/ 20
IEEE GCCE 2019
2019.10.16
Rent Prediction Models with Floor Plan Images


1
Ryosuke Hattori¹ Kazushi Okamoto¹ Atushi Shibata²


¹ Graduate School of Informatics and Engineering,The University of Electro Communications


² Graduate School of Industrial Technology,Advanced Institute of Industrial Technology
/ 20
IEEE GCCE 2019
2019.10.16
Features of properties


• almost properties with different attributes


• property attributes


• age, story, building structure, and so on


• effect on prices


Rental case comparison method (Onoki,2016)


• referring around the target property and the similar properties


• linear regression model
Introduction
2
K. Ohno: Keizoku Chinryou Kantei Hyouka Wo Saikou
Suru, Jutaku-Shimpo Inc., 2016
ŷi = ↵1x1 + ↵2x2 + ↵3x3 + · · · + ↵nxn +
<latexit sha1_base64="vQx08F43bZHjET/G6F0shHJHj2A=">AAADG3ichVFNSxxBFKwZYzSbGFdzCSSHJYtBEKR3FRQhIOYSSA5+ZFVYZenptNo4OzPMzC7ZLPkD+QMeJIcEJIT8DC8h5OrBnyAeDeSSQ2pmhxFdTB7MdPXrqlfvdTuBa6JYiFPLHrg1eHto+E7h7r2R+6PFsfH1yG+FSteU7/rhpiMj7RpP12ITu3ozCLVsOq7ecPafJ+cbbR1Gxvdex51Abzflrmd2jJIxU36xji3sQSJGCR00YLiW8IxZCRdBetZAFxW8x9scTZFznVHNGdUbGDM5YyZjHOENfHpHxFN9fC/ne3lFB5p82SiWxbRIo9QPKhkoI4tlv/iF4sRMoYUmi3gso2gnaR6hzrEErWNs004iJDLpuaZ1gdoWWZoMyew+/7vc1bOsx31SM0rVii4uv5DKEibEifgqLsR38U2ciT831uqmNZJeOlydnlYHjdEPD9d+/1fVTJ9w71L1z55j7GA+7dWw9yDNJFOonr797uBibWF1ovtUfBbn7P+TOBXHnMBr/1JHK3r1EAU+QOX6dfeD9ep0hXhltry4lD3FMB7hCSZ533NYxAssowZlPbaWrJfWK/ujfWz/sH/2qLaVaR7gStgnfwFUmKzq</latexit>
<latexit sha1_base64="vQx08F43bZHjET/G6F0shHJHj2A=">AAADG3ichVFNSxxBFKwZYzSbGFdzCSSHJYtBEKR3FRQhIOYSSA5+ZFVYZenptNo4OzPMzC7ZLPkD+QMeJIcEJIT8DC8h5OrBnyAeDeSSQ2pmhxFdTB7MdPXrqlfvdTuBa6JYiFPLHrg1eHto+E7h7r2R+6PFsfH1yG+FSteU7/rhpiMj7RpP12ITu3ozCLVsOq7ecPafJ+cbbR1Gxvdex51Abzflrmd2jJIxU36xji3sQSJGCR00YLiW8IxZCRdBetZAFxW8x9scTZFznVHNGdUbGDM5YyZjHOENfHpHxFN9fC/ne3lFB5p82SiWxbRIo9QPKhkoI4tlv/iF4sRMoYUmi3gso2gnaR6hzrEErWNs004iJDLpuaZ1gdoWWZoMyew+/7vc1bOsx31SM0rVii4uv5DKEibEifgqLsR38U2ciT831uqmNZJeOlydnlYHjdEPD9d+/1fVTJ9w71L1z55j7GA+7dWw9yDNJFOonr797uBibWF1ovtUfBbn7P+TOBXHnMBr/1JHK3r1EAU+QOX6dfeD9ep0hXhltry4lD3FMB7hCSZ533NYxAssowZlPbaWrJfWK/ujfWz/sH/2qLaVaR7gStgnfwFUmKzq</latexit>
<latexit sha1_base64="Mhn41z7d/Q2n10aqYFv7sL5P/oA=">AAADG3ichVHLShxBFD3dxqiTh6PZBJLFkMEQEKRmXCiCIGYTiAsfGRUmMlRXSi3s6W66ewYnQ34gP5BFyMKASMhnuAkhWxd+grg04MZFTvc0LXEwudBdp26dc8+9VU7gmigW4tSyB+4M3h0aHincu//g4WhxbHw98luh0jXlu3646chIu8bTtdjErt4MQi2bjqs3nL2XyflGW4eR8b03cSfQW02545lto2TMlF+s4y12IRGjhA4aMFxLmGdWwkWQnjXQRQUfsJ+jSXJuMqo5o3oLYzpnTGeMQ7yDT++IeLKP7+V8L6/oQJMvG8WymBJplPpBJQNlZLHsF48oTswUWmiyiMcyinaS5hHqHEvQOsYW7SRCIpOea1oXqG2RpcmQzO7xv8NdPct63Cc1o1St6OLyC6ksYUKciG/iQvwQ38WZuLq1VjetkfTS4er0tDpojH58vHb5X1UzfcLda9U/e46xjdm0V8PegzSTTKF6+vb7Txdrc6sT3efiqzhn/wfiVBxzAq/9Wx2u6NXPKPABKjevux+sV6cqxCvV8sJi9hTDeIJneMH7nsECXmEZNSjrqbVovbaW7C/2sf3T/tWj2lameYS/wj75A1P4rOg=</latexit>
rent distance
story
age location
ŷ
<latexit sha1_base64="xhpVBugrKGqsl/IOdSNq+waH9Pk=">AAACbXichVHLSsNAFD2N7/qqiiAoUixVV2WqguJKdOPSttYWq5QkTjWYJiGZFmroD7gWXIiCgoj4GW78ARf9BHHhQsGNC2/SgGhR7zAzZ87cc+fMjGLpmiMYa4SktvaOzq7unnBvX//AYGRoeMsxK7bKs6qpm3ZekR2uawbPCk3oPG/ZXC4rOs8ph2vefq7KbUczjU1Rs/huWd43tJKmyoKobXfnQBZurV6PFiMxlmB+RFtBMgAxBLFhRm6wgz2YUFFBGRwGBGEdMhxqBSTBYBG3C5c4m5Dm73PUESZthbI4ZcjEHtK4T6tCwBq09mo6vlqlU3TqNimjiLNHdste2QO7Y0/s49darl/D81KjWWlquVUcPB7LvP+rKtMscPCl+tOzQAlLvleNvFs+491CbeqrR6evmeV03J1mV+yZ/F+yBrunGxjVN/U6xdNnCNMHJH8+dyvYmksk5xNzqYXYymrwFd0YxxRm6b0XsYJ1bCBL5xo4wTkuQi/SqDQhTTZTpVCgGcG3kGY+AbAsjgA=</latexit>
/ 20
IEEE GCCE 2019
2019.10.16
Related Works
3
• R P. Dahal, R K. Grala, J S. Gordon, L A. Munn, D R. Petrolia, J R. Cummings: A hedonic pricing method to estimate the value of waterfronts
in the gulf of Mexico, Urban forestry & urban greening, vol.41, pp.184-194, 2019.


• P. Deschermeier, B. Seipelt: A hedonic rent index for student housing in Germany, Cologne institute for economic research, pp.1–12, 2016.


• Y. Jun, H. Kim: Measuring the effect of greenbelt proximity on apartment rents in Seoul, Cities, vol. 62, 2017.
category of explanatory variable
building
structure
location

/access
around
environment
sales
contract
image
Ram+

2019
✔︎✔︎✔︎
Philipp+

2016
✔︎✔︎✔︎
Jun+

2017
✔︎✔︎✔︎✔︎
proposal
✔︎✔︎✔︎✔︎
/ 20
IEEE GCCE 2019
2019.10.16
Floor Plan Standard
4
kitchen and
other rooms
kitchen square
[0 m2,4.5 m2) [4.5 m2, 8.0 m2)
More than equal to 

8.0 m2
not
separated
Room 

(R)
separated
Kitchen

(K)
Dinning Kitchen 

(DK)
Living Dinning Kitchen
(LDK)
DK LDK
K
R
/ 20
IEEE GCCE 2019
2019.10.16
Floor Plan Images
Floor plan standard is the same, but
fl
oor layout is different


In japan, there is a custom to look at
fl
oor plan images


when searching for a desired rental property (Kiyota+,2017)
5
Ex. Different
fl
oor plan images in the same property and
fl
oor standard
Y. Kiyota, T. Yamasaki, H. Suwa, C. Shimizu:
Real estate and AI, Journal of the Japanese
Society for Arti
fi
cial Intelligence, vol.32, no.4,
pp.529-535, 2017
/ 20
IEEE GCCE 2019
2019.10.16
Purpose: Validate in
fl
uence of
fl
oor plan images to rent prediction


Method


• build prediction models with/ without
fl
oor plan images


• compare prediction accuracy


Prediction Models


• Linear Regression (LR)


• XGBoost


• Support Vector Regression (SVR)


Feature Extractor


• Principal Component Analysis (PCA)
6
Our Approach
/ 20
IEEE GCCE 2019
2019.10.16
Prediction formula:


Loss function :
Prediction Model
7
ln
<latexit sha1_base64="cip2YhSnDwuYWh3CEG2B1EDrAqU=">AAACZnichVFNSwJBGH7cvsxKrYiCLpIYnWS0oOgkdenoR36Aiuxuoy2uu8vuKpj0B4KueehUEBH9jC79gQ7+g6KjQZcOva4LUVK9w8w888z7vPPMjGSoimUz1vMIY+MTk1Pead/M7Jw/EJxfyFl605R5VtZV3SxIosVVReNZW7FVXjBMLjYkleel+v5gP9/ipqXo2qHdNni5IdY0parIok1UpqRqlWCYRZkToVEQc0EYbiT14C1KOIIOGU00wKHBJqxChEWtiBgYDOLK6BBnElKcfY5T+EjbpCxOGSKxdRprtCq6rEbrQU3LUct0ikrdJGUIEfbE7lifPbJ79sI+fq3VcWoMvLRploZablQCZyuZ939VDZptHH+p/vRso4odx6tC3g2HGdxCHupbJ91+Zjcd6ayza/ZK/q9Yjz3QDbTWm3yT4ulL+OgDYj+fexTk4tHYZjSe2gon9tyv8GIVa9ig995GAgdIIkvn1nCOC3Q9z4JfWBKWh6mCx9Us4lsIoU+/norO</latexit>
L(y, f(x)) =
X
(ln yi ln ŷi)2
=
X
(ln
yi
ŷi
)2
<latexit sha1_base64="SVmYIXbXkVU3MysOFsi1FpuiMIA=">AAAC0HichVFNSxxBEH0zxkQ3H656EXJZshh2IVl6N0JCQBC95JCDrq4Kjllmxl5ttueDmd7FyTCIV/+AB08JBJH8jFxyzcGDP0E8GvCSQ2pmB9RIkhqmq+rVe9XV3ZYvRagYO9P0oXvD9x+MjBYePnr8ZKw4PrEaer3A5i3bk16wbpkhl8LlLSWU5Ot+wE3HknzN6i6k9bU+D0LhuSsq8vmmY267oiNsUxHULnZL7yuG5cmtMHLIxVHyonML2E2q1Vkj7DkVQ7px1BbJyzQwdkxFZEqrHxrXdaMTmHac0ZL4BilJae1imdVYZqW7QT0Pysht0Ssew8AWPNjowQGHC0WxhImQvg3UweATtomYsIAikdU5EhRI2yMWJ4ZJaJfWbco2ctSlPO0ZZmqbdpH0B6QsYZqdshN2yb6zr+yc/fprrzjrkc4SkbcGWu63xw6mlq/+q3LIK+xcq/45s0IHb7JZBc3uZ0h6Cnug7388vFx+25yOn7PP7ILm/8TO2Dc6gdv/aX9Z4s0jFOgB6n9e991gtVGrv6o1lmbKc/P5U4zgKZ6hQvf9GnN4h0W0aN8fuNKgaXpT39X39P0BVddyzSRumX7wG0JdtNY=</latexit>
ln ŷ = f(x) = ↵T
x +
<latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit>
u
<latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit>
<latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit>
<latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit>
<latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit>
vi
ln ŷ = f(x) = ↵T
x +
<latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit>
x = [u, ✓(v)]
<latexit sha1_base64="tbvrKtiF/xOXDGMbwaD2COlchy8=">AAACqXichVFNSxtBGH6y9SPGr9hehF6WhpQUJUxUUApCsD30mKjRYBLC7jqawf1idxIal/0D/QMeemqhlLY/w4tHLz2k/6B4jNBLD32zWZAYrO8w8z7zvO/zzjszumsKXzLWSyhPJianppMzqdm5+YXF9NLTA99pewavGI7peFVd87kpbF6RQpq86npcs3STH+pnbwbxww73fOHY+7Lr8oalndriRBiaJKqZfhvUdcc89rsWOfV9qG6rtRGqHa6qdbclmmpQly0utTA3Eu+ErxrNdIblWWTqOCjEIIPYSk76K+o4hgMDbVjgsCEJm9Dg06ihAAaXuAYC4jxCIopzhEiRtk1ZnDI0Ys9oPaVdLWZt2g9q+pHaoFNMmh4pVWTZT/aN9dkV+8F+s78P1gqiGoNeuuT1oZa7zcUPy3t/HlVZ5CVad6r/9ixxgq2oV0G9uxEzuIUx1HfOL/p7r3ezwUv2md1Q/59Yj13SDezOrfGlzHc/IkUfULj/3OPgYC1fWM+vlTcyxZ34K5J4jhfI0Xtvooh3KKFC537HNXr4pawoZaWqHA1TlUSseYYRU4x/JIqlEA==</latexit>
特
徴
量
属性
ベクトル
賃料
Image
Features
Property
Variables
Rent
ln ŷ = f(x) =
<latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit>
✓(v)
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="1tqRKu4qqxHI8AQAeehg2wQidig=">AAACVXichVG7TgJBFD2sL1xRIDYmNkSCsSIXG42ViY0lD3kkSMjuMuCGZXezu5Ag8QdoLSysNDHG+Bk2/oAFvY2xxMTGwstCYpSodzIzZ87MuXPmjmobuusRDQLSzOzc/EJwUV4Kycsr4Uio4FptRxN5zTIsp6QqrjB0U+Q93TNEyXaE0lINUVSbB6P9Ykc4rm6ZR17XFpWW0jD1uq4pHlPpaiROSfIjNg1SExDHJKzILY5RgwUNbbQgYMJjbECBy62MFAg2cxX0mHMY6f6+wBlk1rb5lOATCrNNHhu8Kk9Yk9ejnK6v1vgWg7vDyhgS9ER3NKRHuqcX+vg1V8/PMfLS5Vkda4VdDffXcu//qlo8ezj5Uv3p2UMdu75Xnb3bPjN6hTbWd04vhrm9bKK3Sdf0yv6vaEAP/AKz86bdZET2EjLXP/Wz2tOgsJ1MMc4QgljHBra4zDvYxyHSyPN1NfRxHniWZCk6/icpMPmwKL6FtPoJBguHtw==</latexit>
<latexit sha1_base64="2CcQ3v4PnGrVgMig/t6jEP2FmtA=">AAACenichVHLLgRBFD3ae7yGlcSmQwgLckcEsZLYWI7HIDEy6W7FVPQr3TWTjM5sLfyAhRWJiLDlB2z8gIVPEMuR2Fi43TOJILidrnvqVJ1bp+qavi1DRfTUpDW3tLa1d3Smurp7evvS/d0boVcKLJGzPNsLtkwjFLZ0RU5JZYstPxCGY9pi0zxYitc3yyIIpeeuq4ovdhxj35V70jIUU4W0nveLshDlVVEoo6qPR3nTs3fDisNJL1cnUoX0CE1REvpPkGmAETQi66UvkccuPFgowYGAC8XYhoGQv21kQPCZ20HEXMBIJusCVaRYW+JdgncYzB7wuM+z7Qbr8jyuGSZqi0+x+Q9YqWOUHumKavRA1/RM77/WipIasZcKZ7OuFX6h73hw7e1flcNZofip+tOzwh7mE6+SvfsJE9/CquvLhye1tYXV0WiMzumF/Z/RE93zDdzyq3WxIlZPETcg8/25f4KN6akM4xVCB4YwjHF+5jksYhlZ5Pi4I9zgFndauzapzdRbpTU1ejaAL6HNfgA/W5T5</latexit>
<latexit sha1_base64="2CcQ3v4PnGrVgMig/t6jEP2FmtA=">AAACenichVHLLgRBFD3ae7yGlcSmQwgLckcEsZLYWI7HIDEy6W7FVPQr3TWTjM5sLfyAhRWJiLDlB2z8gIVPEMuR2Fi43TOJILidrnvqVJ1bp+qavi1DRfTUpDW3tLa1d3Smurp7evvS/d0boVcKLJGzPNsLtkwjFLZ0RU5JZYstPxCGY9pi0zxYitc3yyIIpeeuq4ovdhxj35V70jIUU4W0nveLshDlVVEoo6qPR3nTs3fDisNJL1cnUoX0CE1REvpPkGmAETQi66UvkccuPFgowYGAC8XYhoGQv21kQPCZ20HEXMBIJusCVaRYW+JdgncYzB7wuM+z7Qbr8jyuGSZqi0+x+Q9YqWOUHumKavRA1/RM77/WipIasZcKZ7OuFX6h73hw7e1flcNZofip+tOzwh7mE6+SvfsJE9/CquvLhye1tYXV0WiMzumF/Z/RE93zDdzyq3WxIlZPETcg8/25f4KN6akM4xVCB4YwjHF+5jksYhlZ5Pi4I9zgFndauzapzdRbpTU1ejaAL6HNfgA/W5T5</latexit>
<latexit sha1_base64="tBF/c/fvuprQv5Z62Zn40d3w18Y=">AAAChXichVG7ThtBFD0sCRAngIEmEs0KC0QKrGuEANGAoKHkZUDClrW7jPGIfWl3bMms3FLwAxRUIEURIm34AZr8AAWfgChBSkPB3fVKKLEgd7Vzz5y5586ZGdO3ZaiI7rq07g8fe3r7PmU+f+kfGMwODW+HXj2wRNHybC/YNY1Q2NIVRSWVLXb9QBiOaYsd83AlXt9piCCUnrulmr4oO8aBK6vSMhRTlaxe8muyEpVUTSijpU9GJdOz98Omw0lvtL5lKtkc5SkJvRMUUpBDGmte9gdK2IcHC3U4EHChGNswEPK3hwIIPnNlRMwFjGSyLtBChrV1rhJcYTB7yOMBz/ZS1uV53DNM1BbvYvMfsFLHON3SJT3Sb7qie3p+s1eU9Ii9NDmbba3wK4MnXzf//FflcFaovare9axQxXziVbJ3P2HiU1htfePo9HFzYWM8mqALemD/53RHN3wCt/FkfV8XG2eIH6Dw73V3gu3pfIHxOuWWltOn6MMoxjDJ9z2HJaxiDUXe9xg/8QvXWq82pc1os+1SrSvVjOCv0BZfALomleY=</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
<latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
/ 20
IEEE GCCE 2019
2019.10.16
LR1


XGBoost2


• max depth: 6, 8, 10


SVR3
Used Regressors
8
ln
<latexit sha1_base64="cip2YhSnDwuYWh3CEG2B1EDrAqU=">AAACZnichVFNSwJBGH7cvsxKrYiCLpIYnWS0oOgkdenoR36Aiuxuoy2uu8vuKpj0B4KueehUEBH9jC79gQ7+g6KjQZcOva4LUVK9w8w888z7vPPMjGSoimUz1vMIY+MTk1Pead/M7Jw/EJxfyFl605R5VtZV3SxIosVVReNZW7FVXjBMLjYkleel+v5gP9/ipqXo2qHdNni5IdY0parIok1UpqRqlWCYRZkToVEQc0EYbiT14C1KOIIOGU00wKHBJqxChEWtiBgYDOLK6BBnElKcfY5T+EjbpCxOGSKxdRprtCq6rEbrQU3LUct0ikrdJGUIEfbE7lifPbJ79sI+fq3VcWoMvLRploZablQCZyuZ939VDZptHH+p/vRso4odx6tC3g2HGdxCHupbJ91+Zjcd6ayza/ZK/q9Yjz3QDbTWm3yT4ulL+OgDYj+fexTk4tHYZjSe2gon9tyv8GIVa9ig995GAgdIIkvn1nCOC3Q9z4JfWBKWh6mCx9Us4lsIoU+/norO</latexit>
ln ŷ = wT
h(x) + c
<latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit>
<latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit>
<latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit>
<latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit>
1Linear regression class of scikit-learn (version: 0.20.2)


2https://github.com/dmlc/xgboost of python package (version: 0.82)


3SVR class of scikit-learn (version: 0.20.2)
F = {f(x) = wq(x)}
<latexit sha1_base64="vYZ5ogynMuxBxitBHt1d11Udu20=">AAACoHichVFNSxtBGH5ca9VUa2ovgpdgUNJLmKjQogiiIN5qTGOCWQm760QXZz+6O4mNy/4B/4AHTwpSSn9GD3rUQw/5CaVHC148+GazIE1Q32XnfeaZ93nnmRndFaYvGWv1Kf2vBl4PDg0n3oyMvh1Lvhvf8p26Z/Ci4QjHK+uaz4Vp86I0peBl1+OapQte0g9W2+ulBvd807G/yKbLdyxtzzZrpqFJoqrJRdXS5L6hiWAtTC2l1KCWUXVH7PpNi1LwLfxA7GE1+NpNh2pYTaZZlkWR6gW5GKQRx4aT/A4Vu3BgoA4LHDYkYQENPn0V5MDgEreDgDiPkBmtc4RIkLZOVZwqNGIPaNyjWSVmbZq3e/qR2qBdBP0eKVOYZr/ZD3bLrthP9ofdP9kriHq0vTQp6x0td6tjxxOFuxdVFmWJ/UfVs54lavgUeTXJuxsx7VMYHX3j6OS2sLA5Hcywc/aX/J+xFvtFJ7Ab/4yLPN88RYIeINd93b1gazabm8vO5ufTyyvxUwxhElPI0H1/xDLWsYEi7XuGS1zjRplS1pXPSr5TqvTFmvf4L5TtB0agoWU=</latexit>
ln ŷ =
K
X
k=1
fk(xi), fk 2 F,
<latexit sha1_base64="kXKNmhiTJ1hFeMrJ2rKeQJCR2es=">AAACpHichVFNS9xAGH5MW2u3ra7tpdBL6KJYkGViBaUglRZKwR7U7apgNEzirDvs5INkduk25A/0D/TQUwtSpD+jF8FrPfgTSo8WevHgm2xArFTfkJnnfeZ93nlmxo2UTDRjx0PGjZu3hm+P3KncvXd/dKw6/mAtCbuxJ5peqMJ4w+WJUDIQTS21EhtRLLjvKrHudl7l6+s9EScyDN7pfiS2fL4byJb0uCbKqb6wVZDaba7TfpYt2EnXd9KOuWBa2faS2XI6U+l7R2ZPp+08MW0ZmLbPddvjKn2dTZsVp1pjdVaEeRlYJaihjOWw+g02dhDCQxc+BAJowgocCX2bsMAQEbeFlLiYkCzWBTJUSNulKkEVnNgOjbuUbZZsQHneMynUHu2i6I9JaWKCHbF9dsIO2Hf2i53+t1da9Mi99Gl2B1oROWMfHzX+XqvyadZon6uu9KzRwnzhVZL3qGDyU3gDfe/Dp5PG89WJdJJ9Zb/J/xd2zH7QCYLeH29vRax+Rv4A1r/XfRmszdStZ/WZldna4svyKUbwGE8wRfc9h0W8wTKatO8eDvETR8ak8dZoGM1BqTFUah7iQhjbZ7qzoU8=</latexit>
ln ŷ = ↵T
x +
<latexit sha1_base64="n8nEqCpf1j5D7Rq0/4w8ipOkADU=">AAACqXichVFNSxxBEH1OYqIbjWu8CF6aLIogLL0mEAkERD14dNXVRUeXnrF1B3s+mOldshnmD/gHPHhSCEH9GbnkmEsO6z+QHA3k4sHa2QFRUavprtev6lVXd1uBciLNebvHePGy99Xrvv7cm4HBt0P54Xdrkd8IbVmxfeWHVUtEUjmerGhHK1kNQilcS8l1a3++E19vyjByfG9VtwK55Yo9z9l1bKGJquUXTOXFZl3ouJUk7AtjsWn5aidqueSYKVRQF8l2bIYuW03uBr8mbIqZltSili/wIk+NPQSlDBSQ2ZKf/wETO/BhowEXEh40YQWBiMYmSuAIiNtCTFxIyEnjEglypG1QlqQMQew+rXu028xYj/admlGqtukURTMkJcM4/8NP+RX/xc/5Jb9+tFac1uj00iJvdbUyqA0djK78f1blkteo36qe7FljFzNprw71HqRM5xZ2V9/8dni18nl5PJ7gJ/wv9X/M2/wn3cBr/rO/l+XyEXL0AaX7z/0QrE0XSx+K0+WPhdm57Cv6MIb3mKT3/oRZLGIJFTr3DL/RxoUxZZSNqrHRTTV6Ms0I7phh3wDNtqTh</latexit>
/ 20
IEEE GCCE 2019
2019.10.16
Experiment Environment
LIFULL HOME ’S dataset (as of September 2015)


• rental property data (70 variables, 5.33 million)


• 120 x 120 pixel image data (83 million
fi
les)


• used data


• Tokyo


• 1,089,090 properties


• 34 property variables


•
fl
oor plan image


Computer (OS: Ubuntu 18.04.1)


• CPU:Xeon(R) CPU E5-2650 v3 @ 2.30GHz


• RAM:64GB
9
/ 20
IEEE GCCE 2019
2019.10.16 10
Dataset (1/2)
building structure/sales construct (19 variables)
property type parking status
num. of ground
fl
oors
num. of
underground
fl
oors
fl
oor num.
property status
available num. of
parking
num. of rooms building structure
orientation of
property
purpose of use
total num. of
properties
keeper exclusive area
num. of vacant
properties
age of building
immediate
occupancy
contract period days of occupancy
the others: one-hot vector
: continuous variables
/ 20
IEEE GCCE 2019
2019.10.16 11
Dataset (2/2)
location/acces (15 variables)
city, ward, town city plan rail station 1 rail station 2 area description
dist. to general
hospital
dist. to parking
walking dist. to
station 1 

or bus stop
walking dist. to
station 2 

or bus stop
dist. to
convenience store
dist. to super
market
dist. to junior high
school
riding dist. to
station 1
riding dist. to
station 2
dist. to elementary
school
the others: one-hot vector
: categorical each 80m
grayscale
Floor plan images
/ 20
IEEE GCCE 2019
2019.10.16
Outline of Experiment
12
1. Dataset split


• divide used dataset into 4 standards: K, R, DK, LDK


• for each standard, divide 20% into the test dataset


and 80% into the development dataset


2. Hyper-parameter tuning


• apply hold-out method to the development datasets


• evaluation measure: Mean Squared Error (MSE)


3. Evaluation of LR, XGBoost, and SVR for the test datasets


• MSE and learning time


• visualize predicted values
MSE =
1
N
X
(ln
yi
ŷi
)2
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="1tqRKu4qqxHI8AQAeehg2wQidig=">AAACVXichVG7TgJBFD2sL1xRIDYmNkSCsSIXG42ViY0lD3kkSMjuMuCGZXezu5Ag8QdoLSysNDHG+Bk2/oAFvY2xxMTGwstCYpSodzIzZ87MuXPmjmobuusRDQLSzOzc/EJwUV4Kycsr4Uio4FptRxN5zTIsp6QqrjB0U+Q93TNEyXaE0lINUVSbB6P9Ykc4rm6ZR17XFpWW0jD1uq4pHlPpaiROSfIjNg1SExDHJKzILY5RgwUNbbQgYMJjbECBy62MFAg2cxX0mHMY6f6+wBlk1rb5lOATCrNNHhu8Kk9Yk9ejnK6v1vgWg7vDyhgS9ER3NKRHuqcX+vg1V8/PMfLS5Vkda4VdDffXcu//qlo8ezj5Uv3p2UMdu75Xnb3bPjN6hTbWd04vhrm9bKK3Sdf0yv6vaEAP/AKz86bdZET2EjLXP/Wz2tOgsJ1MMc4QgljHBra4zDvYxyHSyPN1NfRxHniWZCk6/icpMPmwKL6FtPoJBguHtw==</latexit>
<latexit sha1_base64="W06s8Jmebi8e3jcSGo17fLbQvU0=">AAAC0HichVE9SxxBGH52zYfRSzytAmkkoiSNvGtjSBAEEWwS1PNU0Muxuxl1cW932Z07OI+r7CR9ilQJSAj5GWnyB1II/oGQ0kCaFHlmbsEkkmSGmXk/5nmfZ+YNsjgqtMiZ4w5du37j5vCtkdHK7Ttj1fHKZpG281DVwzRO8+3AL1QcJaquIx2r7SxXfiuI1VZwuGTyWx2VF1GabOhuphotfz+J9qLQ1wyl1Sd4ihqWMYkFrl3sIYePED146HN/ZneTKdBGC016ffoPcIoYCb1fMV3mI4vYxQFj2sb6ZbSPh3iOOZ4jzeqUzIodk1cNrzSmUI7VtPqOJV8gJY2RoUitacckKTh3KFeQMdYgpU9BmpQmrwwdsW3eUrxhhB5y36e3U0YT+qZmYdEhWWKu3D50Wj7Le7mQT/JBvsiPv9bq2RpGS5dnMMCqrDl2crf2/b+olv2sg0vUPzVrfvkjqzWi9sxGzCvCAb5z9Oqi9nh9ujcjb+Ur9b+RM/nIFySdb+Hpmlp/bRvg/fndV43NuVmP9ppgGPdwn133MI9FrGAVddKdO64z6lTchnvsngxa5Tplzybw23Bf/gSRb587</latexit>
<latexit sha1_base64="W06s8Jmebi8e3jcSGo17fLbQvU0=">AAAC0HichVE9SxxBGH52zYfRSzytAmkkoiSNvGtjSBAEEWwS1PNU0Muxuxl1cW932Z07OI+r7CR9ilQJSAj5GWnyB1II/oGQ0kCaFHlmbsEkkmSGmXk/5nmfZ+YNsjgqtMiZ4w5du37j5vCtkdHK7Ttj1fHKZpG281DVwzRO8+3AL1QcJaquIx2r7SxXfiuI1VZwuGTyWx2VF1GabOhuphotfz+J9qLQ1wyl1Sd4ihqWMYkFrl3sIYePED146HN/ZneTKdBGC016ffoPcIoYCb1fMV3mI4vYxQFj2sb6ZbSPh3iOOZ4jzeqUzIodk1cNrzSmUI7VtPqOJV8gJY2RoUitacckKTh3KFeQMdYgpU9BmpQmrwwdsW3eUrxhhB5y36e3U0YT+qZmYdEhWWKu3D50Wj7Le7mQT/JBvsiPv9bq2RpGS5dnMMCqrDl2crf2/b+olv2sg0vUPzVrfvkjqzWi9sxGzCvCAb5z9Oqi9nh9ujcjb+Ur9b+RM/nIFySdb+Hpmlp/bRvg/fndV43NuVmP9ppgGPdwn133MI9FrGAVddKdO64z6lTchnvsngxa5Tplzybw23Bf/gSRb587</latexit>
<latexit sha1_base64="hGIc4xcUXlFqjvduRZMaTIN6WK8=">AAAC23ichVFNaxRBFKwZPxKTaDZ6CXgJLhG9hDe5JCiBoAi5RJKsmwSSdZmZdJIhszPDTO/CuuzJW/AqHnJSCCL+DC/+AQ8B/4B4jODFg9W9A34ETQ/T/V69rlfV3UEWR4UWOXHcCxcvXR4avjIyOnb12nhl4vp6kbbzUNXDNE7zzcAvVBwlqq4jHavNLFd+K4jVRnDw0NQ3OiovojR5oruZarT8vSTajUJfE0or97GMGh5hCgv8t7GLHD5C9OChz/mxnU2lQBstNJn1md/BMWIkzH7ndFmPLGMb+8S0xfol2sddPMUs15FmpSozYsfU2cArgyrKsZJW3rLlDlLKGBuK0ppxTJGC3xbtCjJiDUr6NKQpaerKyJHb5i7FHcboAec9ZlslmjA3PQvLDqkS88/tQaflk7yTU/ko7+WL/Phnr57tYbx0uQYDrsqa44eTte/nslr2svZ/sf7rWfPK563XiN4zi5hThAN+59mr09q9tenebXkjX+n/tZzIB54g6XwLj1fV2pF9AO/v6z4brM/OeIxXpbr4oHyKYdzELT6/hzksYgkrqFP3s+M6o86Y23Cfu4fui8FW1yk5N/DHcF/+BIxCoH4=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit>
<latexit sha1_base64="z5M9pnZi6P9Qvb0OzJ2kmuTf1lU=">AAAC23ichVHPS9xAGH1Jf1m1dW0vQi/SxWIvMtmLRRHEInhpUbergq5Lks5qMJuEZHZhXfbkTXotPfTUgpTSP8OL/0APQv+B0qOCFw++mQ20KtoJmfm+98373psZLwmDTAlxbNl37t67/6DvYf/A4KPHQ4XhJytZ3Ex9WfHjME7XPDeTYRDJigpUKNeSVLoNL5Sr3s5rXV9tyTQL4uidaiey2nC3oqAe+K4iFBem8QZlzGMUM/w3UEcKFz46cNDl/NbMupKhiQZqzLrMx3GAEBGzfzlt1gPD2MA2MWWwbo528RKbKHHtrxWKYkKYMXo9cPKgiHwsxoVvbPkeMWW0DUlpxTikSMZvnXYFEmJVSro0pCip61LLkdvkLskd2ugO5y1m6zkaMdc9M8P2qRLyT81Bx8RP8V2ciCPxQ/wW5zf26pge2kubq9fjyqQ2tD9SPvsvq2Eua/sv61bPilf+yngN6D0xiD6F3+O3dj+dlKeWxzovxFfxh/6/iGNxyBNErVP/YEkufzYP4Fy97uvBSmnCYbxUKs7O5U/Rh2d4zud3MIlZLGARFer+smxrwBq0q/aevW9/6G21rZzzFJeG/fECjOKggA==</latexit>
/ 20
IEEE GCCE 2019
2019.10.16
Suitable Hyper-parameter for Each Model
13
fl
oor plan standard
hyper
parameter
K R DK LDK
LR
regularization

method
lasso lasso lasso lasso
lambda 0 0.001 0 0.001
PCA 512 2048 1024 2048
XGBoost
max depth 10 10 10 10
PCA 512 256 1024 1024
SVR
epsilon 0.1 0.01 0.1 0.01
PCA 256 256 512 256
/ 20
IEEE GCCE 2019
2019.10.16
Learning Time for the Training Dataset K
14
learning
time
[sec]
/ 20
IEEE GCCE 2019
2019.10.16
MSE for the Test Datasets
15
# of data
LR XGboost SVR
w/ w/o w/ w/o w/ w/o
K 30,446 0.028 0.029 0.015 0.016 0.159 0.161
R 94,420 0.024 0.029 0.013 0.014 0.099 0.100
DK 35,405 0.018 0.027 0.010 0.017 0.086 0.086
LDK 55,039 0.030 0.030 0.010 0.018 0.151 0.151
Predicted Values for the Test Dataset K
XGBoost w/o
XGBoost w/
LR w/o
LR w/ SVR w/
SVR w/o
Predicted Values for the Test Dataset DK
XGBoost w/o
XGBoost w/
LR w/o
LR w/ SVR w/
SVR w/o
/ 20
IEEE GCCE 2019
2019.10.16
Cumulative Density (1/2)
18
K [30,446 properties] R [94,420 properties]
= |1 −
̂
y
y
|
error rate y : ground truth ̂
y : prediction
ratio
the
number
of
data
error rate
/ 20
IEEE GCCE 2019
2019.10.16
DK [35,405 properties] LDK [55,039 properties]
19
Cumulative Density (2/2)
= |1 −
̂
y
y
|
error rate y : ground truth ̂
y : prediction
/ 20
IEEE GCCE 2019
2019.10.16
Purpose: Validate in
fl
uence of
fl
oor plan images to rent prediction


Method


• build prediction models with/ without
fl
oor plan images


• compare prediction accuracy


Result


• Floor plan images reduce prediction variability


• XGBoost with
fl
oor plan images archives the best MSE


Future work: To apply Speeded-Up Robust Features (SURF)
20
Conclusion

Rent Prediction Models with Floor Plan Images

  • 1.
    / 20 IEEE GCCE2019 2019.10.16 Rent Prediction Models with Floor Plan Images 1 Ryosuke Hattori¹ Kazushi Okamoto¹ Atushi Shibata² ¹ Graduate School of Informatics and Engineering,The University of Electro Communications ² Graduate School of Industrial Technology,Advanced Institute of Industrial Technology
  • 2.
    / 20 IEEE GCCE2019 2019.10.16 Features of properties • almost properties with different attributes • property attributes • age, story, building structure, and so on • effect on prices Rental case comparison method (Onoki,2016) • referring around the target property and the similar properties • linear regression model Introduction 2 K. Ohno: Keizoku Chinryou Kantei Hyouka Wo Saikou Suru, Jutaku-Shimpo Inc., 2016 ŷi = ↵1x1 + ↵2x2 + ↵3x3 + · · · + ↵nxn + <latexit sha1_base64="vQx08F43bZHjET/G6F0shHJHj2A=">AAADG3ichVFNSxxBFKwZYzSbGFdzCSSHJYtBEKR3FRQhIOYSSA5+ZFVYZenptNo4OzPMzC7ZLPkD+QMeJIcEJIT8DC8h5OrBnyAeDeSSQ2pmhxFdTB7MdPXrqlfvdTuBa6JYiFPLHrg1eHto+E7h7r2R+6PFsfH1yG+FSteU7/rhpiMj7RpP12ITu3ozCLVsOq7ecPafJ+cbbR1Gxvdex51Abzflrmd2jJIxU36xji3sQSJGCR00YLiW8IxZCRdBetZAFxW8x9scTZFznVHNGdUbGDM5YyZjHOENfHpHxFN9fC/ne3lFB5p82SiWxbRIo9QPKhkoI4tlv/iF4sRMoYUmi3gso2gnaR6hzrEErWNs004iJDLpuaZ1gdoWWZoMyew+/7vc1bOsx31SM0rVii4uv5DKEibEifgqLsR38U2ciT831uqmNZJeOlydnlYHjdEPD9d+/1fVTJ9w71L1z55j7GA+7dWw9yDNJFOonr797uBibWF1ovtUfBbn7P+TOBXHnMBr/1JHK3r1EAU+QOX6dfeD9ep0hXhltry4lD3FMB7hCSZ533NYxAssowZlPbaWrJfWK/ujfWz/sH/2qLaVaR7gStgnfwFUmKzq</latexit> <latexit sha1_base64="vQx08F43bZHjET/G6F0shHJHj2A=">AAADG3ichVFNSxxBFKwZYzSbGFdzCSSHJYtBEKR3FRQhIOYSSA5+ZFVYZenptNo4OzPMzC7ZLPkD+QMeJIcEJIT8DC8h5OrBnyAeDeSSQ2pmhxFdTB7MdPXrqlfvdTuBa6JYiFPLHrg1eHto+E7h7r2R+6PFsfH1yG+FSteU7/rhpiMj7RpP12ITu3ozCLVsOq7ecPafJ+cbbR1Gxvdex51Abzflrmd2jJIxU36xji3sQSJGCR00YLiW8IxZCRdBetZAFxW8x9scTZFznVHNGdUbGDM5YyZjHOENfHpHxFN9fC/ne3lFB5p82SiWxbRIo9QPKhkoI4tlv/iF4sRMoYUmi3gso2gnaR6hzrEErWNs004iJDLpuaZ1gdoWWZoMyew+/7vc1bOsx31SM0rVii4uv5DKEibEifgqLsR38U2ciT831uqmNZJeOlydnlYHjdEPD9d+/1fVTJ9w71L1z55j7GA+7dWw9yDNJFOonr797uBibWF1ovtUfBbn7P+TOBXHnMBr/1JHK3r1EAU+QOX6dfeD9ep0hXhltry4lD3FMB7hCSZ533NYxAssowZlPbaWrJfWK/ujfWz/sH/2qLaVaR7gStgnfwFUmKzq</latexit> <latexit sha1_base64="Mhn41z7d/Q2n10aqYFv7sL5P/oA=">AAADG3ichVHLShxBFD3dxqiTh6PZBJLFkMEQEKRmXCiCIGYTiAsfGRUmMlRXSi3s6W66ewYnQ34gP5BFyMKASMhnuAkhWxd+grg04MZFTvc0LXEwudBdp26dc8+9VU7gmigW4tSyB+4M3h0aHincu//g4WhxbHw98luh0jXlu3646chIu8bTtdjErt4MQi2bjqs3nL2XyflGW4eR8b03cSfQW02545lto2TMlF+s4y12IRGjhA4aMFxLmGdWwkWQnjXQRQUfsJ+jSXJuMqo5o3oLYzpnTGeMQ7yDT++IeLKP7+V8L6/oQJMvG8WymBJplPpBJQNlZLHsF48oTswUWmiyiMcyinaS5hHqHEvQOsYW7SRCIpOea1oXqG2RpcmQzO7xv8NdPct63Cc1o1St6OLyC6ksYUKciG/iQvwQ38WZuLq1VjetkfTS4er0tDpojH58vHb5X1UzfcLda9U/e46xjdm0V8PegzSTTKF6+vb7Txdrc6sT3efiqzhn/wfiVBxzAq/9Wx2u6NXPKPABKjevux+sV6cqxCvV8sJi9hTDeIJneMH7nsECXmEZNSjrqbVovbaW7C/2sf3T/tWj2lameYS/wj75A1P4rOg=</latexit> rent distance story age location ŷ <latexit sha1_base64="xhpVBugrKGqsl/IOdSNq+waH9Pk=">AAACbXichVHLSsNAFD2N7/qqiiAoUixVV2WqguJKdOPSttYWq5QkTjWYJiGZFmroD7gWXIiCgoj4GW78ARf9BHHhQsGNC2/SgGhR7zAzZ87cc+fMjGLpmiMYa4SktvaOzq7unnBvX//AYGRoeMsxK7bKs6qpm3ZekR2uawbPCk3oPG/ZXC4rOs8ph2vefq7KbUczjU1Rs/huWd43tJKmyoKobXfnQBZurV6PFiMxlmB+RFtBMgAxBLFhRm6wgz2YUFFBGRwGBGEdMhxqBSTBYBG3C5c4m5Dm73PUESZthbI4ZcjEHtK4T6tCwBq09mo6vlqlU3TqNimjiLNHdste2QO7Y0/s49darl/D81KjWWlquVUcPB7LvP+rKtMscPCl+tOzQAlLvleNvFs+491CbeqrR6evmeV03J1mV+yZ/F+yBrunGxjVN/U6xdNnCNMHJH8+dyvYmksk5xNzqYXYymrwFd0YxxRm6b0XsYJ1bCBL5xo4wTkuQi/SqDQhTTZTpVCgGcG3kGY+AbAsjgA=</latexit>
  • 3.
    / 20 IEEE GCCE2019 2019.10.16 Related Works 3 • R P. Dahal, R K. Grala, J S. Gordon, L A. Munn, D R. Petrolia, J R. Cummings: A hedonic pricing method to estimate the value of waterfronts in the gulf of Mexico, Urban forestry & urban greening, vol.41, pp.184-194, 2019. • P. Deschermeier, B. Seipelt: A hedonic rent index for student housing in Germany, Cologne institute for economic research, pp.1–12, 2016. • Y. Jun, H. Kim: Measuring the effect of greenbelt proximity on apartment rents in Seoul, Cities, vol. 62, 2017. category of explanatory variable building structure location /access around environment sales contract image Ram+ 2019 ✔︎✔︎✔︎ Philipp+ 2016 ✔︎✔︎✔︎ Jun+ 2017 ✔︎✔︎✔︎✔︎ proposal ✔︎✔︎✔︎✔︎
  • 4.
    / 20 IEEE GCCE2019 2019.10.16 Floor Plan Standard 4 kitchen and other rooms kitchen square [0 m2,4.5 m2) [4.5 m2, 8.0 m2) More than equal to 
 8.0 m2 not separated Room 
 (R) separated Kitchen
 (K) Dinning Kitchen 
 (DK) Living Dinning Kitchen (LDK) DK LDK K R
  • 5.
    / 20 IEEE GCCE2019 2019.10.16 Floor Plan Images Floor plan standard is the same, but fl oor layout is different In japan, there is a custom to look at fl oor plan images 
 when searching for a desired rental property (Kiyota+,2017) 5 Ex. Different fl oor plan images in the same property and fl oor standard Y. Kiyota, T. Yamasaki, H. Suwa, C. Shimizu: Real estate and AI, Journal of the Japanese Society for Arti fi cial Intelligence, vol.32, no.4, pp.529-535, 2017
  • 6.
    / 20 IEEE GCCE2019 2019.10.16 Purpose: Validate in fl uence of fl oor plan images to rent prediction Method • build prediction models with/ without fl oor plan images • compare prediction accuracy Prediction Models • Linear Regression (LR) • XGBoost • Support Vector Regression (SVR) Feature Extractor • Principal Component Analysis (PCA) 6 Our Approach
  • 7.
    / 20 IEEE GCCE2019 2019.10.16 Prediction formula: Loss function : Prediction Model 7 ln <latexit sha1_base64="cip2YhSnDwuYWh3CEG2B1EDrAqU=">AAACZnichVFNSwJBGH7cvsxKrYiCLpIYnWS0oOgkdenoR36Aiuxuoy2uu8vuKpj0B4KueehUEBH9jC79gQ7+g6KjQZcOva4LUVK9w8w888z7vPPMjGSoimUz1vMIY+MTk1Pead/M7Jw/EJxfyFl605R5VtZV3SxIosVVReNZW7FVXjBMLjYkleel+v5gP9/ipqXo2qHdNni5IdY0parIok1UpqRqlWCYRZkToVEQc0EYbiT14C1KOIIOGU00wKHBJqxChEWtiBgYDOLK6BBnElKcfY5T+EjbpCxOGSKxdRprtCq6rEbrQU3LUct0ikrdJGUIEfbE7lifPbJ79sI+fq3VcWoMvLRploZablQCZyuZ939VDZptHH+p/vRso4odx6tC3g2HGdxCHupbJ91+Zjcd6ayza/ZK/q9Yjz3QDbTWm3yT4ulL+OgDYj+fexTk4tHYZjSe2gon9tyv8GIVa9ig995GAgdIIkvn1nCOC3Q9z4JfWBKWh6mCx9Us4lsIoU+/norO</latexit> L(y, f(x)) = X (ln yi ln ŷi)2 = X (ln yi ŷi )2 <latexit sha1_base64="SVmYIXbXkVU3MysOFsi1FpuiMIA=">AAAC0HichVFNSxxBEH0zxkQ3H656EXJZshh2IVl6N0JCQBC95JCDrq4Kjllmxl5ttueDmd7FyTCIV/+AB08JBJH8jFxyzcGDP0E8GvCSQ2pmB9RIkhqmq+rVe9XV3ZYvRagYO9P0oXvD9x+MjBYePnr8ZKw4PrEaer3A5i3bk16wbpkhl8LlLSWU5Ot+wE3HknzN6i6k9bU+D0LhuSsq8vmmY267oiNsUxHULnZL7yuG5cmtMHLIxVHyonML2E2q1Vkj7DkVQ7px1BbJyzQwdkxFZEqrHxrXdaMTmHac0ZL4BilJae1imdVYZqW7QT0Pysht0Ssew8AWPNjowQGHC0WxhImQvg3UweATtomYsIAikdU5EhRI2yMWJ4ZJaJfWbco2ctSlPO0ZZmqbdpH0B6QsYZqdshN2yb6zr+yc/fprrzjrkc4SkbcGWu63xw6mlq/+q3LIK+xcq/45s0IHb7JZBc3uZ0h6Cnug7388vFx+25yOn7PP7ILm/8TO2Dc6gdv/aX9Z4s0jFOgB6n9e991gtVGrv6o1lmbKc/P5U4zgKZ6hQvf9GnN4h0W0aN8fuNKgaXpT39X39P0BVddyzSRumX7wG0JdtNY=</latexit> ln ŷ = f(x) = ↵T x + <latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit> u <latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit> <latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit> <latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit> <latexit sha1_base64="x42OIFZO63bltL4H6gjza3ReZFg=">AAACdXichVHLSsNAFD2N7/po1I0gQrBaXOlEBMWV6Malr2qhlZKk0xrMi7ygBn/AH3ChGwUV8TPc+AMu/ARxqeDGhTdpQLSoN2TumTP33DkzozqG7vmMPWWEjs6u7p7evmz/wOBQThwe2fXswNV4UbMN2y2piscN3eJFX/cNXnJcrpiqwffUw7V4fS/krqfb1o7fdPi+qTQsva5rik9UVRSjimobNa9pUpKCY6kq5tksS0JqB3IK8khjwxZvUEENNjQEMMFhwSdsQIFHXxkyGBzi9hER5xLSk3WOY2RJG1AVpwqF2EMaGzQrp6xF87inl6g12sWg3yWlhGn2yG7ZK3tgd+yZffzaK0p6xF6alNWWljvV3MnY9vu/KpOyj4Mv1Z+efdSxlHjVybuTMPEptJY+PDp93V7emo4K7JK9kP8L9sTu6QRW+KZdbfKtM2TpAeSf190OdudnZcKbC/mV1fQpejGOSczQfS9iBevYQJH2DXGOK1xn3oUJYUootEqFTKoZxbcQ5j4BcSyQhw==</latexit> vi ln ŷ = f(x) = ↵T x + <latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit> x = [u, ✓(v)] <latexit sha1_base64="tbvrKtiF/xOXDGMbwaD2COlchy8=">AAACqXichVFNSxtBGH6y9SPGr9hehF6WhpQUJUxUUApCsD30mKjRYBLC7jqawf1idxIal/0D/QMeemqhlLY/w4tHLz2k/6B4jNBLD32zWZAYrO8w8z7zvO/zzjszumsKXzLWSyhPJianppMzqdm5+YXF9NLTA99pewavGI7peFVd87kpbF6RQpq86npcs3STH+pnbwbxww73fOHY+7Lr8oalndriRBiaJKqZfhvUdcc89rsWOfV9qG6rtRGqHa6qdbclmmpQly0utTA3Eu+ErxrNdIblWWTqOCjEIIPYSk76K+o4hgMDbVjgsCEJm9Dg06ihAAaXuAYC4jxCIopzhEiRtk1ZnDI0Ys9oPaVdLWZt2g9q+pHaoFNMmh4pVWTZT/aN9dkV+8F+s78P1gqiGoNeuuT1oZa7zcUPy3t/HlVZ5CVad6r/9ixxgq2oV0G9uxEzuIUx1HfOL/p7r3ezwUv2md1Q/59Yj13SDezOrfGlzHc/IkUfULj/3OPgYC1fWM+vlTcyxZ34K5J4jhfI0Xtvooh3KKFC537HNXr4pawoZaWqHA1TlUSseYYRU4x/JIqlEA==</latexit> 特 徴 量 属性 ベクトル 賃料 Image Features Property Variables Rent ln ŷ = f(x) = <latexit sha1_base64="P9YN1Afnk0PPWLWhmqBsXdXQnxM=">AAACt3ichVHLShxBFD12Xjp5OMaN4KbJoBiEoUYDmsDAYDYu5+GoYJuhuq1xGqsfdtcMjk3/QH4gC1cRJAR/wH02/oCL2WSbhCwNZJOFd3oa1Ih6m65777n33DpVZfrSDhVjvSHtwcNHj58Mj2SePnv+YjQ79nI19NqBJeqWJ71g3eShkLYr6spWUqz7geCOKcWaufO+X1/riCC0PXdFdX2x6fBt127aFlcENbJVQ7qR0eIq6sZxsTljmJ7cCrsOOX3vdTG6mhtc+i0ef4iMwNFXYv1acS/WZ3XDFIo3sjmWZ4npN4NCGuSQWtnLfoGBLXiw0IYDAReKYgmOkL4NFMDgE7aJiLCAIjupC8TIELdNXYI6OKE7tG5TtpGiLuX9mWHCtmgXSX9ATB1T7Ix9ZefslB2zX+zfrbOiZEZfS5e8OeAKvzH6caL2916WQ16hdcm6U7NCE4uJVpu0+wnSP4U14Hf2P53X3lWnoml2yH6T/s+sx77RCdzOH+uoIqoHyNADFP6/7pvB6ly+MJ+fq7zJlZbSpxjGJF5hhu57ASUso4w67XuC7/iBn9pbraE1tdagVRtKOeO4ZtruBQt5qyw=</latexit> ✓(v) <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="1tqRKu4qqxHI8AQAeehg2wQidig=">AAACVXichVG7TgJBFD2sL1xRIDYmNkSCsSIXG42ViY0lD3kkSMjuMuCGZXezu5Ag8QdoLSysNDHG+Bk2/oAFvY2xxMTGwstCYpSodzIzZ87MuXPmjmobuusRDQLSzOzc/EJwUV4Kycsr4Uio4FptRxN5zTIsp6QqrjB0U+Q93TNEyXaE0lINUVSbB6P9Ykc4rm6ZR17XFpWW0jD1uq4pHlPpaiROSfIjNg1SExDHJKzILY5RgwUNbbQgYMJjbECBy62MFAg2cxX0mHMY6f6+wBlk1rb5lOATCrNNHhu8Kk9Yk9ejnK6v1vgWg7vDyhgS9ER3NKRHuqcX+vg1V8/PMfLS5Vkda4VdDffXcu//qlo8ezj5Uv3p2UMdu75Xnb3bPjN6hTbWd04vhrm9bKK3Sdf0yv6vaEAP/AKz86bdZET2EjLXP/Wz2tOgsJ1MMc4QgljHBra4zDvYxyHSyPN1NfRxHniWZCk6/icpMPmwKL6FtPoJBguHtw==</latexit> <latexit sha1_base64="2CcQ3v4PnGrVgMig/t6jEP2FmtA=">AAACenichVHLLgRBFD3ae7yGlcSmQwgLckcEsZLYWI7HIDEy6W7FVPQr3TWTjM5sLfyAhRWJiLDlB2z8gIVPEMuR2Fi43TOJILidrnvqVJ1bp+qavi1DRfTUpDW3tLa1d3Smurp7evvS/d0boVcKLJGzPNsLtkwjFLZ0RU5JZYstPxCGY9pi0zxYitc3yyIIpeeuq4ovdhxj35V70jIUU4W0nveLshDlVVEoo6qPR3nTs3fDisNJL1cnUoX0CE1REvpPkGmAETQi66UvkccuPFgowYGAC8XYhoGQv21kQPCZ20HEXMBIJusCVaRYW+JdgncYzB7wuM+z7Qbr8jyuGSZqi0+x+Q9YqWOUHumKavRA1/RM77/WipIasZcKZ7OuFX6h73hw7e1flcNZofip+tOzwh7mE6+SvfsJE9/CquvLhye1tYXV0WiMzumF/Z/RE93zDdzyq3WxIlZPETcg8/25f4KN6akM4xVCB4YwjHF+5jksYhlZ5Pi4I9zgFndauzapzdRbpTU1ejaAL6HNfgA/W5T5</latexit> <latexit sha1_base64="2CcQ3v4PnGrVgMig/t6jEP2FmtA=">AAACenichVHLLgRBFD3ae7yGlcSmQwgLckcEsZLYWI7HIDEy6W7FVPQr3TWTjM5sLfyAhRWJiLDlB2z8gIVPEMuR2Fi43TOJILidrnvqVJ1bp+qavi1DRfTUpDW3tLa1d3Smurp7evvS/d0boVcKLJGzPNsLtkwjFLZ0RU5JZYstPxCGY9pi0zxYitc3yyIIpeeuq4ovdhxj35V70jIUU4W0nveLshDlVVEoo6qPR3nTs3fDisNJL1cnUoX0CE1REvpPkGmAETQi66UvkccuPFgowYGAC8XYhoGQv21kQPCZ20HEXMBIJusCVaRYW+JdgncYzB7wuM+z7Qbr8jyuGSZqi0+x+Q9YqWOUHumKavRA1/RM77/WipIasZcKZ7OuFX6h73hw7e1flcNZofip+tOzwh7mE6+SvfsJE9/CquvLhye1tYXV0WiMzumF/Z/RE93zDdzyq3WxIlZPETcg8/25f4KN6akM4xVCB4YwjHF+5jksYhlZ5Pi4I9zgFndauzapzdRbpTU1ejaAL6HNfgA/W5T5</latexit> <latexit sha1_base64="tBF/c/fvuprQv5Z62Zn40d3w18Y=">AAAChXichVG7ThtBFD0sCRAngIEmEs0KC0QKrGuEANGAoKHkZUDClrW7jPGIfWl3bMms3FLwAxRUIEURIm34AZr8AAWfgChBSkPB3fVKKLEgd7Vzz5y5586ZGdO3ZaiI7rq07g8fe3r7PmU+f+kfGMwODW+HXj2wRNHybC/YNY1Q2NIVRSWVLXb9QBiOaYsd83AlXt9piCCUnrulmr4oO8aBK6vSMhRTlaxe8muyEpVUTSijpU9GJdOz98Omw0lvtL5lKtkc5SkJvRMUUpBDGmte9gdK2IcHC3U4EHChGNswEPK3hwIIPnNlRMwFjGSyLtBChrV1rhJcYTB7yOMBz/ZS1uV53DNM1BbvYvMfsFLHON3SJT3Sb7qie3p+s1eU9Ii9NDmbba3wK4MnXzf//FflcFaovare9axQxXziVbJ3P2HiU1htfePo9HFzYWM8mqALemD/53RHN3wCt/FkfV8XG2eIH6Dw73V3gu3pfIHxOuWWltOn6MMoxjDJ9z2HJaxiDUXe9xg/8QvXWq82pc1os+1SrSvVjOCv0BZfALomleY=</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit> <latexit sha1_base64="yBk8zvv0E/O9omSla+R64kZVUTs=">AAAChXichVHLLgRBFD3T3uM12EhsOiaEBakRQWwIG0szY5AYmXS3Yir6le6aSUZnthZ+wMKKRETY8gM2fsDCJ4gliY2F2z2dCILb6bqnTt1z61SV7prCl4w9JpSm5pbWtvaOZGdXd09vqq9/3XcqnsELhmM63qau+dwUNi9IIU2+6Xpcs3STb+j7y+H6RpV7vnDsNVlz+bal7dliVxiaJKqUUotuWZSCoixzqdXVsaCoO+aOX7MoqdX6eLKUSrNJFoX6E2RikEYcq07qAkXswIGBCixw2JCETWjw6dtCBgwucdsIiPMIiWido44kaStUxalCI3afxj2abcWsTfOwpx+pDdrFpN8jpYoR9sAu2Qu7Z1fsib3/2iuIeoReapT1hpa7pd6jwfzbvyqLskT5U/WnZ4ldzEVeBXl3IyY8hdHQVw+OX/LzuZFglJ2xZ/J/yh7ZHZ3Arr4a51meO0H4AJnv1/0TrE9NZghnp9OLS/FTtGMIwxij+57FIlawigLte4hr3OBWaVMmlGllplGqJGLNAL6EsvABu2aV6g==</latexit>
  • 8.
    / 20 IEEE GCCE2019 2019.10.16 LR1 XGBoost2 • max depth: 6, 8, 10 SVR3 Used Regressors 8 ln <latexit sha1_base64="cip2YhSnDwuYWh3CEG2B1EDrAqU=">AAACZnichVFNSwJBGH7cvsxKrYiCLpIYnWS0oOgkdenoR36Aiuxuoy2uu8vuKpj0B4KueehUEBH9jC79gQ7+g6KjQZcOva4LUVK9w8w888z7vPPMjGSoimUz1vMIY+MTk1Pead/M7Jw/EJxfyFl605R5VtZV3SxIosVVReNZW7FVXjBMLjYkleel+v5gP9/ipqXo2qHdNni5IdY0parIok1UpqRqlWCYRZkToVEQc0EYbiT14C1KOIIOGU00wKHBJqxChEWtiBgYDOLK6BBnElKcfY5T+EjbpCxOGSKxdRprtCq6rEbrQU3LUct0ikrdJGUIEfbE7lifPbJ79sI+fq3VcWoMvLRploZablQCZyuZ939VDZptHH+p/vRso4odx6tC3g2HGdxCHupbJ91+Zjcd6ayza/ZK/q9Yjz3QDbTWm3yT4ulL+OgDYj+fexTk4tHYZjSe2gon9tyv8GIVa9ig995GAgdIIkvn1nCOC3Q9z4JfWBKWh6mCx9Us4lsIoU+/norO</latexit> ln ŷ = wT h(x) + c <latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit> <latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit> <latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit> <latexit sha1_base64="9NdTbvfNygiSlMxs/yuuDlK+3Ew=">AAACoXichVFNLyxBFD0aD8N7BhuJTceEkJdIjUiIkAgbdmMYJNPepLvVmI7qj3TXDKPTf8AfsLAiEZH3M97GlsTCTxBLEhsLd3o6EcRzK1X31Ln33LpVZXjCCiRjdy1Ka1v7j47OrlR3z89fvem+/o3ArfomL5iucP0tQw+4sBxekJYUfMvzuW4bgm8ae0uN+GaN+4HlOuuy7vFtW991rLJl6pKoUnpOE06oVXQZ1qNInQ81wxU7Qd0mp+5Hf0LNt9X1SK2MvYscROPqb9UspTNsgsWmfgbZBGSQWM5NX0DDDlyYqMIGhwNJWEBHQKOILBg84rYREucTsuI4R4QUaauUxSlDJ3aP1l3aFRPWoX2jZhCrTTpF0PRJqWKE3bJL9siu2F92z16+rBXGNRq91MkbTS33Sr1Hg2vP36ps8hKVN9V/e5YoYybu1aLevZhp3MJs6muHx49rs/mRcJSdsQfq/5TdsX90A6f2ZJ6v8vwJUvQB2Y/P/RlsTE5kCa9OZRYWk6/oxBCGMUbvPY0FLCOHAp17hitc40bJKCtKTsk3U5WWRDOAd6YUXwHgWaGG</latexit> 1Linear regression class of scikit-learn (version: 0.20.2) 2https://github.com/dmlc/xgboost of python package (version: 0.82) 3SVR class of scikit-learn (version: 0.20.2) F = {f(x) = wq(x)} <latexit sha1_base64="vYZ5ogynMuxBxitBHt1d11Udu20=">AAACoHichVFNSxtBGH5ca9VUa2ovgpdgUNJLmKjQogiiIN5qTGOCWQm760QXZz+6O4mNy/4B/4AHTwpSSn9GD3rUQw/5CaVHC148+GazIE1Q32XnfeaZ93nnmRndFaYvGWv1Kf2vBl4PDg0n3oyMvh1Lvhvf8p26Z/Ci4QjHK+uaz4Vp86I0peBl1+OapQte0g9W2+ulBvd807G/yKbLdyxtzzZrpqFJoqrJRdXS5L6hiWAtTC2l1KCWUXVH7PpNi1LwLfxA7GE1+NpNh2pYTaZZlkWR6gW5GKQRx4aT/A4Vu3BgoA4LHDYkYQENPn0V5MDgEreDgDiPkBmtc4RIkLZOVZwqNGIPaNyjWSVmbZq3e/qR2qBdBP0eKVOYZr/ZD3bLrthP9ofdP9kriHq0vTQp6x0td6tjxxOFuxdVFmWJ/UfVs54lavgUeTXJuxsx7VMYHX3j6OS2sLA5Hcywc/aX/J+xFvtFJ7Ab/4yLPN88RYIeINd93b1gazabm8vO5ufTyyvxUwxhElPI0H1/xDLWsYEi7XuGS1zjRplS1pXPSr5TqvTFmvf4L5TtB0agoWU=</latexit> ln ŷ = K X k=1 fk(xi), fk 2 F, <latexit sha1_base64="kXKNmhiTJ1hFeMrJ2rKeQJCR2es=">AAACpHichVFNS9xAGH5MW2u3ra7tpdBL6KJYkGViBaUglRZKwR7U7apgNEzirDvs5INkduk25A/0D/TQUwtSpD+jF8FrPfgTSo8WevHgm2xArFTfkJnnfeZ93nlmxo2UTDRjx0PGjZu3hm+P3KncvXd/dKw6/mAtCbuxJ5peqMJ4w+WJUDIQTS21EhtRLLjvKrHudl7l6+s9EScyDN7pfiS2fL4byJb0uCbKqb6wVZDaba7TfpYt2EnXd9KOuWBa2faS2XI6U+l7R2ZPp+08MW0ZmLbPddvjKn2dTZsVp1pjdVaEeRlYJaihjOWw+g02dhDCQxc+BAJowgocCX2bsMAQEbeFlLiYkCzWBTJUSNulKkEVnNgOjbuUbZZsQHneMynUHu2i6I9JaWKCHbF9dsIO2Hf2i53+t1da9Mi99Gl2B1oROWMfHzX+XqvyadZon6uu9KzRwnzhVZL3qGDyU3gDfe/Dp5PG89WJdJJ9Zb/J/xd2zH7QCYLeH29vRax+Rv4A1r/XfRmszdStZ/WZldna4svyKUbwGE8wRfc9h0W8wTKatO8eDvETR8ak8dZoGM1BqTFUah7iQhjbZ7qzoU8=</latexit> ln ŷ = ↵T x + <latexit sha1_base64="n8nEqCpf1j5D7Rq0/4w8ipOkADU=">AAACqXichVFNSxxBEH1OYqIbjWu8CF6aLIogLL0mEAkERD14dNXVRUeXnrF1B3s+mOldshnmD/gHPHhSCEH9GbnkmEsO6z+QHA3k4sHa2QFRUavprtev6lVXd1uBciLNebvHePGy99Xrvv7cm4HBt0P54Xdrkd8IbVmxfeWHVUtEUjmerGhHK1kNQilcS8l1a3++E19vyjByfG9VtwK55Yo9z9l1bKGJquUXTOXFZl3ouJUk7AtjsWn5aidqueSYKVRQF8l2bIYuW03uBr8mbIqZltSili/wIk+NPQSlDBSQ2ZKf/wETO/BhowEXEh40YQWBiMYmSuAIiNtCTFxIyEnjEglypG1QlqQMQew+rXu028xYj/admlGqtukURTMkJcM4/8NP+RX/xc/5Jb9+tFac1uj00iJvdbUyqA0djK78f1blkteo36qe7FljFzNprw71HqRM5xZ2V9/8dni18nl5PJ7gJ/wv9X/M2/wn3cBr/rO/l+XyEXL0AaX7z/0QrE0XSx+K0+WPhdm57Cv6MIb3mKT3/oRZLGIJFTr3DL/RxoUxZZSNqrHRTTV6Ms0I7phh3wDNtqTh</latexit>
  • 9.
    / 20 IEEE GCCE2019 2019.10.16 Experiment Environment LIFULL HOME ’S dataset (as of September 2015) • rental property data (70 variables, 5.33 million) • 120 x 120 pixel image data (83 million fi les) • used data • Tokyo • 1,089,090 properties • 34 property variables • fl oor plan image Computer (OS: Ubuntu 18.04.1) • CPU:Xeon(R) CPU E5-2650 v3 @ 2.30GHz • RAM:64GB 9
  • 10.
    / 20 IEEE GCCE2019 2019.10.16 10 Dataset (1/2) building structure/sales construct (19 variables) property type parking status num. of ground fl oors num. of underground fl oors fl oor num. property status available num. of parking num. of rooms building structure orientation of property purpose of use total num. of properties keeper exclusive area num. of vacant properties age of building immediate occupancy contract period days of occupancy the others: one-hot vector : continuous variables
  • 11.
    / 20 IEEE GCCE2019 2019.10.16 11 Dataset (2/2) location/acces (15 variables) city, ward, town city plan rail station 1 rail station 2 area description dist. to general hospital dist. to parking walking dist. to station 1 
 or bus stop walking dist. to station 2 
 or bus stop dist. to convenience store dist. to super market dist. to junior high school riding dist. to station 1 riding dist. to station 2 dist. to elementary school the others: one-hot vector : categorical each 80m grayscale Floor plan images
  • 12.
    / 20 IEEE GCCE2019 2019.10.16 Outline of Experiment 12 1. Dataset split • divide used dataset into 4 standards: K, R, DK, LDK • for each standard, divide 20% into the test dataset 
 and 80% into the development dataset 2. Hyper-parameter tuning • apply hold-out method to the development datasets • evaluation measure: Mean Squared Error (MSE) 3. Evaluation of LR, XGBoost, and SVR for the test datasets • MSE and learning time • visualize predicted values MSE = 1 N X (ln yi ŷi )2 <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="1tqRKu4qqxHI8AQAeehg2wQidig=">AAACVXichVG7TgJBFD2sL1xRIDYmNkSCsSIXG42ViY0lD3kkSMjuMuCGZXezu5Ag8QdoLSysNDHG+Bk2/oAFvY2xxMTGwstCYpSodzIzZ87MuXPmjmobuusRDQLSzOzc/EJwUV4Kycsr4Uio4FptRxN5zTIsp6QqrjB0U+Q93TNEyXaE0lINUVSbB6P9Ykc4rm6ZR17XFpWW0jD1uq4pHlPpaiROSfIjNg1SExDHJKzILY5RgwUNbbQgYMJjbECBy62MFAg2cxX0mHMY6f6+wBlk1rb5lOATCrNNHhu8Kk9Yk9ejnK6v1vgWg7vDyhgS9ER3NKRHuqcX+vg1V8/PMfLS5Vkda4VdDffXcu//qlo8ezj5Uv3p2UMdu75Xnb3bPjN6hTbWd04vhrm9bKK3Sdf0yv6vaEAP/AKz86bdZET2EjLXP/Wz2tOgsJ1MMc4QgljHBra4zDvYxyHSyPN1NfRxHniWZCk6/icpMPmwKL6FtPoJBguHtw==</latexit> <latexit sha1_base64="W06s8Jmebi8e3jcSGo17fLbQvU0=">AAAC0HichVE9SxxBGH52zYfRSzytAmkkoiSNvGtjSBAEEWwS1PNU0Muxuxl1cW932Z07OI+r7CR9ilQJSAj5GWnyB1II/oGQ0kCaFHlmbsEkkmSGmXk/5nmfZ+YNsjgqtMiZ4w5du37j5vCtkdHK7Ttj1fHKZpG281DVwzRO8+3AL1QcJaquIx2r7SxXfiuI1VZwuGTyWx2VF1GabOhuphotfz+J9qLQ1wyl1Sd4ihqWMYkFrl3sIYePED146HN/ZneTKdBGC016ffoPcIoYCb1fMV3mI4vYxQFj2sb6ZbSPh3iOOZ4jzeqUzIodk1cNrzSmUI7VtPqOJV8gJY2RoUitacckKTh3KFeQMdYgpU9BmpQmrwwdsW3eUrxhhB5y36e3U0YT+qZmYdEhWWKu3D50Wj7Le7mQT/JBvsiPv9bq2RpGS5dnMMCqrDl2crf2/b+olv2sg0vUPzVrfvkjqzWi9sxGzCvCAb5z9Oqi9nh9ujcjb+Ur9b+RM/nIFySdb+Hpmlp/bRvg/fndV43NuVmP9ppgGPdwn133MI9FrGAVddKdO64z6lTchnvsngxa5Tplzybw23Bf/gSRb587</latexit> <latexit sha1_base64="W06s8Jmebi8e3jcSGo17fLbQvU0=">AAAC0HichVE9SxxBGH52zYfRSzytAmkkoiSNvGtjSBAEEWwS1PNU0Muxuxl1cW932Z07OI+r7CR9ilQJSAj5GWnyB1II/oGQ0kCaFHlmbsEkkmSGmXk/5nmfZ+YNsjgqtMiZ4w5du37j5vCtkdHK7Ttj1fHKZpG281DVwzRO8+3AL1QcJaquIx2r7SxXfiuI1VZwuGTyWx2VF1GabOhuphotfz+J9qLQ1wyl1Sd4ihqWMYkFrl3sIYePED146HN/ZneTKdBGC016ffoPcIoYCb1fMV3mI4vYxQFj2sb6ZbSPh3iOOZ4jzeqUzIodk1cNrzSmUI7VtPqOJV8gJY2RoUitacckKTh3KFeQMdYgpU9BmpQmrwwdsW3eUrxhhB5y36e3U0YT+qZmYdEhWWKu3D50Wj7Le7mQT/JBvsiPv9bq2RpGS5dnMMCqrDl2crf2/b+olv2sg0vUPzVrfvkjqzWi9sxGzCvCAb5z9Oqi9nh9ujcjb+Ur9b+RM/nIFySdb+Hpmlp/bRvg/fndV43NuVmP9ppgGPdwn133MI9FrGAVddKdO64z6lTchnvsngxa5Tplzybw23Bf/gSRb587</latexit> <latexit sha1_base64="hGIc4xcUXlFqjvduRZMaTIN6WK8=">AAAC23ichVFNaxRBFKwZPxKTaDZ6CXgJLhG9hDe5JCiBoAi5RJKsmwSSdZmZdJIhszPDTO/CuuzJW/AqHnJSCCL+DC/+AQ8B/4B4jODFg9W9A34ETQ/T/V69rlfV3UEWR4UWOXHcCxcvXR4avjIyOnb12nhl4vp6kbbzUNXDNE7zzcAvVBwlqq4jHavNLFd+K4jVRnDw0NQ3OiovojR5oruZarT8vSTajUJfE0or97GMGh5hCgv8t7GLHD5C9OChz/mxnU2lQBstNJn1md/BMWIkzH7ndFmPLGMb+8S0xfol2sddPMUs15FmpSozYsfU2cArgyrKsZJW3rLlDlLKGBuK0ppxTJGC3xbtCjJiDUr6NKQpaerKyJHb5i7FHcboAec9ZlslmjA3PQvLDqkS88/tQaflk7yTU/ko7+WL/Phnr57tYbx0uQYDrsqa44eTte/nslr2svZ/sf7rWfPK563XiN4zi5hThAN+59mr09q9tenebXkjX+n/tZzIB54g6XwLj1fV2pF9AO/v6z4brM/OeIxXpbr4oHyKYdzELT6/hzksYgkrqFP3s+M6o86Y23Cfu4fui8FW1yk5N/DHcF/+BIxCoH4=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="t0dz59RTfdsk2yjrs4h7PvtMieU=">AAAC23ichVHPS9xAGH1J1Vp/7dpeCr1IF0u9yEQKFaUglUIvirpdFXS7JOmowWwSktmF7bInb9Jr6aEnCyLin+Gl/0APQv+B0qOFXnrom9mAValOyMz3vW/e997MeEkYZEqIM8u+09Pbd7f/3sDg0PBIoTh6fzWLG6kvK34cxum652YyDCJZUYEK5XqSSrfuhXLN253X9bWmTLMgjt6oViKrdXc7CrYC31WE4uIsFlDGK4zhBf9NbCGFCx9tOOhwXjSzrmRooI4asw7zpzhEiIjZv5wW64FhbGKHmDJYJ0c7mMBbTHEdqBVLYlKYMXY9cPKghHwsxcUjtnyHmDLahqS0YhxSJOO3QbsCCbEqJV0aUpTUdanlyG1wl+QObXSX8zazjRyNmOuemWH7VAn5p+ag4+KbOBbn4qs4ET/En//2apse2kuLq9flyqRW2H9Y/n0rq24ua+eCdaNnxSufNl4Dek8Mok/hd/nN95/OyzMr4+0n4ov4Sf8H4kyc8gRR85d/uCxXPpsHcK5e9/VgdWrSYbz8rDT3Mn+KfjzCYz6/g+eYw2ssoULd75ZtDVpDdtXes/ftD92ttpVzHuDSsD/+BY2CoII=</latexit> <latexit sha1_base64="z5M9pnZi6P9Qvb0OzJ2kmuTf1lU=">AAAC23ichVHPS9xAGH1Jf1m1dW0vQi/SxWIvMtmLRRHEInhpUbergq5Lks5qMJuEZHZhXfbkTXotPfTUgpTSP8OL/0APQv+B0qOCFw++mQ20KtoJmfm+98373psZLwmDTAlxbNl37t67/6DvYf/A4KPHQ4XhJytZ3Ex9WfHjME7XPDeTYRDJigpUKNeSVLoNL5Sr3s5rXV9tyTQL4uidaiey2nC3oqAe+K4iFBem8QZlzGMUM/w3UEcKFz46cNDl/NbMupKhiQZqzLrMx3GAEBGzfzlt1gPD2MA2MWWwbo528RKbKHHtrxWKYkKYMXo9cPKgiHwsxoVvbPkeMWW0DUlpxTikSMZvnXYFEmJVSro0pCip61LLkdvkLskd2ugO5y1m6zkaMdc9M8P2qRLyT81Bx8RP8V2ciCPxQ/wW5zf26pge2kubq9fjyqQ2tD9SPvsvq2Eua/sv61bPilf+yngN6D0xiD6F3+O3dj+dlKeWxzovxFfxh/6/iGNxyBNErVP/YEkufzYP4Fy97uvBSmnCYbxUKs7O5U/Rh2d4zud3MIlZLGARFer+smxrwBq0q/aevW9/6G21rZzzFJeG/fECjOKggA==</latexit>
  • 13.
    / 20 IEEE GCCE2019 2019.10.16 Suitable Hyper-parameter for Each Model 13 fl oor plan standard hyper parameter K R DK LDK LR regularization method lasso lasso lasso lasso lambda 0 0.001 0 0.001 PCA 512 2048 1024 2048 XGBoost max depth 10 10 10 10 PCA 512 256 1024 1024 SVR epsilon 0.1 0.01 0.1 0.01 PCA 256 256 512 256
  • 14.
    / 20 IEEE GCCE2019 2019.10.16 Learning Time for the Training Dataset K 14 learning time [sec]
  • 15.
    / 20 IEEE GCCE2019 2019.10.16 MSE for the Test Datasets 15 # of data LR XGboost SVR w/ w/o w/ w/o w/ w/o K 30,446 0.028 0.029 0.015 0.016 0.159 0.161 R 94,420 0.024 0.029 0.013 0.014 0.099 0.100 DK 35,405 0.018 0.027 0.010 0.017 0.086 0.086 LDK 55,039 0.030 0.030 0.010 0.018 0.151 0.151
  • 16.
    Predicted Values forthe Test Dataset K XGBoost w/o XGBoost w/ LR w/o LR w/ SVR w/ SVR w/o
  • 17.
    Predicted Values forthe Test Dataset DK XGBoost w/o XGBoost w/ LR w/o LR w/ SVR w/ SVR w/o
  • 18.
    / 20 IEEE GCCE2019 2019.10.16 Cumulative Density (1/2) 18 K [30,446 properties] R [94,420 properties] = |1 − ̂ y y | error rate y : ground truth ̂ y : prediction ratio the number of data error rate
  • 19.
    / 20 IEEE GCCE2019 2019.10.16 DK [35,405 properties] LDK [55,039 properties] 19 Cumulative Density (2/2) = |1 − ̂ y y | error rate y : ground truth ̂ y : prediction
  • 20.
    / 20 IEEE GCCE2019 2019.10.16 Purpose: Validate in fl uence of fl oor plan images to rent prediction Method • build prediction models with/ without fl oor plan images • compare prediction accuracy Result • Floor plan images reduce prediction variability • XGBoost with fl oor plan images archives the best MSE Future work: To apply Speeded-Up Robust Features (SURF) 20 Conclusion