SlideShare a Scribd company logo
PyCUDAの紹介 PythonとAWSですぐ始める GPUコンピューティング
お前、誰よ 尾上洋介(おのうえようすけ) 関西大学総合情報学部4年 CUDA,PyCUDAは卒研で使用 4月から同大学院 数理最適化アルゴリズムの開発,応用 株式会社スプーキーズアルバイト Web開発,ソーシャルアプリ,Androidアプリなど Twitter: @_likr
GPGPU
GPU処理の特徴 コア数が多い メモリアクセスが高速 演算能力の費用対効果が高い 近年の性能向上率が高い
極端な誤解 何でも速くなるって聞いたんだけど! 何でも速くなるわけではない うまく並列化できればCPUシングルスレッドの100倍ぐらいは出ることも 条件分岐が苦手って聞いたんだけど! CPUとは条件分岐の機構がちょっと違う 条件分岐を工夫すれば速くなる場合もある メモリアクセスの最適化の方が大事
GPGPUの適用分野 画像処理,音声処理 流体計算,天体シミュレーション 線形計画問題,ナップサック問題,スケジューリング問題,金融工学 行列演算
GPGPUのアーキテクチャ ヘテロジニアスコンピューティング メモリ間の転送がボトルネックになる 手続きが複雑 ホストのメモリの確保 デバイスのメモリ確保 デバイスへのデータ転送 デバイスでの計算 デバイスからのデータ転送 デバイスのメモリ解放 ホストのメモリ解放 Host Memory Device Memory Device Memory
` BlockとThread 行列をうまく扱うような仕組み const inti=blockDim.x* blockIdx.x + threadIdx.x;out[i] = 2 * in[i]; Block内のThread同士は同期可能 Block間の同期は不可能 Hostに戻す Blocks Threads Grid
CUDA NVIDIA GPU向けの統合開発環境 パフォーマンスを上げるためにはカーネル関数内でのメモリアクセスの最適化が重要 カーネル関数はCや他言語のものと共通 	->Pythonでも十分速くなる!
Amazon EC2Cluster GPU Instance
スペック Intel Xeon X5570 × 2 64bit 4コア NVIDIA Tesla M2050 × 2 448GPUコア 単精度ピーク時1.03Tflops 倍精度対応 Memory 22GB 高速なネットワーク 同一Placement Group内は高速通信可能 CentOS 5.5 同程度のマシンを買うと80〜100万円ぐらい?
費用 On-Demand Instance $2.1 / hour (¥178.5 / hour) 1年¥1,563,660,3年¥4,690,980,… Reserved Instance 1年 $5,630 (¥478,550) $0.65 / hour (¥55 / hour) 3年 $8,650 (¥735,250) $0.33 / hour (¥28 / hour) +EBS料金など(月$2〜) ※$1 = ¥85で計算
PyCUDA
PyCUDA CUDAのPythonバインディング 高度な抽象化 実行時コンパイル
cf. PyOpenCl NVIDIA以外のGPUや,マルチコアCPUでのヘテロジニアスコンピューティング 結局チューニングはデバイスに依存? どっちがいいの? 好きな方を http://wiki.tiker.net/PyCuda/FrequentlyAskedQuestions#Should_I_use_PyOpenCL_or_PyCUDA.3F
インストール NVIDIAドライバのインストール CUDA Toolkitのインストール pip install pycuda
GPU Instanceへのインストール CentOSだしちょっと面倒… http://d.hatena.ne.jp/likr/20110213#1297602704 http://d.hatena.ne.jp/likr/20110214#1297664336 Cluster GPU InstanceにPython2.7とPyCUDAなどをインストールしたAMIを公開中 501488653145/PythonGPU
SourceModule カーネル関数をJITコンパイル numpy.ndarrayを使ってデータの転送
Cだと
PyCUDAだと
GPUArray numpy.ndarrayライクなAPI データがGPU上のメモリに確保される 演算はGPUで並列計算される
ElementwiseKernelReductionKernel 毎回書くには面倒な定形処理を抽象化
CでReduction Shared Memory使ったり,条件分岐を工夫したり,入力サイズに応じて処理を変えたり… サンプルで500行ぐらいあったから割愛!
PyCUDAでReduction
その他 Stream Texture Multi GPU メタプログラミング 高速フーリエ展開等々
参考文献 Amazon EC2 Documentation http://aws.amazon.com/documentation/ec2/ PyCUDA Documentation http://documen.tician.de/pycuda/ PyCUDA wiki http://wiki.tiker.net/PyCuda はじめてのCUDAプログラミング青木尊之,額田彰(I・O BOOKS)
Enjoy GPU Computing !
ご清聴ありがとうございました

More Related Content

What's hot

最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)Masahiro Suzuki
 
いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門Fixstars Corporation
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
POMDP下での強化学習の基礎と応用
POMDP下での強化学習の基礎と応用POMDP下での強化学習の基礎と応用
POMDP下での強化学習の基礎と応用Yasunori Ozaki
 
強化学習 DQNからPPOまで
強化学習 DQNからPPOまで強化学習 DQNからPPOまで
強化学習 DQNからPPOまでharmonylab
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜Jun Okumura
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたいTakuji Tahara
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法Deep Learning JP
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介Deep Learning JP
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向ohken
 
マルチコアを用いた画像処理
マルチコアを用いた画像処理マルチコアを用いた画像処理
マルチコアを用いた画像処理Norishige Fukushima
 
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜Jun Okumura
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic DatasetsDeep Learning JP
 

What's hot (20)

最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
A3C解説
A3C解説A3C解説
A3C解説
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
 
いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門いまさら聞けない!CUDA高速化入門
いまさら聞けない!CUDA高速化入門
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
POMDP下での強化学習の基礎と応用
POMDP下での強化学習の基礎と応用POMDP下での強化学習の基礎と応用
POMDP下での強化学習の基礎と応用
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
 
ゼロから始める転移学習
ゼロから始める転移学習ゼロから始める転移学習
ゼロから始める転移学習
 
強化学習 DQNからPPOまで
強化学習 DQNからPPOまで強化学習 DQNからPPOまで
強化学習 DQNからPPOまで
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
 
マルチコアを用いた画像処理
マルチコアを用いた画像処理マルチコアを用いた画像処理
マルチコアを用いた画像処理
 
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
 

Similar to PyCUDAの紹介

20221116_DBTS_PGStrom_History
20221116_DBTS_PGStrom_History20221116_DBTS_PGStrom_History
20221116_DBTS_PGStrom_HistoryKohei KaiGai
 
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ智啓 出川
 
Django で始める PyCharm 入門
Django で始める PyCharm 入門Django で始める PyCharm 入門
Django で始める PyCharm 入門kashew_nuts
 
機械学習環境にハマってみよう
機械学習環境にハマってみよう機械学習環境にハマってみよう
機械学習環境にハマってみようYou&I
 
AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介Yasuhiro Matsuo
 
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Apps
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Appsグリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Apps
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & AppsGoogle Cloud Platform - Japan
 
私たちがGCPを使い始めた本当の理由
私たちがGCPを使い始めた本当の理由私たちがGCPを使い始めた本当の理由
私たちがGCPを使い始めた本当の理由gree_tech
 
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割智啓 出川
 
PWA aruaru
PWA aruaruPWA aruaru
PWA aruarun_harada
 
OHS#2 pythonでgreをつくってみる
OHS#2 pythonでgreをつくってみるOHS#2 pythonでgreをつくってみる
OHS#2 pythonでgreをつくってみる祐理 大野
 
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)学 松崎
 
Moving computation to the data (1)
Moving computation to the data (1)Moving computation to the data (1)
Moving computation to the data (1)Kazunori Sato
 
ミニ四駆でPython on Windows Azure
ミニ四駆でPython on Windows Azureミニ四駆でPython on Windows Azure
ミニ四駆でPython on Windows AzureTakahiro Fujiwara
 
20220525_kobayashi.pdf
20220525_kobayashi.pdf20220525_kobayashi.pdf
20220525_kobayashi.pdf直久 住川
 
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜Deep Learning Lab(ディープラーニング・ラボ)
 
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)NTT DATA OSS Professional Services
 

Similar to PyCUDAの紹介 (20)

20221116_DBTS_PGStrom_History
20221116_DBTS_PGStrom_History20221116_DBTS_PGStrom_History
20221116_DBTS_PGStrom_History
 
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ
2015年度GPGPU実践基礎工学 第4回 CPUのアーキテクチャ
 
なにわTech20161215
なにわTech20161215 なにわTech20161215
なにわTech20161215
 
Django で始める PyCharm 入門
Django で始める PyCharm 入門Django で始める PyCharm 入門
Django で始める PyCharm 入門
 
機械学習環境にハマってみよう
機械学習環境にハマってみよう機械学習環境にハマってみよう
機械学習環境にハマってみよう
 
AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介
 
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Apps
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Appsグリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Apps
グリー株式会社『私たちが GCP を使い始めた本当の理由』第 9 回 Google Cloud INSIDE Game & Apps
 
私たちがGCPを使い始めた本当の理由
私たちがGCPを使い始めた本当の理由私たちがGCPを使い始めた本当の理由
私たちがGCPを使い始めた本当の理由
 
Ipv6+JMeter+GAE
Ipv6+JMeter+GAEIpv6+JMeter+GAE
Ipv6+JMeter+GAE
 
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割
2015年度先端GPGPUシミュレーション工学特論 第1回 先端シミュレーションおよび産業界におけるGPUの役割
 
PWA aruaru
PWA aruaruPWA aruaru
PWA aruaru
 
OHS#2 pythonでgreをつくってみる
OHS#2 pythonでgreをつくってみるOHS#2 pythonでgreをつくってみる
OHS#2 pythonでgreをつくってみる
 
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)
Spring Boot + Doma + AngularJSで作るERP (LINE Fukuoka Meetup版)
 
20130126 sc12-reading
20130126 sc12-reading20130126 sc12-reading
20130126 sc12-reading
 
Moving computation to the data (1)
Moving computation to the data (1)Moving computation to the data (1)
Moving computation to the data (1)
 
ミニ四駆でPython on Windows Azure
ミニ四駆でPython on Windows Azureミニ四駆でPython on Windows Azure
ミニ四駆でPython on Windows Azure
 
20220525_kobayashi.pdf
20220525_kobayashi.pdf20220525_kobayashi.pdf
20220525_kobayashi.pdf
 
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜
ハードウェア進化についていけ 〜 実用化が進む GPU、そして注目が集まる Edge TPU の威力に迫る 〜
 
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
 
Trat sprint6
Trat sprint6Trat sprint6
Trat sprint6
 

More from Yosuke Onoue

Angular 2のRenderer
Angular 2のRendererAngular 2のRenderer
Angular 2のRendererYosuke Onoue
 
アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識Yosuke Onoue
 
AngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいAngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいYosuke Onoue
 
GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会Yosuke Onoue
 
Polymerやってみた
PolymerやってみたPolymerやってみた
PolymerやってみたYosuke Onoue
 
asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?Yosuke Onoue
 
AngularFireで楽々バックエンド
AngularFireで楽々バックエンドAngularFireで楽々バックエンド
AngularFireで楽々バックエンドYosuke Onoue
 
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションAngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションYosuke Onoue
 
AngularJSでの非同期処理の話
AngularJSでの非同期処理の話AngularJSでの非同期処理の話
AngularJSでの非同期処理の話Yosuke Onoue
 
社会的決定とAHP
社会的決定とAHP社会的決定とAHP
社会的決定とAHPYosuke Onoue
 
CUDA 6の話@関西GPGPU勉強会#5
CUDA 6の話@関西GPGPU勉強会#5CUDA 6の話@関西GPGPU勉強会#5
CUDA 6の話@関西GPGPU勉強会#5Yosuke Onoue
 
Anaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたAnaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたYosuke Onoue
 
PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法Yosuke Onoue
 
What's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるWhat's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるYosuke Onoue
 
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編Yosuke Onoue
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門Yosuke Onoue
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPythonYosuke Onoue
 
Rsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいRsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいYosuke Onoue
 

More from Yosuke Onoue (19)

Angular 2のRenderer
Angular 2のRendererAngular 2のRenderer
Angular 2のRenderer
 
アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識
 
AngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいAngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたい
 
GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会
 
Polymerやってみた
PolymerやってみたPolymerやってみた
Polymerやってみた
 
asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?
 
AngularFireで楽々バックエンド
AngularFireで楽々バックエンドAngularFireで楽々バックエンド
AngularFireで楽々バックエンド
 
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションAngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
 
AngularJSでの非同期処理の話
AngularJSでの非同期処理の話AngularJSでの非同期処理の話
AngularJSでの非同期処理の話
 
社会的決定とAHP
社会的決定とAHP社会的決定とAHP
社会的決定とAHP
 
CUDA 6の話@関西GPGPU勉強会#5
CUDA 6の話@関西GPGPU勉強会#5CUDA 6の話@関西GPGPU勉強会#5
CUDA 6の話@関西GPGPU勉強会#5
 
Anaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたAnaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみた
 
PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法
 
What's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるWhat's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺める
 
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPython
 
201010ksmap
201010ksmap201010ksmap
201010ksmap
 
Rsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいRsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしい
 

Recently uploaded

20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdfAyachika Kitazaki
 
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayersToru Tamaki
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )iwashiira2ctf
 
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptxssuserbefd24
 
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...atsushi061452
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)keikoitakurag
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一瑛一 西口
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑Akihiro Kadohata
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員Sadaomi Nishi
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationToru Tamaki
 
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizesatsushi061452
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521Satoshi Makita
 

Recently uploaded (12)

20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf
 
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
 
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 

PyCUDAの紹介