SlideShare a Scribd company logo
1 of 24
Download to read offline
CUDA 6の話
おのうえ(@_likr)
2013年11月30日 関西GPGPU勉強会#5
お前、誰よ

✤

おのうえ(@_likr)!

✤

関西GPGPU勉強会主宰
今日のおはなし
✤

SC13のCUDA6に関する発表を要約しようとする!
✤

“New Features in CUDA 6 Make GPU Acceleration Easier”!

✤

“Unified Memory in CUDA 6.0”!

✤

性能向上の数値・グラフなどは上の発表資料を見てください!

✤

上記の発表ぐらいしか一次情報がないので、

解釈などに誤りがあったらごめんなさい
CUDA 6の目玉

✤

Unified Memory!

✤

XT and Drop-in Libraries!

✤

GPUDirect RDMA in MPI!

✤

Developer Tools
Unified Memory
Unified Memory

✤

明示的なメモリ転送が不要に!

✤

複雑なデータ構造の扱いが容易に!

✤

メモリ転送パフォーマンスが良くなる(かも)
Unified Memoryのイメージ
Unified Memoryなし
System!
Memory

GPU!
Memory

CPU

GPU

Unified Memoryあり
Unified Memory

CPU

GPU
cudaMallocManaged
CPU

CUDA Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
data = (char *)malloc(N);

!
!
!
!
}

fread(data, 1, N, fp);
qsort(data, N, 1, compare);
use_data(data);
free(data);

void sortfile(FILE *fp, int N) {
char *data;
cudaMallocManaged(&data, N);

!
!
!
!
}

fread(data, 1, N, fp);
qsort<<<…>>>(data, N, 1, compare);
cudaDeviceSynchronize();
use_data(data);
cudaFree(data);

cudaMallocManagedで確保されたメモリ領域はホストデバイス両方で使える
New Features in CUDA 6 Make GPU Acceleration Easier
どううれしいのか
✤

データをポインタで持つようなデータ構造の

明示的なデータ転送が不要になる
ネストしたデータ
prop1

System Memory

prop2
*text

“We love YAMADA.”

GPU Memory

struct dataElem {
int porp1;
int prop2;
char *text;
};

従来は2回の明示的な転送が必要
Linked List

key

key

key

key

data

data

data

data

next

next

next

next
まだわからない部分?
✤

パフォーマンス!
✤

✤

最適化!
✤

✤

データの疎密さの影響!

メモリ転送制御(prefetchとか)!

マルチGPU
おまけ:Unified Virtual Addressing
✤

UVA、統合仮想アドレス空間!

✤

CUDA 4.0で導入!

✤

ホスト・デバイスのメモリを全部同じ空間で扱う!!

✤

Unified Memoryとは別物!
UVAのイメージ
UVAなし

UVAあり

System! GPU0!
GPU1!
Memory Memory Memory

System! GPU0!
GPU1!
Memory Memory Memory

0x0000

0x0000

0x0000

0xFFFF

0xFFFF

0xFFFF

CPU

GPU0

GPU1

PCI-e

0x0000
0xFFFF

CPU

GPU0

GPU1

PCI-e
UVAで変わったこと
✤

メモリ転送命令の簡素化
cudaMemcpy(dst, src, count, kind)
UVAなし

UVAあり

cudaMemcpyHostToDevice

HostBuf1

cudaMemcpyDefault

DeviceBuf1

HostBuf1

cudaMemcpyDeviceToHost
cudaMemcpyHostToHost

HostBuf2

DeviceBuf1
cudaMemcpyDefault

cudaMemcpyDeviceToDevice

DeviceBuf1

cudaMemcpyDefault

HostBuf2

cudaMemcpyDefault

DeviceBuf1
ついでに
✤

Mapped Memory!
✤

✤

Unified Virtual Addressing!
✤

✤

GPUからアクセス可能なCPU上のメモリ!

CPUのメモリ空間とGPUのメモリ空間の統一!

Unified Memory!
✤

CPUとGPUとで2重に確保して同期を自動的に行うメモリ
トータル・ディスクロージャー・サイト - CUDA 6速報(1): Unified Memory!

http://topsecret.hpc.co.jp/wiki/index.php/CUDA_6%E9%80%9F%E5%A0%B1(1):_Unified_Memory
XT and Drop-in Libraries
Extended Library Interfaces

✤

cuFFTとcuBLAS level 3がすごくなった!
✤

マルチGPUスケーリング!

✤

Out-of-core!

✤

BLAS互換インターフェース(cuBLAS level 3)
Drop-in NVBLAS
✤

既存のBLASライブラリを置き換えるだけで

コンパイルし直さなくてもGPU実行が可能に!
✤

R、Octave、Scilab、…
gcc myapp.c -lnvblas -lmkl_rt -o myapp
or
env LD_PRELOAD=libnvblas.so myapp
GPUDirect RDMA in MPI
GPUDirect
✤

GPU間の高速データ転送!

✤

GPUDirect v1.0!
✤

✤

GPUDirect v2.0!
✤

✤

Infinibandで接続されたノード間のGPUメモリ転送!

ノード内のGPU間のメモリ転送!

CUDA 6でMPI時の更なるレイテンシ削減
Developer Tools
Eclipse版Nsightの改善

✤

リモート開発(ビルド、実行、デバッグ、プロファイル)!

✤

MPIのプロファイル!

✤

ホットスポット分析(Visual Profilerも)
まとめ
まとめ
✤

CUDA6の特徴(?)!
✤

✤

マルチデバイス・マルチノード対応の強化!

✤

✤

GPGPU環境へのオフロードをより簡単、便利に!

低レベルでのレイテンシ削減!

CUDA 6は2014年始めにリリース
参考情報
✤

GPU TECHNOLOGY THEATER AT SC13!
✤

✤

✤

http://www.nvidia.com/object/sc13-technology-theater.html!
SC13の資料・動画がみれる!

トータル・ディスクロージャ・サイト!
✤

http://topsecret.hpc.co.jp/wiki/index.php!

✤

CUDA 6速報がいくつか掲載

More Related Content

What's hot

CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説Takateru Yamagishi
 
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ智啓 出川
 
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法深層学習フレームワークにおけるIntel CPU/富岳向け最適化法
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法MITSUNARI Shigeo
 
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編Fixstars Corporation
 
Chainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすChainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすNVIDIA Japan
 
CXL_説明_公開用.pdf
CXL_説明_公開用.pdfCXL_説明_公開用.pdf
CXL_説明_公開用.pdfYasunori Goto
 
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層智啓 出川
 
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化について
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化についてマルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化について
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化についてFixstars Corporation
 
1072: アプリケーション開発を加速するCUDAライブラリ
1072: アプリケーション開発を加速するCUDAライブラリ1072: アプリケーション開発を加速するCUDAライブラリ
1072: アプリケーション開発を加速するCUDAライブラリNVIDIA Japan
 
カスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてカスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてalwei
 
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介Preferred Networks
 
ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門Fixstars Corporation
 
Intro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたIntro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたMITSUNARI Shigeo
 
AVX-512(フォーマット)詳解
AVX-512(フォーマット)詳解AVX-512(フォーマット)詳解
AVX-512(フォーマット)詳解MITSUNARI Shigeo
 
HPC+AI ってよく聞くけど結局なんなの
HPC+AI ってよく聞くけど結局なんなのHPC+AI ってよく聞くけど結局なんなの
HPC+AI ってよく聞くけど結局なんなのNVIDIA Japan
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Yusuke Fujimoto
 
1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門NVIDIA Japan
 
FPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたFPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたTakefumi MIYOSHI
 
Zynq mp勉強会資料
Zynq mp勉強会資料Zynq mp勉強会資料
Zynq mp勉強会資料一路 川染
 

What's hot (20)

CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
 
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ
2015年度GPGPU実践プログラミング 第15回 GPU最適化ライブラリ
 
PyCUDAの紹介
PyCUDAの紹介PyCUDAの紹介
PyCUDAの紹介
 
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法深層学習フレームワークにおけるIntel CPU/富岳向け最適化法
深層学習フレームワークにおけるIntel CPU/富岳向け最適化法
 
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編
CPU / GPU高速化セミナー!性能モデルの理論と実践:理論編
 
Chainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすChainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなす
 
CXL_説明_公開用.pdf
CXL_説明_公開用.pdfCXL_説明_公開用.pdf
CXL_説明_公開用.pdf
 
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層
2015年度GPGPU実践基礎工学 第13回 GPUのメモリ階層
 
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化について
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化についてマルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化について
マルチレイヤコンパイラ基盤による、エッジ向けディープラーニングの実装と最適化について
 
1072: アプリケーション開発を加速するCUDAライブラリ
1072: アプリケーション開発を加速するCUDAライブラリ1072: アプリケーション開発を加速するCUDAライブラリ
1072: アプリケーション開発を加速するCUDAライブラリ
 
カスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてカスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについて
 
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
 
ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門
 
Intro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたIntro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみた
 
AVX-512(フォーマット)詳解
AVX-512(フォーマット)詳解AVX-512(フォーマット)詳解
AVX-512(フォーマット)詳解
 
HPC+AI ってよく聞くけど結局なんなの
HPC+AI ってよく聞くけど結局なんなのHPC+AI ってよく聞くけど結局なんなの
HPC+AI ってよく聞くけど結局なんなの
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化
 
1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門1076: CUDAデバッグ・プロファイリング入門
1076: CUDAデバッグ・プロファイリング入門
 
FPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみたFPGAのトレンドをまとめてみた
FPGAのトレンドをまとめてみた
 
Zynq mp勉強会資料
Zynq mp勉強会資料Zynq mp勉強会資料
Zynq mp勉強会資料
 

Viewers also liked

Polymerやってみた
PolymerやってみたPolymerやってみた
PolymerやってみたYosuke Onoue
 
Rsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいRsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいYosuke Onoue
 
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編Yosuke Onoue
 
教育機関でのJetsonの活用の可能性
教育機関でのJetsonの活用の可能性教育機関でのJetsonの活用の可能性
教育機関でのJetsonの活用の可能性智啓 出川
 
Cuda fortranの利便性を高めるfortran言語の機能
Cuda fortranの利便性を高めるfortran言語の機能Cuda fortranの利便性を高めるfortran言語の機能
Cuda fortranの利便性を高めるfortran言語の機能智啓 出川
 
GPGPU Education at Nagaoka University of Technology: A Trial Run
GPGPU Education at Nagaoka University of Technology: A Trial RunGPGPU Education at Nagaoka University of Technology: A Trial Run
GPGPU Education at Nagaoka University of Technology: A Trial Run智啓 出川
 
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)智啓 出川
 
社会的決定とAHP
社会的決定とAHP社会的決定とAHP
社会的決定とAHPYosuke Onoue
 
GPGPU Seminar (GPGPU and CUDA Fortran)
GPGPU Seminar (GPGPU and CUDA Fortran)GPGPU Seminar (GPGPU and CUDA Fortran)
GPGPU Seminar (GPGPU and CUDA Fortran)智啓 出川
 
Anaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたAnaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたYosuke Onoue
 
AngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいAngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいYosuke Onoue
 
Angular 2のRenderer
Angular 2のRendererAngular 2のRenderer
Angular 2のRendererYosuke Onoue
 
AngularFireで楽々バックエンド
AngularFireで楽々バックエンドAngularFireで楽々バックエンド
AngularFireで楽々バックエンドYosuke Onoue
 
GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会Yosuke Onoue
 
PGI CUDA FortranとGPU最適化ライブラリの一連携法
PGI CUDA FortranとGPU最適化ライブラリの一連携法PGI CUDA FortranとGPU最適化ライブラリの一連携法
PGI CUDA FortranとGPU最適化ライブラリの一連携法智啓 出川
 
アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識Yosuke Onoue
 
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみようaokomoriuta
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門Yosuke Onoue
 
GPGPU Seminar (PyCUDA)
GPGPU Seminar (PyCUDA)GPGPU Seminar (PyCUDA)
GPGPU Seminar (PyCUDA)智啓 出川
 
PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法Yosuke Onoue
 

Viewers also liked (20)

Polymerやってみた
PolymerやってみたPolymerやってみた
Polymerやってみた
 
Rsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしいRsa暗号で彼女が出来るらしい
Rsa暗号で彼女が出来るらしい
 
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
PyOpenCLによるGPGPU入門 Tokyo.SciPy#4 編
 
教育機関でのJetsonの活用の可能性
教育機関でのJetsonの活用の可能性教育機関でのJetsonの活用の可能性
教育機関でのJetsonの活用の可能性
 
Cuda fortranの利便性を高めるfortran言語の機能
Cuda fortranの利便性を高めるfortran言語の機能Cuda fortranの利便性を高めるfortran言語の機能
Cuda fortranの利便性を高めるfortran言語の機能
 
GPGPU Education at Nagaoka University of Technology: A Trial Run
GPGPU Education at Nagaoka University of Technology: A Trial RunGPGPU Education at Nagaoka University of Technology: A Trial Run
GPGPU Education at Nagaoka University of Technology: A Trial Run
 
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)
GPGPU Seminar (Accelerataion of Lattice Boltzmann Method using CUDA Fortran)
 
社会的決定とAHP
社会的決定とAHP社会的決定とAHP
社会的決定とAHP
 
GPGPU Seminar (GPGPU and CUDA Fortran)
GPGPU Seminar (GPGPU and CUDA Fortran)GPGPU Seminar (GPGPU and CUDA Fortran)
GPGPU Seminar (GPGPU and CUDA Fortran)
 
Anaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみたAnaconda & NumbaPro 使ってみた
Anaconda & NumbaPro 使ってみた
 
AngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたいAngularJSでデータビジュアライゼーションがしたい
AngularJSでデータビジュアライゼーションがしたい
 
Angular 2のRenderer
Angular 2のRendererAngular 2のRenderer
Angular 2のRenderer
 
AngularFireで楽々バックエンド
AngularFireで楽々バックエンドAngularFireで楽々バックエンド
AngularFireで楽々バックエンド
 
GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会GDG DevFest Kobe Firebaseハンズオン勉強会
GDG DevFest Kobe Firebaseハンズオン勉強会
 
PGI CUDA FortranとGPU最適化ライブラリの一連携法
PGI CUDA FortranとGPU最適化ライブラリの一連携法PGI CUDA FortranとGPU最適化ライブラリの一連携法
PGI CUDA FortranとGPU最適化ライブラリの一連携法
 
アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識アニメーション(のためのパフォーマンス)の基礎知識
アニメーション(のためのパフォーマンス)の基礎知識
 
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう
[関東GPGPU勉強会#2] ライブラリを使って大規模疎行列線形方程式を解いてみよう
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門
 
GPGPU Seminar (PyCUDA)
GPGPU Seminar (PyCUDA)GPGPU Seminar (PyCUDA)
GPGPU Seminar (PyCUDA)
 
PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法PythonistaがOCamlを実用する方法
PythonistaがOCamlを実用する方法
 

Similar to CUDA 6の話@関西GPGPU勉強会#5

2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来Preferred Networks
 
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来Preferred Networks
 
NVIDIA Japan Seminar 2012
NVIDIA Japan Seminar 2012NVIDIA Japan Seminar 2012
NVIDIA Japan Seminar 2012Takuro Iizuka
 
20150821 Azure 仮想マシンと仮想ネットワーク
20150821 Azure 仮想マシンと仮想ネットワーク20150821 Azure 仮想マシンと仮想ネットワーク
20150821 Azure 仮想マシンと仮想ネットワークKuninobu SaSaki
 
78tch
78tch78tch
78tch78tch
 
20170329_BigData基盤研究会#7
20170329_BigData基盤研究会#720170329_BigData基盤研究会#7
20170329_BigData基盤研究会#7Kohei KaiGai
 
座駆動LT Surface Go 実機レビュー
座駆動LT Surface Go 実機レビュー座駆動LT Surface Go 実機レビュー
座駆動LT Surface Go 実機レビューsady_nitro
 
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造智啓 出川
 
Introduction to argo
Introduction to argoIntroduction to argo
Introduction to argoShunya Ueta
 

Similar to CUDA 6の話@関西GPGPU勉強会#5 (11)

2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
 
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
【旧版】2009/12/10 GPUコンピューティングの現状とスーパーコンピューティングの未来
 
Isca13 study
Isca13 studyIsca13 study
Isca13 study
 
なにわTech20161215
なにわTech20161215 なにわTech20161215
なにわTech20161215
 
NVIDIA Japan Seminar 2012
NVIDIA Japan Seminar 2012NVIDIA Japan Seminar 2012
NVIDIA Japan Seminar 2012
 
20150821 Azure 仮想マシンと仮想ネットワーク
20150821 Azure 仮想マシンと仮想ネットワーク20150821 Azure 仮想マシンと仮想ネットワーク
20150821 Azure 仮想マシンと仮想ネットワーク
 
78tch
78tch78tch
78tch
 
20170329_BigData基盤研究会#7
20170329_BigData基盤研究会#720170329_BigData基盤研究会#7
20170329_BigData基盤研究会#7
 
座駆動LT Surface Go 実機レビュー
座駆動LT Surface Go 実機レビュー座駆動LT Surface Go 実機レビュー
座駆動LT Surface Go 実機レビュー
 
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造
2015年度GPGPU実践基礎工学 第10回 GPUのプログラム構造
 
Introduction to argo
Introduction to argoIntroduction to argo
Introduction to argo
 

More from Yosuke Onoue

asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?Yosuke Onoue
 
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションAngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションYosuke Onoue
 
AngularJSでの非同期処理の話
AngularJSでの非同期処理の話AngularJSでの非同期処理の話
AngularJSでの非同期処理の話Yosuke Onoue
 
What's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるWhat's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるYosuke Onoue
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPythonYosuke Onoue
 

More from Yosuke Onoue (6)

asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?asm.jsとWebAssemblyって実際なんなの?
asm.jsとWebAssemblyって実際なんなの?
 
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーションAngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
AngularJSとD3.jsによるインタラクティブデータビジュアライゼーション
 
AngularJSでの非同期処理の話
AngularJSでの非同期処理の話AngularJSでの非同期処理の話
AngularJSでの非同期処理の話
 
What's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺めるWhat's New In Python 3.3をざっと眺める
What's New In Python 3.3をざっと眺める
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPython
 
201010ksmap
201010ksmap201010ksmap
201010ksmap
 

Recently uploaded

MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。iPride Co., Ltd.
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfTakayuki Nakayama
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperleger Tokyo Meetup
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521Satoshi Makita
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルCRI Japan, Inc.
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一瑛一 西口
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑Akihiro Kadohata
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用KLab Inc. / Tech
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員Sadaomi Nishi
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計atsushi061452
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルCRI Japan, Inc.
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdkokinagano2
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )iwashiira2ctf
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイントonozaty
 

Recently uploaded (14)

MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 

CUDA 6の話@関西GPGPU勉強会#5