts. Within
species, there were no significant density differences between
epithelial areas (ANOVA F7,40 ¼ 0.437, p ¼ 0.873), so the
density
estimates were averaged across epithelial areas. ANOVA was
http://datadryad.org
http://datadryad.org
http://datadryad.org
http://dx.doi.org/10.5061/dryad.9sj49
http://rsbl.royalsocietypublishing.org/
frequency (Hz)
0
0
20
40
60
80
100
th
re
sh
ol
d
(d
B
)
120
140
160
500 1000 1500 2000
Forbesichthys
Forbesichthys
environment
Amblyopsis
Amblyopsis
Typhlichthys
Typhlichthys
5 mS
10 mV
2500 3000
Figure 2. Auditory thresholds of amblyopsid fishes. Values are
means+standard errors. The suface fish Forbesichthys reaches
up to 2 kHz while the cavefish
Typhlichthys (1) and Amblyopsis (2) are limited to 1 kHz. Fast
Fourier Transformation (FFT) of sound recorded in a Drowned
Rat Cave pool. The pool was
carved in bedrock by a small stream. The recording was made
0.5 m deep and approximately 1 m from the waterfall. The
ceiling of the cave was also dripping
onto the pool. Insert: auditory evoked potential traces of all
species to a 400 Hz tone burst at 60 dB.
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
3
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
used to assess differences in hair cell density, followed by a
Tukey post-hoc test.
(c) Environmental sound profiles
We characterized aquatic environmental sound profiles in cave
and surface habitats, using a hydrophone (type 10CT hydro-
phone, calibration sensitivity of 2195 dB re. 1 V mPa21;+3 dB,
0.02 – 10 kHz, omnidirectional, G.R.A.S., Denmark) connected
through a preamplifier (Spikerbox, Backyard Brains) to an iPad
(Apple). Three recordings of 5 min were taken per site. Within
caves, we obtained sound profiles from two habitat types: shal-
low stream riffles at depths of 0.05 – 0.1 m and pools with no
current at depths of 0.1 – 2 m. We also recorded at the same
depths in surface streams and pools inhabited by Forbesichthys.
Characterization of sound spectra and corresponding SPLs was
performed using AUDIOTOOLS software (Studio Six Digital).
We
matched cave and surface habitats profiles as much as possi-
ble (e.g. area, substrate and water flow), with the exception of
vegetation in surface habitats.
3. Results
Density of saccular hair cells differed between species
(F2,6 ¼ 15.3, p ¼ 0.0007), with the two cave species having
lower hair cell densities (mean ¼ 34 and 29 hair cells/
2500 mm2) than the surface species (mean ¼ 45 hair cells/
2500 mm2; figure 1). There was no difference in threshold
between species below 800 Hz (F2,15 ¼ 1.087, p ¼ 0.342;
figure 2), and thresholds increased with frequency (F11,15 ¼
25.9, p , 0.001) with no significant frequency – species
interaction
(F15,95 ¼ 47.9, p ¼ 0.702). All three amblyopsid species were
most sensitive at 100 Hz (mean threshold range 112 – 122 dB re
1 mPa), and thresholds increased between 100 and 800 Hz.
In the two cave species, only one Typhlichthys responded to
tones 700 – 1000 Hz and just two Amblyopsis responded to tone
bursts above 600 Hz, with only one responding at 1000 Hz.
The surface species showed clear evoked responses well above
this limit, with defined responses detected up to 2000 Hz.
Underwater sounds were variable depending on habitat. In
cave streams with rock and sand substrate, there was a peak in
background noise at about 1000 Hz followed by peaks at low
frequencies (below 200 Hz; figure 2). Overall sound intensity
was less prominent between 200 and 5000 Hz in pool habitats
away from the small streams. Nonetheless, the same general
profile was present but with a smaller, less defined 1000 Hz
peak. Surface streams showed low-frequency noise (less than
100 Hz) and high-frequency noise (more than 8000 Hz) with
a small peak at 1200 Hz, but the overall noise level was much
higher at intermediate frequencies (1000 – 3000 Hz) in the
cave streams than surface streams.
4. Discussion
Adaptation to cave environments is often associated with
hypertrophy of non-visual sensory modalities. Cave ambly-
opsids exhibited similar hearing sensitivities as their surface-
dwelling relative at 800 Hz and below, consistent with
previous findings in other cavefishes [5,6]. Surprisingly how-
ever, cave amblyopsids have lost a significant portion of their
hearing range. Both Amblyopsis and Typhlichthys are unable
to hear frequencies above 800 Hz, unlike their surface relative
Forbesichthys, which can hear up to 2 kHz. In addition, both
cave species had lower hair cell densities than Forbesichthys.
To our knowledge, this is the first report of auditory regression
in a subterranean organism.
http://rsbl.royalsocietypublishing.org/
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
4
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
Like the loss of eyes, loss of hearing range in cave amb-
lyopsids represents an example of regressive evolution in
subterranean organisms. Audio recordings from native cave
habitats of cave amblyopsids showed that flowing streams
(riffles) and water droplets dripping from the ceiling of
cave passages contribute to loud high-frequency background
noise generally above 800 Hz (figure 2), although the precise
contribution of all noise sources have not been characterized.
Lower frequencies are not likely to propagate far in these
shallow environments [12] but the higher frequency com-
ponents would propagate further and contribute to the more
to the high background noise levels of the caves. The apparent
match between hearing ability and background noise profiles
has been hypothesized to be an evolutionary driver of hearing
ability across the Teleostei [13], and the hearing of two species
of goby (Padogobius martensii and Gobius nigricans) living in
noisy waterfall environments is most sensitive in a frequency
range corresponding to a quiet window in these environments
[14]. Noisy stream environments mask high-frequency hearing
in ostariophysan fishes [15] but hearing specializations of clo-
sely related species in different acoustic environments have
rarely been tested. Our findings raise the intriguing possibility
that cave amblyopsids may have lost hearing at high frequen-
cies in response to the noisy acoustic environments in which
they live.
The reduction in hair cell density indicates peripheral
involvement in high-frequency hearing loss. Fewer hair cells
pro-
vide fewer sites for signal transduction and also may lead to
less
relative stimulation upon relative motion of the otolith. Poulson
[9] reports an increase in otolith size with increasing cave
adaptation in this group and suggests it may be due to different
equilibrium demands. If the sensory epithelium is growing in
pace with the otolith without concomitant increase in hair
cells, a decrease in hair cell density would result. If, however,
the loss of high-frequency hearing ability in cave species was
due to selective loss of high-frequency hair cells, this could
also lead to a decrease in overall hair cell density. There is no
evidence for tonotopy in fish ears, but there is some evidence
for differential frequency selectivity in hair cells across the
epithelia [15]. More work needs to be done on frequency
responses at the level of individual hair cells before this idea
can be supported.
Our study provides evidence that two cavefish species
have evolved loss of high-frequency hearing and reduced
hair cell densities compared with a surface-dwelling relative.
These traits may have evolved in response to loud high-
frequency background noise that mask acoustic signals in
their aquatic subterranean habitats; however, the mechanism
(i.e. neutral loss versus selection) underlying hearing loss
remain to be understood.
All procedures followed IACUC guidelines dictated by the
Univer-
sity of Windsor. All data are available in http://datadryad.org
under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under
scien-
tific permits issued by the states of TN (no. 1605) and KY (no.
SC1211135), USA.
We thank Daniel Escobar Camacho for help and Dr Gal Haspel
and
Dr Kim Hoke for comments. This work was supported by the
Yale
Institute of Biospheric Studies (M.L.N.) and by ADVANCE
grant
no. 1008117 to D.S.
References
1. Jeffery W. 2001 Cavefish as a model system in
evolutionary developmental biology. Dev. Biol. 231,
1 – 12. (doi:10.1006/dbio.2000.0121)
2. Culver D, Pipan T. 2009 The biology of caves and
other subterranean habitats. Oxford, UK: Oxford
University Press.
3. Fay RR, Popper AN. 2012 Fish hearing: new
perspectives from two ‘senior’ bioacousticians. Brain
Behav. Evol. 79, 215 – 217. (doi:10.1159/
000338719)
4. Popper AN. 1970 Auditory capacities of the Mexican
blind cave fish (Astyanax jordani) and its eyed
ancestor (Astyanax mexicanus). Anim. Behav. 18,
552 – 562. (doi:10.1016/0003-3472(70)90052-7)
5. Schulz-Mirbach T, Ladich F, Riesch R, Plath M. 2010
Otolith morphology and hearing abilities in cave-
and surface-dwelling ecotypes of the Atlantic molly,
Poecilia mexicana (Teleostei: Poeciliidae). Hear. Res.
267, 137 – 148. (doi:10.1016/j.heares.2010.04.001)
6. Poulson TL. 1963 Cave adaptation in amblyopsid
fishes. Am. Midland Nat. 70, 257 – 290. (doi:10.
2307/2423056)
7. Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L,
Near TJ. 2013 Evidence for repeated loss of selective
constraint in rhodopsin of amblyopsid cavefishes
(Teleostei: Amblyopsidae). Evolution 67, 732 – 748.
(doi:10.1111/j.1558-5646.2012.01822.x)
8. Niemiller ML, Higgs DM, Soares D. 2013 Data from:
evidence for hearing loss in amblyopsid cavefishes.
Dryad Digital Respository. (doi:10.5061/dryad.9sj49)
9. Corwin JT, Bullock TH, Schweitzer J. 1982 The
auditory brain stem response in five vertebrate
classes. Electroencephalogr. Clin. Neurophysiol. 54,
629 – 641. (doi:10.1016/0013-4694(82)90117-1)
10. Kenyon TN, Ladich F, Yan HY. 1998 A comparative
study of hearing ability in fishes: the auditory
brainstem response approach. J. Comp. Physiol. A
182, 307 – 318. (doi:10.1007/s003590050181)
11. Mann DA, Higgs DM, Tavolga WN, Souza MJ,
Popper AN. 2001 Ultrasound detection by
clupeiform fishes. J. Acoust. Soc. Am. 109,
3048 – 3054. (doi:10.1121/1.1368406)
12. Fine ML, Lenhardt ML. 1983 Shallow-water
propagation of the toadfish mating call. Comp.
Biochem. Physiol. A. 76, 225 – 231. (doi:10.1016/
0300-9629(83)90319-5)
13. Popper AN, Fay RR. 1997 Evolution of the ear and
hearing: issues and questions. Brain Behav. Evol. 50,
213 – 221. (doi:10.1159/000113335)
14. Lugli M, Yan HY, Fine ML. 2003 Acoustic communication
in two freshwater gobies: the relationship between
ambient noise, hearing thresholds and sound spectrum.
J. Comp. Physiol. A. 189, 309 – 320.
15. Amoser S, Ladich F. 2005 Are hearing sensitivities of
freshwater fish adapted to the ambient noise in
their habitats? J. Exp. Biol. 208, 3533 – 3542.
(doi:10.1242/jeb.01809)
http://datadryad.org
http://datadryad.org
http://dx.doi.org/10.5061/dryad.9sj49
http://dx.doi.org/10.1006/dbio.2000.0121
http://dx.doi.org/10.1159/000338719
http://dx.doi.org/10.1159/000338719
http://dx.doi.org/10.1016/0003-3472(70)90052-7
http://dx.doi.org/10.1016/j.heares.2010.04.001
http://dx.doi.org/10.2307/2423056
http://dx.doi.org/10.2307/2423056
http://dx.doi.org/10.1111/j.1558-5646.2012.01822.x
http://dx.doi.org/10.5061/dryad.9sj49
http://dx.doi.org/10.1016/0013-4694(82)90117-1
http://dx.doi.org/10.1007/s003590050181
http://dx.doi.org/10.1121/1.1368406
http://dx.doi.org/10.1016/0300-9629(83)90319-5
http://dx.doi.org/10.1016/0300-9629(83)90319-5
http://dx.doi.org/10.1159/000113335
http://dx.doi.org/10.1242/jeb.01809
http://rsbl.royalsocietypublishing.org/Evidence for hearing loss
in amblyopsid cavefishesIntroductionMaterial and
methodsAuditory evoked potentialsHair cell
histologyEnvironmental sound profilesResultsDiscussionAll
procedures followed IACUC guidelines dictated by the
University of Windsor. All data are available in
http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes
were collected under scientific permits issued by the states of
TN (no. 1605) and KY (no. SC1211135), USA.We thank Daniel
Escobar Camacho for help and Dr Gal Haspel and Dr Kim Hoke
for comments. This work was supported by the Yale Institute of
Biospheric Studies (M.L.N.) and by ADVANCE grant no.
1008117 to D.S.References

More Related Content

Similar to Running head GETTING A WRITTEN STATEMENT1GETTING A WRIT.docx

Reability of eye witness
Reability of eye witnessReability of eye witness
Reability of eye witnessMishra Rajat
 
Simpson_Austin_Thesis Paper
Simpson_Austin_Thesis PaperSimpson_Austin_Thesis Paper
Simpson_Austin_Thesis PaperAustin Simpson
 
Essay On Cochlear Implants
Essay On Cochlear ImplantsEssay On Cochlear Implants
Essay On Cochlear ImplantsCarmen Martin
 
voice recognition
voice recognition voice recognition
voice recognition Hemant Jain
 
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docx
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docxRunning head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docx
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docxjeanettehully
 
150 WORDS AGREE OR DISAGREE1. Explain the proper collection an
150 WORDS AGREE OR DISAGREE1. Explain the proper collection an150 WORDS AGREE OR DISAGREE1. Explain the proper collection an
150 WORDS AGREE OR DISAGREE1. Explain the proper collection ancargillfilberto
 
Listening difficulties
Listening difficultiesListening difficulties
Listening difficultiesabidayou
 
POWERFUL Brain & Hearing Support
POWERFUL Brain & Hearing SupportPOWERFUL Brain & Hearing Support
POWERFUL Brain & Hearing Supportelhosanyreda
 
Book Obama Promised Land
Book Obama Promised LandBook Obama Promised Land
Book Obama Promised Landelhosanyreda
 
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docx
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docxRunning head SHORTENED INTERESTING TITLE1SHORTENED INTE.docx
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docxtoltonkendal
 
Dissertation Implicit Explicit Memory
Dissertation Implicit Explicit MemoryDissertation Implicit Explicit Memory
Dissertation Implicit Explicit MemoryMatthew Jones
 
Clinical linguistics (presentasi 1)
Clinical linguistics (presentasi 1)Clinical linguistics (presentasi 1)
Clinical linguistics (presentasi 1)HusniThamrin30
 
Silence in second language acquisition. Granger, C. (2004)
Silence in second language acquisition. Granger, C. (2004)Silence in second language acquisition. Granger, C. (2004)
Silence in second language acquisition. Granger, C. (2004)M Gaye
 

Similar to Running head GETTING A WRITTEN STATEMENT1GETTING A WRIT.docx (15)

Reability of eye witness
Reability of eye witnessReability of eye witness
Reability of eye witness
 
Simpson_Austin_Thesis Paper
Simpson_Austin_Thesis PaperSimpson_Austin_Thesis Paper
Simpson_Austin_Thesis Paper
 
Essay On Cochlear Implants
Essay On Cochlear ImplantsEssay On Cochlear Implants
Essay On Cochlear Implants
 
voice recognition
voice recognition voice recognition
voice recognition
 
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docx
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docxRunning head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docx
Running head ORIGINS OF LANGUAGE AND LANGUAGE AND THE BRAIN1O.docx
 
150 WORDS AGREE OR DISAGREE1. Explain the proper collection an
150 WORDS AGREE OR DISAGREE1. Explain the proper collection an150 WORDS AGREE OR DISAGREE1. Explain the proper collection an
150 WORDS AGREE OR DISAGREE1. Explain the proper collection an
 
Identifikasi permasalahan yang ada pada stuttering.pdf
Identifikasi permasalahan yang ada pada stuttering.pdfIdentifikasi permasalahan yang ada pada stuttering.pdf
Identifikasi permasalahan yang ada pada stuttering.pdf
 
Listening difficulties
Listening difficultiesListening difficulties
Listening difficulties
 
POWERFUL Brain & Hearing Support
POWERFUL Brain & Hearing SupportPOWERFUL Brain & Hearing Support
POWERFUL Brain & Hearing Support
 
Book Obama Promised Land
Book Obama Promised LandBook Obama Promised Land
Book Obama Promised Land
 
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docx
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docxRunning head SHORTENED INTERESTING TITLE1SHORTENED INTE.docx
Running head SHORTENED INTERESTING TITLE1SHORTENED INTE.docx
 
Dissertation Implicit Explicit Memory
Dissertation Implicit Explicit MemoryDissertation Implicit Explicit Memory
Dissertation Implicit Explicit Memory
 
Speech Disorders
Speech DisordersSpeech Disorders
Speech Disorders
 
Clinical linguistics (presentasi 1)
Clinical linguistics (presentasi 1)Clinical linguistics (presentasi 1)
Clinical linguistics (presentasi 1)
 
Silence in second language acquisition. Granger, C. (2004)
Silence in second language acquisition. Granger, C. (2004)Silence in second language acquisition. Granger, C. (2004)
Silence in second language acquisition. Granger, C. (2004)
 

More from charisellington63520

in addition to these questions also answer the following;Answer .docx
in addition to these questions also answer the following;Answer .docxin addition to these questions also answer the following;Answer .docx
in addition to these questions also answer the following;Answer .docxcharisellington63520
 
In an environment of compliancy laws, regulations, and standards, in.docx
In an environment of compliancy laws, regulations, and standards, in.docxIn an environment of compliancy laws, regulations, and standards, in.docx
In an environment of compliancy laws, regulations, and standards, in.docxcharisellington63520
 
In American politics, people often compare their enemies to Hitler o.docx
In American politics, people often compare their enemies to Hitler o.docxIn American politics, people often compare their enemies to Hitler o.docx
In American politics, people often compare their enemies to Hitler o.docxcharisellington63520
 
In addition to the thread, the student is required to reply to 2 oth.docx
In addition to the thread, the student is required to reply to 2 oth.docxIn addition to the thread, the student is required to reply to 2 oth.docx
In addition to the thread, the student is required to reply to 2 oth.docxcharisellington63520
 
In addition to reading the Announcements, prepare for this d.docx
In addition to reading the Announcements, prepare for this d.docxIn addition to reading the Announcements, prepare for this d.docx
In addition to reading the Announcements, prepare for this d.docxcharisellington63520
 
In Act 4 during the trial scene, Bassanio says the following lin.docx
In Act 4 during the trial scene, Bassanio says the following lin.docxIn Act 4 during the trial scene, Bassanio says the following lin.docx
In Act 4 during the trial scene, Bassanio says the following lin.docxcharisellington63520
 
In a Word document, please respond to the following questions.docx
In a Word document, please respond to the following questions.docxIn a Word document, please respond to the following questions.docx
In a Word document, please respond to the following questions.docxcharisellington63520
 
In a Word document, create A Set of Instructions. (you will want.docx
In a Word document, create A Set of Instructions. (you will want.docxIn a Word document, create A Set of Instructions. (you will want.docx
In a Word document, create A Set of Instructions. (you will want.docxcharisellington63520
 
In a two page response MLA format paperMaria Werner talks about .docx
In a two page response MLA format paperMaria Werner talks about .docxIn a two page response MLA format paperMaria Werner talks about .docx
In a two page response MLA format paperMaria Werner talks about .docxcharisellington63520
 
In a paragraph (150 words minimum), please respond to the follow.docx
In a paragraph (150 words minimum), please respond to the follow.docxIn a paragraph (150 words minimum), please respond to the follow.docx
In a paragraph (150 words minimum), please respond to the follow.docxcharisellington63520
 
In a paragraph form, discuss the belowThe client comes to t.docx
In a paragraph form, discuss the belowThe client comes to t.docxIn a paragraph form, discuss the belowThe client comes to t.docx
In a paragraph form, discuss the belowThe client comes to t.docxcharisellington63520
 
In a minimum of 300 words in APA format.Through the advent o.docx
In a minimum of 300 words in APA format.Through the advent o.docxIn a minimum of 300 words in APA format.Through the advent o.docx
In a minimum of 300 words in APA format.Through the advent o.docxcharisellington63520
 
In a paragraph form, post your initial response after reading th.docx
In a paragraph form, post your initial response after reading th.docxIn a paragraph form, post your initial response after reading th.docx
In a paragraph form, post your initial response after reading th.docxcharisellington63520
 
In a minimum 250-word paragraph, discuss at least one point the auth.docx
In a minimum 250-word paragraph, discuss at least one point the auth.docxIn a minimum 250-word paragraph, discuss at least one point the auth.docx
In a minimum 250-word paragraph, discuss at least one point the auth.docxcharisellington63520
 
In a hostage crisis, is it ethical for a government to agree to gran.docx
In a hostage crisis, is it ethical for a government to agree to gran.docxIn a hostage crisis, is it ethical for a government to agree to gran.docx
In a hostage crisis, is it ethical for a government to agree to gran.docxcharisellington63520
 
In a double-spaced 12 Font paper  How did you immediately feel a.docx
In a double-spaced 12 Font paper  How did you immediately feel a.docxIn a double-spaced 12 Font paper  How did you immediately feel a.docx
In a double-spaced 12 Font paper  How did you immediately feel a.docxcharisellington63520
 
In a follow-up to your IoT discussion with management, you have .docx
In a follow-up to your IoT discussion with management, you have .docxIn a follow-up to your IoT discussion with management, you have .docx
In a follow-up to your IoT discussion with management, you have .docxcharisellington63520
 
In a COVID-19 situation identify the guidelines for ethical use of t.docx
In a COVID-19 situation identify the guidelines for ethical use of t.docxIn a COVID-19 situation identify the guidelines for ethical use of t.docx
In a COVID-19 situation identify the guidelines for ethical use of t.docxcharisellington63520
 
In a 750- to 1,250-word paper, evaluate the implications of Internet.docx
In a 750- to 1,250-word paper, evaluate the implications of Internet.docxIn a 750- to 1,250-word paper, evaluate the implications of Internet.docx
In a 750- to 1,250-word paper, evaluate the implications of Internet.docxcharisellington63520
 
In a 600 word count (EACH bullet point having 300 words each) di.docx
In a 600 word count (EACH bullet point having 300 words each) di.docxIn a 600 word count (EACH bullet point having 300 words each) di.docx
In a 600 word count (EACH bullet point having 300 words each) di.docxcharisellington63520
 

More from charisellington63520 (20)

in addition to these questions also answer the following;Answer .docx
in addition to these questions also answer the following;Answer .docxin addition to these questions also answer the following;Answer .docx
in addition to these questions also answer the following;Answer .docx
 
In an environment of compliancy laws, regulations, and standards, in.docx
In an environment of compliancy laws, regulations, and standards, in.docxIn an environment of compliancy laws, regulations, and standards, in.docx
In an environment of compliancy laws, regulations, and standards, in.docx
 
In American politics, people often compare their enemies to Hitler o.docx
In American politics, people often compare their enemies to Hitler o.docxIn American politics, people often compare their enemies to Hitler o.docx
In American politics, people often compare their enemies to Hitler o.docx
 
In addition to the thread, the student is required to reply to 2 oth.docx
In addition to the thread, the student is required to reply to 2 oth.docxIn addition to the thread, the student is required to reply to 2 oth.docx
In addition to the thread, the student is required to reply to 2 oth.docx
 
In addition to reading the Announcements, prepare for this d.docx
In addition to reading the Announcements, prepare for this d.docxIn addition to reading the Announcements, prepare for this d.docx
In addition to reading the Announcements, prepare for this d.docx
 
In Act 4 during the trial scene, Bassanio says the following lin.docx
In Act 4 during the trial scene, Bassanio says the following lin.docxIn Act 4 during the trial scene, Bassanio says the following lin.docx
In Act 4 during the trial scene, Bassanio says the following lin.docx
 
In a Word document, please respond to the following questions.docx
In a Word document, please respond to the following questions.docxIn a Word document, please respond to the following questions.docx
In a Word document, please respond to the following questions.docx
 
In a Word document, create A Set of Instructions. (you will want.docx
In a Word document, create A Set of Instructions. (you will want.docxIn a Word document, create A Set of Instructions. (you will want.docx
In a Word document, create A Set of Instructions. (you will want.docx
 
In a two page response MLA format paperMaria Werner talks about .docx
In a two page response MLA format paperMaria Werner talks about .docxIn a two page response MLA format paperMaria Werner talks about .docx
In a two page response MLA format paperMaria Werner talks about .docx
 
In a paragraph (150 words minimum), please respond to the follow.docx
In a paragraph (150 words minimum), please respond to the follow.docxIn a paragraph (150 words minimum), please respond to the follow.docx
In a paragraph (150 words minimum), please respond to the follow.docx
 
In a paragraph form, discuss the belowThe client comes to t.docx
In a paragraph form, discuss the belowThe client comes to t.docxIn a paragraph form, discuss the belowThe client comes to t.docx
In a paragraph form, discuss the belowThe client comes to t.docx
 
In a minimum of 300 words in APA format.Through the advent o.docx
In a minimum of 300 words in APA format.Through the advent o.docxIn a minimum of 300 words in APA format.Through the advent o.docx
In a minimum of 300 words in APA format.Through the advent o.docx
 
In a paragraph form, post your initial response after reading th.docx
In a paragraph form, post your initial response after reading th.docxIn a paragraph form, post your initial response after reading th.docx
In a paragraph form, post your initial response after reading th.docx
 
In a minimum 250-word paragraph, discuss at least one point the auth.docx
In a minimum 250-word paragraph, discuss at least one point the auth.docxIn a minimum 250-word paragraph, discuss at least one point the auth.docx
In a minimum 250-word paragraph, discuss at least one point the auth.docx
 
In a hostage crisis, is it ethical for a government to agree to gran.docx
In a hostage crisis, is it ethical for a government to agree to gran.docxIn a hostage crisis, is it ethical for a government to agree to gran.docx
In a hostage crisis, is it ethical for a government to agree to gran.docx
 
In a double-spaced 12 Font paper  How did you immediately feel a.docx
In a double-spaced 12 Font paper  How did you immediately feel a.docxIn a double-spaced 12 Font paper  How did you immediately feel a.docx
In a double-spaced 12 Font paper  How did you immediately feel a.docx
 
In a follow-up to your IoT discussion with management, you have .docx
In a follow-up to your IoT discussion with management, you have .docxIn a follow-up to your IoT discussion with management, you have .docx
In a follow-up to your IoT discussion with management, you have .docx
 
In a COVID-19 situation identify the guidelines for ethical use of t.docx
In a COVID-19 situation identify the guidelines for ethical use of t.docxIn a COVID-19 situation identify the guidelines for ethical use of t.docx
In a COVID-19 situation identify the guidelines for ethical use of t.docx
 
In a 750- to 1,250-word paper, evaluate the implications of Internet.docx
In a 750- to 1,250-word paper, evaluate the implications of Internet.docxIn a 750- to 1,250-word paper, evaluate the implications of Internet.docx
In a 750- to 1,250-word paper, evaluate the implications of Internet.docx
 
In a 600 word count (EACH bullet point having 300 words each) di.docx
In a 600 word count (EACH bullet point having 300 words each) di.docxIn a 600 word count (EACH bullet point having 300 words each) di.docx
In a 600 word count (EACH bullet point having 300 words each) di.docx
 

Recently uploaded

How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17Celine George
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismDabee Kamal
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptxVishal Singh
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...Gary Wood
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnershipsexpandedwebsite
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/siemaillard
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxNehaChandwani11
 
How to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryHow to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryCeline George
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...Nguyen Thanh Tu Collection
 
Benefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxBenefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxsbabel
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIII BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIagpharmacy11
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptxPoojaSen20
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...Nguyen Thanh Tu Collection
 
Poster_density_driven_with_fracture_MLMC.pdf
Poster_density_driven_with_fracture_MLMC.pdfPoster_density_driven_with_fracture_MLMC.pdf
Poster_density_driven_with_fracture_MLMC.pdfAlexander Litvinenko
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Mohamed Rizk Khodair
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Celine George
 

Recently uploaded (20)

How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptx
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptx
 
IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.
 
“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
How to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryHow to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 Inventory
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
Benefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxBenefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptx
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIII BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 
Poster_density_driven_with_fracture_MLMC.pdf
Poster_density_driven_with_fracture_MLMC.pdfPoster_density_driven_with_fracture_MLMC.pdf
Poster_density_driven_with_fracture_MLMC.pdf
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 

Running head GETTING A WRITTEN STATEMENT1GETTING A WRIT.docx

  • 1. Running head: GETTING A WRITTEN STATEMENT 1 GETTING A WRITTEN STATEMENT 5 Getting a Written Statement Rhoshanna Glover Argosy University Getting a Written Statement Whether Videotaping is Applicable Videotaping or recording is applicable to interrogation or interview situations in which a written statement is needed from some potential suspect. The interrogation personnel point out that, videotaping suspect’s statements is quite significant because it helps in reducing doubts concerning the nature of confessions. It also helps in avoiding the attorney’s challenges of the accuracy of audiotapes and also the completeness of the written statement confessions. In addition, the videotapes help in jogging detectives’ memories when testifying, and also it helps in countering the defense criticism of softening up techniques for interrogating suspects. Using videotaping in an interrogating situation that needs a written statement also helps in showing the physical condition of the suspect when booked and also to document the notification of suspect’s constitutional rights. It also assists in mental health evaluations of the suspect that have issues with sanity. Videotaping or recording helps improve the reliability and credibility of the authentic confessions, and it protects the rights of the innocent suspects
  • 2. (Geller, 1993). In essence, a suspect can provide information, in which case it can be recorded in the form of audiotape, videotape, a written record of the interview, a written note or statement of verbal comments that the suspect makes before or even after the formal interview. Most often, police videotape interviews, although it is sometimes audiotaped and recorded in writing. Videotaping is significant in situations where a written statement is needed, and this is to show some relevance and connect what the suspect says in the video resembles what he or she writes in the statement. Statements, whether recorded or written, are vitally the work- product of the suspect’s interviews and interrogations. Such statements lock the suspect into his or her story and also make it difficult to change the description of the events. Videotaping or recoding can be applicable in interrogation situation that requires a written statement because all of them follow the same pattern and they all have distinct parts. Recording and videotaping currently are quite easy to obtain and also they are quite powerful than the written statements when it is produced in the courts. Videotaping will allow the investigators to focus on the communication, and it also serve to protect the interviewer from the claims of using threats or misconduct. Videotaping or recording are quite transcribed into some written word, and the transcriptionist ensures that he or she completely understands everything on the tape (Geller, 1993). Potential Pitfalls Interrogators Face One of the challenges investigators face is in understanding how to read the behavior of the suspect. Understanding the behavior of the suspect is crucial in getting his or her statement, and failing which things might go wrong. In essence, not every person reacts the same way under pressure. Investigators ought
  • 3. to align their instincts with the evidence and facts available. The other challenge involves removing an emotional model and just deciding to operate under some rational model whenever the investigator encounters a lot of injustice and wrongdoings. The other challenge involves the struggle to ensure they do not contaminate the statement or confessions. In essence, a statement or confession is tampered or contaminated when queries are asked that uses some particular crime scene data and results. For instance, using crime scene pictures that have not been made public can no longer be valid, and this is because the suspect might become quite educated on the crime via interrogation and simply goes ahead to repeat the knowledge learned. This might appear the suspect offered the statement or confession when, in essence, it was motivated by desire to end interrogation. There is a need to preserve the evidence. Investigators should not lead the suspect rather they should allow the suspect to record the statement and provide the information. References: Geller, W. (1993). Videotaping Interrogations and Confessions. The National Criminal Justice Reference Service. Retrieved from https://www.ncjrs.gov/pdffiles1/Digitization/139962NCJRS.pdf Zulawski, D, Sturman, S & Hoover, W. (2001). Practical Aspects of Interview and Interrogation, Second Edition. CRC Press , 20130104, published 27 March 20139 2013 Biol. Lett. Matthew L. Niemiller, Dennis M. Higgs and Daphne Soares Evidence for hearing loss in amblyopsid cavefishes
  • 4. References http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full .html#ref-list-1 This article cites 13 articles, 1 of which can be accessed free Subject collections (75 articles)neuroscience � (642 articles)evolution � (629 articles)ecology � Articles on similar topics can be found in the following collections Email alerting service hereright-hand corner of the article or click Receive free email alerts when new articles cite this article - sign up in the box at the top http://rsbl.royalsocietypublishing.org/subscriptions go to: Biol. Lett.To subscribe to on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full .html#ref-list-1 http://rsbl.royalsocietypublishing.org/cgi/collection/ecology http://rsbl.royalsocietypublishing.org/cgi/collection/evolution http://rsbl.royalsocietypublishing.org/cgi/collection/neuroscienc e
  • 5. http://rsbl.royalsocietypublishing.org/cgi/alerts/ctalert?alertTyp e=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria _resid=roybiolett;9/3/20130104&return_type=article&return_url =http://rsbl.royalsocietypublishing.org/content/9/3/20130104.ful l.pdf http://rsbl.royalsocietypublishing.org/subscriptions http://rsbl.royalsocietypublishing.org/ on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from rsbl.royalsocietypublishing.org Research Cite this article: Niemiller ML, Higgs DM, Soares D. 2013 Evidence for hearing loss in amblyopsid cavefishes. Biol Lett 9: 20130104. http://dx.doi.org/10.1098/rsbl.2013.0104 Received: 1 February 2013 Accepted: 5 March 2013 Subject Areas: evolution, neuroscience, ecology Keywords: auditory, evolution, fish, subterranean Author for correspondence: Daphne Soares e-mail: [email protected] & 2013 The Author(s) Published by the Royal Society. All rights reserved. Neurobiology Evidence for hearing loss in amblyopsid
  • 6. cavefishes Matthew L. Niemiller1, Dennis M. Higgs2 and Daphne Soares3 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA 2Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4 3Department of Biology, University of Maryland, College Park, MD 20742, USA The constant darkness of caves and other subterranean habitats imposes sen- sory constraints that offer a unique opportunity to examine evolution of sensory modalities. Hearing in cavefishes has not been well explored, and here we show that cavefishes in the family Amblyopsidae are not only blind but have also lost a significant portion of their hearing range. Our results showed that cave and surface amblyopsids shared the same audio- gram profile at low frequencies but only surface amblyopsids were able to hear frequencies higher than 800 Hz and up to 2 kHz. We measured ambient noise in aquatic cave and surface habitats and found high
  • 7. intensity peaks near 1 kHz for streams underground, suggesting no adaptive advantage in hearing in those frequencies. In addition, cave amblyopsids had lower hair cell densities compared with their surface relative. These traits may have evolved in response to the loud high-frequency background noise found in subterranean pools and streams. This study represents the first report of auditory regression in a subterranean organism. 1. Introduction Animals that live in continual darkness are faced with unique challenges in order to locate and identify food, predators and each other [1]. Without visual information, independent lineages of obligate cave- dwelling organisms have evolved regressive features, such as the loss or reduction of eyes and pig- mentation and constructive traits, such as longer appendages and hypertrophy of non-visual sensory systems [2]. Aside from darkness being common to all
  • 8. subterranean habitats, several other abiotic factors influence subterranean organisms, such as relatively stable temperature, high humidity and hydro- logical factors (for example, periodic flooding) [2]. However, little to nothing is known about how the diverse abiotic characteristics of caves affect the sen- sory ecology of cave animals. Here, we examine the relationship between the acoustic environment of caves and hearing in amblyopsid cavefishes. Aquatic cave organisms, such as cavefishes, survive in perpetual darkness. An important sensory modality in such environments may be the sense of hear- ing. In above-ground aquatic habitats, hearing is important for many aspects of fish behaviour (reviewed in [3]) and is effective over relatively long distances owing to the nature of underwater sound travel. Sound may play an especially important role in subterranean habitats owing to the lack of visual signals yet
  • 9. the acoustic properties of these habitats have been largely ignored to date. Hypertrophy of hearing characteristics could be adaptive in caves for several reasons, including working in association with other non-visual senses to detect prey, conspecifics or predators. However, the degree to which hearing abilities are modified in cavefishes is largely unknown, as behavioural and neurophysiological studies on the acoustical biology of cavefishes are extremely limited. Popper [4] showed that the cave and surface forms of the characid Astyanax mexicanus do not differ in hearing. Similarly, no differences were found between cave and surface forms of the molly Poecilia mexicana [5]. http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2013.010 4&domain=pdf&date_stamp=2013-03-27 mailto:[email protected] http://rsbl.royalsocietypublishing.org/ 50 40
  • 10. A. spelaea T. subterraneus F. agassizii 30 ha ir c el l de ns it y (u ni ts 1 00 m m –2 ) 20 10
  • 11. 0 Chologaster Troglichthys Speoplatyrhinus(i) (ii) (iii) (b)(a) (i) (ii) (iii) Figure 1. (a) The phylogenetic relationships of the two obligate cave species (white) (i) Typhlichthys and (ii) Amblyopsis and one surface species (black) (iii) Forbesichthys. (b) Cell density counts for the three species show fewer hair cells in the cavefishes (*F2,23 ¼ 15.3, p ¼ 0.0007). Inserts show photomicrograms of the ears stained with phalloidin. Scale bar, 100 mm. (Online version in colour.) rsbl.royalsocietypublishing.org Biol Lett 9: 20130104 2 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from Here, we show the first report of differences in hearing characteristics in a cavefish compared with its surface rela-
  • 12. tive. We compared the auditory evoked potentials (AEPs) of three species in the family Amblyopsidae, as well as the acoustic profiles of their subterranean habitats in order to investigate whether a relationship exists between noise in cave habitats and cavefish hearing. Amblyopsid caveshes are a model system for studying the ecological and evolution- ary processes of cave adaptation because the cave-restricted species in the family represent a range of troglomorphy that reflects variable durations of isolation in caves [6]. Cave amblyopsids are one of the most comprehensively studied caveshes, with six genera and eight species [7]. In this study, we examine the hearing characteristics of three related amblyopsids: the surface dwelling, Forbesichthys agassizii and two cave species, Typhlichthys subterraneus and Amblyopsis spelaea (figure 1a). 2. Material and methods All procedures followed IACUC guidelines dictated by the Uni- versity of Windsor. All data are available in http://datadryad. org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scientific permits issued by the states of TN (no. 1605)
  • 13. and KY (no. SC1211135), USA. We collected nine individuals of Forbesichthys agassizii from a quiet pool (10 m2, mean depth 0.6 m, mud/silt substrate with abundant vegetation) of a spring run fed by Jarrell’s Spring, Coffee Co., TN, USA; seven individuals for each of the two cave-dwelling species: Amblyopsis spelaea from several quiet pools (20 – 150 m2, 0.2 – 2þ m depth, silt/sand/cobble substrate) in Under the Road Cave, Breckin- ridge Co., KY, USA and Typhlichthys subterraneus from several pools with some current (4 – 12 m2, 0.1 – 0.8 m depth, 0 – 0.6 ms21 (low flow), cobble/bedrock substrate) in L&N Railroad Cave, Barren Co., KY, USA. (a) Auditory evoked potentials This method measures the compound electrical potential created by the eighth cranial nerve and auditory brainstem nuclei in response to sound [9,10]. We restrained submerged fish and played 10 msec tones, ranging from 0.1 to 2 kHz at 0.1 Hz inter- vals. We increased the sound level in 5 dB intervals until a stereotypical evoked potential waveform was detected (figure 2, insert). We determined auditory threshold to be the lowest inten-
  • 14. sity for which AEP traces were detected [11]. Sound output was measured with a hydrophone (model LC-10, Reson Inc; Calibration sensitivity of 2208.9 dB re 1V uPa21, 0 – 100 kHz) and an accelerometer (model 4524 cubic triaxial deltatron, Brüel & Kjær). We calibrated sound level and particle accelera- tion at the beginning of each trial. Thresholds were compared between species and frequencies with a two-way ANOVA. (b) Hair cell histology Fish were euthanized with an overdose of 2-phenoxy-ethanol and fixed in 4 per cent paraformaldehyde. Epithelia were dis- sected and stained with Oregon Green phalloidin (Invitrogen) followed by fluorescent imaging. Hair cells were manually counted across eight different regions of saccular epithelia and quantified as density (hair cells/2500 mm2) to correct for differ- ences in epithelium size. There were no apparent differences in fluorescent intensity sufficient to affect manual counts. Within species, there were no significant density differences between epithelial areas (ANOVA F7,40 ¼ 0.437, p ¼ 0.873), so the density estimates were averaged across epithelial areas. ANOVA was
  • 16. 140 160 500 1000 1500 2000 Forbesichthys Forbesichthys environment Amblyopsis Amblyopsis Typhlichthys Typhlichthys 5 mS 10 mV 2500 3000 Figure 2. Auditory thresholds of amblyopsid fishes. Values are means+standard errors. The suface fish Forbesichthys reaches up to 2 kHz while the cavefish Typhlichthys (1) and Amblyopsis (2) are limited to 1 kHz. Fast Fourier Transformation (FFT) of sound recorded in a Drowned Rat Cave pool. The pool was carved in bedrock by a small stream. The recording was made 0.5 m deep and approximately 1 m from the waterfall. The ceiling of the cave was also dripping onto the pool. Insert: auditory evoked potential traces of all
  • 17. species to a 400 Hz tone burst at 60 dB. rsbl.royalsocietypublishing.org Biol Lett 9: 20130104 3 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from used to assess differences in hair cell density, followed by a Tukey post-hoc test. (c) Environmental sound profiles We characterized aquatic environmental sound profiles in cave and surface habitats, using a hydrophone (type 10CT hydro- phone, calibration sensitivity of 2195 dB re. 1 V mPa21;+3 dB, 0.02 – 10 kHz, omnidirectional, G.R.A.S., Denmark) connected through a preamplifier (Spikerbox, Backyard Brains) to an iPad (Apple). Three recordings of 5 min were taken per site. Within caves, we obtained sound profiles from two habitat types: shal- low stream riffles at depths of 0.05 – 0.1 m and pools with no current at depths of 0.1 – 2 m. We also recorded at the same
  • 18. depths in surface streams and pools inhabited by Forbesichthys. Characterization of sound spectra and corresponding SPLs was performed using AUDIOTOOLS software (Studio Six Digital). We matched cave and surface habitats profiles as much as possi- ble (e.g. area, substrate and water flow), with the exception of vegetation in surface habitats. 3. Results Density of saccular hair cells differed between species (F2,6 ¼ 15.3, p ¼ 0.0007), with the two cave species having lower hair cell densities (mean ¼ 34 and 29 hair cells/ 2500 mm2) than the surface species (mean ¼ 45 hair cells/ 2500 mm2; figure 1). There was no difference in threshold between species below 800 Hz (F2,15 ¼ 1.087, p ¼ 0.342; figure 2), and thresholds increased with frequency (F11,15 ¼ 25.9, p , 0.001) with no significant frequency – species interaction (F15,95 ¼ 47.9, p ¼ 0.702). All three amblyopsid species were most sensitive at 100 Hz (mean threshold range 112 – 122 dB re 1 mPa), and thresholds increased between 100 and 800 Hz. In the two cave species, only one Typhlichthys responded to tones 700 – 1000 Hz and just two Amblyopsis responded to tone bursts above 600 Hz, with only one responding at 1000 Hz. The surface species showed clear evoked responses well above this limit, with defined responses detected up to 2000 Hz.
  • 19. Underwater sounds were variable depending on habitat. In cave streams with rock and sand substrate, there was a peak in background noise at about 1000 Hz followed by peaks at low frequencies (below 200 Hz; figure 2). Overall sound intensity was less prominent between 200 and 5000 Hz in pool habitats away from the small streams. Nonetheless, the same general profile was present but with a smaller, less defined 1000 Hz peak. Surface streams showed low-frequency noise (less than 100 Hz) and high-frequency noise (more than 8000 Hz) with a small peak at 1200 Hz, but the overall noise level was much higher at intermediate frequencies (1000 – 3000 Hz) in the cave streams than surface streams. 4. Discussion Adaptation to cave environments is often associated with hypertrophy of non-visual sensory modalities. Cave ambly- opsids exhibited similar hearing sensitivities as their surface- dwelling relative at 800 Hz and below, consistent with previous findings in other cavefishes [5,6]. Surprisingly how- ever, cave amblyopsids have lost a significant portion of their
  • 20. hearing range. Both Amblyopsis and Typhlichthys are unable to hear frequencies above 800 Hz, unlike their surface relative Forbesichthys, which can hear up to 2 kHz. In addition, both cave species had lower hair cell densities than Forbesichthys. To our knowledge, this is the first report of auditory regression in a subterranean organism. http://rsbl.royalsocietypublishing.org/ rsbl.royalsocietypublishing.org Biol Lett 9: 20130104 4 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from Like the loss of eyes, loss of hearing range in cave amb- lyopsids represents an example of regressive evolution in subterranean organisms. Audio recordings from native cave habitats of cave amblyopsids showed that flowing streams (riffles) and water droplets dripping from the ceiling of cave passages contribute to loud high-frequency background
  • 21. noise generally above 800 Hz (figure 2), although the precise contribution of all noise sources have not been characterized. Lower frequencies are not likely to propagate far in these shallow environments [12] but the higher frequency com- ponents would propagate further and contribute to the more to the high background noise levels of the caves. The apparent match between hearing ability and background noise profiles has been hypothesized to be an evolutionary driver of hearing ability across the Teleostei [13], and the hearing of two species of goby (Padogobius martensii and Gobius nigricans) living in noisy waterfall environments is most sensitive in a frequency range corresponding to a quiet window in these environments [14]. Noisy stream environments mask high-frequency hearing in ostariophysan fishes [15] but hearing specializations of clo- sely related species in different acoustic environments have rarely been tested. Our findings raise the intriguing possibility that cave amblyopsids may have lost hearing at high frequen- cies in response to the noisy acoustic environments in which
  • 22. they live. The reduction in hair cell density indicates peripheral involvement in high-frequency hearing loss. Fewer hair cells pro- vide fewer sites for signal transduction and also may lead to less relative stimulation upon relative motion of the otolith. Poulson [9] reports an increase in otolith size with increasing cave adaptation in this group and suggests it may be due to different equilibrium demands. If the sensory epithelium is growing in pace with the otolith without concomitant increase in hair cells, a decrease in hair cell density would result. If, however, the loss of high-frequency hearing ability in cave species was due to selective loss of high-frequency hair cells, this could also lead to a decrease in overall hair cell density. There is no evidence for tonotopy in fish ears, but there is some evidence for differential frequency selectivity in hair cells across the epithelia [15]. More work needs to be done on frequency responses at the level of individual hair cells before this idea can be supported.
  • 23. Our study provides evidence that two cavefish species have evolved loss of high-frequency hearing and reduced hair cell densities compared with a surface-dwelling relative. These traits may have evolved in response to loud high- frequency background noise that mask acoustic signals in their aquatic subterranean habitats; however, the mechanism (i.e. neutral loss versus selection) underlying hearing loss remain to be understood. All procedures followed IACUC guidelines dictated by the Univer- sity of Windsor. All data are available in http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scien- tific permits issued by the states of TN (no. 1605) and KY (no. SC1211135), USA. We thank Daniel Escobar Camacho for help and Dr Gal Haspel and Dr Kim Hoke for comments. This work was supported by the Yale Institute of Biospheric Studies (M.L.N.) and by ADVANCE grant no. 1008117 to D.S. References 1. Jeffery W. 2001 Cavefish as a model system in evolutionary developmental biology. Dev. Biol. 231, 1 – 12. (doi:10.1006/dbio.2000.0121)
  • 24. 2. Culver D, Pipan T. 2009 The biology of caves and other subterranean habitats. Oxford, UK: Oxford University Press. 3. Fay RR, Popper AN. 2012 Fish hearing: new perspectives from two ‘senior’ bioacousticians. Brain Behav. Evol. 79, 215 – 217. (doi:10.1159/ 000338719) 4. Popper AN. 1970 Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim. Behav. 18, 552 – 562. (doi:10.1016/0003-3472(70)90052-7) 5. Schulz-Mirbach T, Ladich F, Riesch R, Plath M. 2010 Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hear. Res. 267, 137 – 148. (doi:10.1016/j.heares.2010.04.001) 6. Poulson TL. 1963 Cave adaptation in amblyopsid fishes. Am. Midland Nat. 70, 257 – 290. (doi:10. 2307/2423056) 7. Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ. 2013 Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67, 732 – 748. (doi:10.1111/j.1558-5646.2012.01822.x) 8. Niemiller ML, Higgs DM, Soares D. 2013 Data from: evidence for hearing loss in amblyopsid cavefishes. Dryad Digital Respository. (doi:10.5061/dryad.9sj49) 9. Corwin JT, Bullock TH, Schweitzer J. 1982 The auditory brain stem response in five vertebrate
  • 25. classes. Electroencephalogr. Clin. Neurophysiol. 54, 629 – 641. (doi:10.1016/0013-4694(82)90117-1) 10. Kenyon TN, Ladich F, Yan HY. 1998 A comparative study of hearing ability in fishes: the auditory brainstem response approach. J. Comp. Physiol. A 182, 307 – 318. (doi:10.1007/s003590050181) 11. Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN. 2001 Ultrasound detection by clupeiform fishes. J. Acoust. Soc. Am. 109, 3048 – 3054. (doi:10.1121/1.1368406) 12. Fine ML, Lenhardt ML. 1983 Shallow-water propagation of the toadfish mating call. Comp. Biochem. Physiol. A. 76, 225 – 231. (doi:10.1016/ 0300-9629(83)90319-5) 13. Popper AN, Fay RR. 1997 Evolution of the ear and hearing: issues and questions. Brain Behav. Evol. 50, 213 – 221. (doi:10.1159/000113335) 14. Lugli M, Yan HY, Fine ML. 2003 Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J. Comp. Physiol. A. 189, 309 – 320. 15. Amoser S, Ladich F. 2005 Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J. Exp. Biol. 208, 3533 – 3542. (doi:10.1242/jeb.01809) http://datadryad.org http://datadryad.org http://dx.doi.org/10.5061/dryad.9sj49 http://dx.doi.org/10.1006/dbio.2000.0121 http://dx.doi.org/10.1159/000338719
  • 26. http://dx.doi.org/10.1159/000338719 http://dx.doi.org/10.1016/0003-3472(70)90052-7 http://dx.doi.org/10.1016/j.heares.2010.04.001 http://dx.doi.org/10.2307/2423056 http://dx.doi.org/10.2307/2423056 http://dx.doi.org/10.1111/j.1558-5646.2012.01822.x http://dx.doi.org/10.5061/dryad.9sj49 http://dx.doi.org/10.1016/0013-4694(82)90117-1 http://dx.doi.org/10.1007/s003590050181 http://dx.doi.org/10.1121/1.1368406 http://dx.doi.org/10.1016/0300-9629(83)90319-5 http://dx.doi.org/10.1016/0300-9629(83)90319-5 http://dx.doi.org/10.1159/000113335 http://dx.doi.org/10.1242/jeb.01809 http://rsbl.royalsocietypublishing.org/Evidence for hearing loss in amblyopsid cavefishesIntroductionMaterial and methodsAuditory evoked potentialsHair cell histologyEnvironmental sound profilesResultsDiscussionAll procedures followed IACUC guidelines dictated by the University of Windsor. All data are available in http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scientific permits issued by the states of TN (no. 1605) and KY (no. SC1211135), USA.We thank Daniel Escobar Camacho for help and Dr Gal Haspel and Dr Kim Hoke for comments. This work was supported by the Yale Institute of Biospheric Studies (M.L.N.) and by ADVANCE grant no. 1008117 to D.S.References