Foraging for Prime Number
amongst the digits of π
Subhendra Basu
▪ 3141592653589793238462643383279502884197169399...
▪ 2718281828459045235360287471352662497757247093...
▪ We will be traversing the digits of π and e in an alternating
fashion... This traversal will be over the digits of π. We will
record the distance covered and take its difference with
consecutive Riemann Zeros as depicted in
: http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1
▪ From the previous slide, the consecutive digits in the path
followed is:
▪ 3,7,4,8,5,8,2,8,5,8,5,5,9,0,9,5,2,3,8,3,6,0,6,8,3,4,8,1,2,5,9,6,0,
2,8,9,4,7,9,7,1,4,9,0,9,3,….
▪ {31415926535897}
▪ len("31415926535897") = 14
▪ Riemann Zero Counter = 1
▪ Riemann Zero = 14 [Integral Part]
▪ Delta['14'] = 0
▪ len("31415926535897932384") = 20
▪ R[2] = 21
▪ Delta["21"] = -1
▪ Set of delta(s) = { 0, -1, …}
▪ len("314159265358979323846264338") = 27
▪ Delta['25'] = +2
▪ DS = { 0, -1, +2,…}
▪ len("31415926535897932384626433832795")
▪ Delta["30"] = -2
DS = { 0, -1, +2, -2, … }
▪ len("314159265358979323846264338327950288") = 36
▪ Delta["32"] = +4
▪ DS = { 0, -1, +2, -2, +4,… }
▪ len("31415926535897932384626433832795028841971693
99375") = 49
▪ Delta["37"] = 12
▪ DS = { 0, -1, +2, -2, +4,12, … }
▪ len("3.141592653589793238462643383279502884197169
399375105") = 53
▪ Delta["40"] = 13
▪ DS = { 0, -1, +2, -2, +4, 12, 13… }
▪ len("31415926535897932384626433832795028841971693
993751058209") = 56
▪ Delta["43"] = 13
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13,… }
▪ len("31415926535897932384626433832795028841971693
9937510582097494459230") = 66
▪ Delta["48"] = 18
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18,… }
▪ len("31415926535897932384626433832795028841971693
9937510582097494459230781640628620899") = 81
▪ Delta["49"] = 32 [Riemann Zero]
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32… }
▪ Lookup DS @5th index, "32" = 4 [saved as a bookkeeping
exercise] ,
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825"
) = 91
▪ Delta["52"] = 39
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39… }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
342") = 94
▪ Delta("56") = 38
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38… }
▪ len(31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
342117067982148086513") = 112
▪ Delta("59") = 53
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53…
}
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
34211706798214808651328") = 114
▪ Delta("60") = 54
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, … }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
3421170679821480865132823") = 116
▪ Delta("65") = 51
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, … }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
3421170679821480865132823066") = 119
▪ Delta("67") = 52
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, … }
▪ DS Lookup, index = 11; is equal to 39, saved
▪ So far, {4, 39,…}
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
3421170679821480865132823066470") = 122
▪ Delta("69") = 53
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53 … }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
3421170679821480865132823066470938446") = 128
▪ Delta("72") = 56 (Riemann Zero)
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56 … }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
34211706798214808651328230664709384460955058") =
135
▪ Delta["75"] = 60, Riemann Zero
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60 … }
▪ DS [lookup, index 14] = 54
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
34211706798214808651328230664709384460955058223"
) = 138
▪ Delta("77") = 61
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61 … }
▪ len("31415926535897932384626433832795028841971693
99375105820974944592307816406286208998628034825
34211706798214808651328230664709384460955058223
17253594") = 146
▪ Delta("79") = 67, riemann zero
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61, 67 … }
▪ @Slide 14,
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, … } ==> This gives the distribution of Prime numbers
upto first 4 primes.
▪ @ Slide 21, what do you make out of it before we go to next?
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61, 67 … }
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61, 67 … }
▪ The pattern that unfolds is: [Number of Primes to be
decoded] followed by set of primes , I mean their
distribution
▪ Green color indicates hits where differences are Zeros
▪ Red color indicates lookup values/Primes in a symbolic
fashion
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61, 67 … }
▪ Yellow color indicates both hits and lookup for other hits.
▪ So where are the primes and distribution of prime numbers?
▪ +4 = number of primes to be decoded in this run
▪ The subset starting 32, ending 52, look closely at it.
▪ DS = { 0, -1, +2, -2, +4, +12, +13, +13, +18, +32, 39, 38, 53,
54, 51, 52, 53, 56, 60, 61, 67 … }
▪ Subset of DS={+32, 39, 38, 53, 54, 51, 52};
▪ 32 is in green signifying start
▪ 52 is in yellow signifying stop
▪ Prime Number Distribution:
▪ 1-to-1 correspondence:
▪ +32, 39, 38, 53, 54, 51, 52
▪ 1, 2, 3, 4, 5, 6, 7
▪ C, P, P, C, P, C, P
Any Feedback is welcome:
basu.subhendra@outlook.com

Prime numbers