SlideShare a Scribd company logo
1 of 45
POSTERIOR FOSSA MALFORMATIONS
Arya Prasad
Pg Resident
1. Posterior fossa anatomy
1. Chiari malformations
2. Dandy walker malformation
3. Joubert syndrome
4. Rhomencephalosynapsis
2
• The Posterior fossa is the largest and deepest of all the cranial
fossae .
• Bowl shaped, relatively protected space that lies below the tentorium.
• Contains the HINDBRAIN – Brainstem , the vermis anteriorly and the
cerebellar hemispheres posterolaterally .
• Posterior fossa CSF containing spaces include
1. Part of the cerebral aqueduct
2. Fourth ventricle
3. CSF cisterns that surround the brainstem and cerebellum .
5
• Anterior wall –
1. Dorsum sellae of the sphenoid body
2. Clivus of the basioccipital bone
• Lateral wall –
1. Petrous temporal bone
• Floor – Occipital squamae
• Superiorly – with the supratentorial compartment through the
U shaped tentorial incisura
• Inferiorly – Cervical subarachnoid space through the ovoid
foramen magnum . 6
• Conventional magnetic resonance (MR) imaging allows
detailed evaluation of the anatomy of the posterior fossa
and its contents.
• A midline sagittal T1- or T2-weighted sequence is ideal for
showing the size of the posterior fossa, the shape and size
of the vermis, and the size and morphology of the fourth
ventricle and brainstem
7
• BRAINSTEM
• The brainstem has three anatomic divisions: The midbrain, pons, and
medulla.
• The midbrain (mesencephalon) lies partly above and partly below the
tentorium.
• The bulb-shaped pons nestles into the gentle curve of the clivus.
• The medulla is the most caudal brainstem segment and represents the
transition from the brain to the spinal cord.
• An important imaging landmark is the prominent “bump” along the
dorsal medulla created by the nucleus gracilis.
• This demarcates the junction between the fourth ventricle (obex) and
central canal of the spinal cord. The nucleus gracilis normally lies above
the foramen magnum.
8
•ARNOLD CHIARI
MALFORMATIONS
13
• Chiari malformations were first described in the late nineteenth
century by the Austrian pathologist Hans Chiari.
• He described what seemed to be a related group of hindbrain
malformations associated with hydrocephalus and divided them into
three types: Chiari 1-3.
• Chiari 1 and 2 are pathogenetically distinct disorders.
14
Chiari 1 Malformation
• Most common variant of the chiari malformations
• Characterised by caudal descent of the cerebellar tonsil through the foramen
magnum.
• Symptoms are proportional to the degree of descent
ETIOLOGY
• The pathogenesis of CM1 is incompletely understood and remains
controversial.
• Primary paraxial mesodermal insufficiency with underdeveloped occipital
somites has also been invoked to explain the development of CM1.
• Other theories suggest that disorders of neural crest-derived elements
could lead to hyper- or hypoossification of the basi-chondro-cranium,
resulting in morphometric changes in the posterior fossa.
• A combination of altered bony anatomy and abnormal CSF
hydrodynamics is the most widely accepted concept
PRESENTATION
• Between one-third and one-half of all patients with imaging findings
consistent with CM1 are asymptomatic at the time of diagnosis.
• Presentation of symptomatic CM1 differs with age.
• Children who are two years and younger most commonly present with
oropharyngeal dysfunction (nearly 80%).
• Those between three and five years present with headache (57%) or
symptoms related to syringomyelia (86%) and scoliosis (38%).
• Uncommon presentations include hypersomnolence and sleep apnea.
• Valsalva-induced suboccipital headache (i.e., with coughing or
sneezing), neck pain, and syncope are common in adults.
Radiographic features
• Distance is measured by drawing a line from
the inner margins foramen magnum
(basion to opisthion)- McRae’s Line, and
measuring the inferior most part of the tonsils
• above foramen magnum: normal
• <5 mm: also normal but the term benign
tonsillar ectopia can be used
• >5 mm: Chiari 1 malformation
Axial Sections :
the medulla is embraced
by the tonsils and little if
any CSF is present -
crowded foramen magnum.
Sagittal :
• tonsils are pointed, rather than
rounded and referred to as peg-like
• sulci are vertically oriented, forming
so-called sergeant stripes
ASSOCIATIONS
• Cervical cord syrinx is present in ~35%
(range 20-56%): more common in
symptomatic patients
• Hydrocephalus in up to 30% of cases
and both are thought to result from
abnormal CSF flow dynamics through
the central canal of the cord and around
the medulla
• In ~35% (range 23-45%) of cases there
are associated skeletal anomalies :
• ◦ platybasia/basilar invagination
• ◦ atlanto-occipital assimilation
• ◦ Sprengel deformity
• ◦ Syndromic associations
• ▪ Klippel-Feil syndrome
• ▪ Crouzon syndrome
TREATMENT OPTIONS.
• Asymptomatic tonsillar ectopia in the absence of an associated syrinx or
scoliosis is usually not treated.
• Periodic surveillance of patients with documented hydrosyringomyelia is
generally recommended, as 12% of syringes show increase in size and
may require craniocervical decompression if symptoms worsen.
• Treatment of symptomatic CM1 attempts to restore normal CSF fluid
dynamics at the foramen magnum .
• A suboccipital/posterior C1 decompression with or without partial tonsillar
resection is the most common procedure.
DIFFERENTIAL DIAGNOSIS
• Congenital tonsillar descent (CM1) must be distinguished from normal variants
(mild uncomplicated tonsillar ectopia).
• The most important pathological differential diagnosis is acquired tonsillar
herniation caused by INCREASED INTRACRANIAL PRESSURE OR
INTRACRANIAL HYPOTENSION.
• Approximately 20% of patients with idiopathic intracranial hypertension
(“pseudotumor cerebri”) exhibit cerebellar tonsillar ectopia ≥ 5 mm.
• Half of these patients exhibit a peg-like tonsil configuration, and many have a
low-lying obex.
• Other conditions that reduce posterior cranial fossa volume can also displace
the tonsils below the foramen.
• Such causes of cranial constriction include CRANIOSYNOSTOSIS,
ACHONDROPLASIA, ACROMEGALY, AND PAGET DISEASE.
CHIARI 1.5
• Sometimes considered as a Bulbar variant of
Chiari I malformation
• Combination of cerebellar tonsillar herniation
seen in a case of Chiari I malformation along
with caudal herniation of some portion of
brainstem (often medulla oblongata)
through the foramen magnum
• Often asymptomatic. Clinical features, if
present, may include intermittent neck pain,
more on extension of cervical spine
Radiographic features
MRI
MRI if the best method for the diagnosis with
sagittal T1 WI to assess tonsillar herniation:
• Descent >6 mm favors chiari I malformation
and >12 mm suggests chiari 1.5
malformation
• Associated findings may include
◦ Posterior angulation of the odontoid
process
◦ Hydrocephalus
◦ Crowded small posterior fossa
◦ Syringohydromyelia
◦ Scoliosis
CHIARI II MALFORMATION
1. MYELOMENINGOCOELE
2. SMALL POSTERIOR FOSSA
3. DESCENT OF THE BRAINSTEM
CHIARI II MALFORMATION
• Relatively common congenital
malformation of the spine and posterior
fossa ( ~1:1000 live births)
• Numerous associated abnormalities are also
frequently encountered
• CM2 is a disorder of neural tube closure but also involves paraxial
mesodermal abnormalities of the skull and spine.
• A number of steps are required for proper neural tube closure and formation of
the focal expansions that subsequently form the cerebral vesicles and
ventricles.
• Skeletal elements of both the skull and vertebral column become “modeled”
around the neural tube.
• Only if the posterior neuropore closes will the developing ventricles expand
sufficiently for a normal-sized posterior fossa to form around the hindbrain.
• If this does not happen, the cerebellum develops in a small posterior fossa
with abnormally low tentorial attachments.
• The growing cerebellum is squeezed cephalad through the tentorial incisura
and stretched inferiorly through the foramen magnum (FM).
RADIOGRAPHIC FEATURES
Antenatal ultrasound
Classical signs described on ultrasound
include
•Lemon sign
•Banana cerebellum sign
There may also be evidence of fetal
ventriculomegaly due to obstructive
effects as a result of downward
cerebellar herniation.
Additionally many of the associated
malformations (e.G. Corpus callosal
dysgenesis) may be identified.
SKULL AND DURA
• The calvarial vault forms from membranous bone.
• With failure of neural tube closure and absence of fetal
brain distension, normal induction of the calvarial
membranous plates does not occur.
• Disorganized collections of collagen fibers and
deficient radial growth of the developing calvaria
ensue.
• The results a striking anomaly called lacunar skull
(i.e., Lückenschädel)
• Focal calvarial thinning and a
“scooped-out” appearance are
typical imaging findings of
lacunar skull.
• The calvaria appears thinned
with numerous circular or oval
lucent defec ts and shallow
depressions.
• Changes diminish with age and
are mostly resolved by six
months, although some
scalloping of the inner table
often persists into adulthood.
POSTERIOR FOSSA
• Small posterior fossa with a low attachment of
the tentorium and low torcula
• The brainstem appears 'pulled' down with an
elongated and low lying fourth ventricle
• The tectal plate appears beaked: inferior
colliculus is elongated and points posteriorly,
with resulting angulation of the aqueduct which
results in aqueductal stenosis and
hydrocephalus
• Cerebellar tonsils and vermis are displaced
inferiorly through foramen magnum which
appears crowded
SPINE
• Spina bifida aperta / myelomeningocele
• Tethered Cord
CHIARI III MALFORMATION
• Extremely rare anomaly
• Low occipital and high cervical
encephalocele
• Herniation of posterior fossa contents,
that is, the cerebellum and/or the
brainstem, occipital lobe, and fourth
ventricle
Variants
• Chiari IV malformation -extreme cerebellar hypoplasia-now
considered to be an obsolete term
• Chiari V malformation - absent cerebellum , herniation of the
occipital lobe through the foramen magnum
DANDY WALKER COMPLEX
• Malformation of posterior fossa
– Pathogenesis unknown but thought to be due to arrest of
development of hindbrain around 7-10 week gestation.
• Spectrum of disease that includes:
1. Dandy-Walker malformation
2. Dandy-Walker variant
3. Mega Cistern Magna
4. Posterior Fossa Arachnoid Cyst
• Occurs in1:30,000births
• Seen in 4-12% of all babies with hydrocephalus
DANDY WALKER MALFORMATION
TRIAD OF MALFORMATIONS
1. Cystic dilation of fourth ventricle
2. Complete or partial agenesis of the cerebellar vermis
3. Enlarged posterior fossa with displacement of the tentorium and
torcular and lateral sinus.
• Diagnosed after 18 weeks – closure of cerebellar vermis should happen
by that time
DANDY WALKER MALFORMATION
ULTRASOUND
Antenatal sonographic features that would suggest the diagnosis include the
combination of :
• marked enlargement of the cisterna magna (> or = 10 mm)
• complete aplasia of the vermis
• a trapezoid-shaped gap between the cerebellar hemispheres
Antenatal ultrasound may falsely over diagnose the condition if scanned before 18
weeks due to the vermis not being properly formed before that time.
MRI is the modality of choice
for assessment of DWM, although both CT and ultrasound will demonstrate
the pertinent features.
Classically DWM consists of the triad of:
• HYPOPLASIA OF THE VERMIS and
cephalad rotation of the vermian remnant
•CYSTIC DILATATION OF THE FOURTH VENTRICLE extending
posteriorly; usually the cerebellar hemispheres are displaced
anterolaterally, but with a normal size and morphology
•ENLARGED POSTERIOR FOSSA WITH TORCULAR-LAMBDOID
INVERSION (torcular lying above the level of the lambdoid due to
abnormally high tentorium)
DANDY-WALKER VARIANT
–Cerebellar dysgenesis without
enlargement of the posterior fossa
– Variable hypoplasia of the
cerebellar vermis
– Better prognosis
DWV is now considered a mild form
of dandy walker Spectrum
• Systemic involvement may be present and includes renal
(nephronophthisis), ocular (colobomas, retinal dystrophy),
hepatic (congenital hepatic fibrosis), and skeletal (various
forms of polydactyly) involvement
• Anomalies of the kidneys, eyes, extremities, liver, and bile
ducts are common in the JSRD spectrum.
POSTERIOR FOSSA ARACHNOID CYSTS
• Duplications of the arachnoid membrane produce fluid-filled cysts
known as arachnoid cysts.
• About 10% of arachnoid cysts in children occur in the posterior fossa
1. Macrocephaly
2. Signs of increased intracranial pressure
3. Developmental delay.
• However, these cysts may be asymptomatic and discovered incidentally
.Arachnoid cysts do not communicate with the fourth ventricle or the
subarachnoid space
BLAKE POUCH CYST
• Caused by the lack of fenestration of the blake pouch
• Absence of communication between the fourth ventricle and the
subarachnoid space .
• The cerebellum has a normal size and shape.
• Blake pouch cyst occurs sporadically, and no recurrence risk has
been reported.
• Hydrocephalus and macrocephaly are the most common
presenting features in the neonatal period.
• In the absence of shunt-related complications, the prognosis is
generally favorable.
MEGA CISTERNA MAGNA
• Enlarged cisterna magna (-10 mm on midsagittal images) with
an intact vermis, a normal fourth ventricle, and, in some
patients, an enlarged posterior fossa
• Represents a truly focal enlargement of the subarachnoid
space in the inferior and posterior portions of the posterior
fossa.
• Mega cisterna magna freely communicates with the fourth
ventricle and the cervical subarachnoid space
• Results in consistent absence of hydrocephalus.
RHOMBENCEPHALOSYNAPSIS
• Characterized by absence of the vermis and continuity of the
cerebellar hemispheres, dentate nuclei, and superior cerebellar
peduncles .
• The majority of patients are nonsyndromic.
• Key feature of Gómez-López-Hernández syndrome
• May be seen in patients with associated VACTERL
1. Truncal and/ or limb ataxia
2. Abnormal eye movements
3. Head stereotypies
4. Delyed motor development
• THE KEY NEUROIMAGING FINDINGS-
1. Agenesis or hypogenesis of the vermis
2. continuity (often called fusion) of the cerebellar hemispheres, superior
cerebellar peduncles, and dentate nuclei
3. Creates a horseshoe-shaped arch across the midline, resulting in a
keyhole-shaped fourth ventricle
posteriorfossamalformations-170608150351 (1).pptx

More Related Content

Similar to posteriorfossamalformations-170608150351 (1).pptx

Spinal malformations
Spinal malformationsSpinal malformations
Spinal malformationsSoe Moe Aung
 
chiari malformation mukesh.pptx
chiari malformation mukesh.pptxchiari malformation mukesh.pptx
chiari malformation mukesh.pptxmukesh kumar
 
Craniovertebral junction
Craniovertebral junctionCraniovertebral junction
Craniovertebral junctionNeurologyKota
 
The Chiari Malformations: A Review With Emphasis on Anatomical Traits
The Chiari Malformations: A Review With Emphasis on Anatomical TraitsThe Chiari Malformations: A Review With Emphasis on Anatomical Traits
The Chiari Malformations: A Review With Emphasis on Anatomical TraitsDr Kaushal Deep Singh Mathuria
 
Target scan for fetal anomalies
Target scan for fetal anomalies Target scan for fetal anomalies
Target scan for fetal anomalies mohamedrafi112
 
Chiari malformation
Chiari malformationChiari malformation
Chiari malformationSourabh Jain
 
VESTIBULAR SCHWANNOMA.pptx
VESTIBULAR SCHWANNOMA.pptxVESTIBULAR SCHWANNOMA.pptx
VESTIBULAR SCHWANNOMA.pptxKarishmaMishra13
 
Disorders of neural tube
Disorders of neural tubeDisorders of neural tube
Disorders of neural tubeJerrin Jacob
 
Antenatal radiological diagnosis by DR. PRADEEP
Antenatal radiological diagnosis by DR. PRADEEPAntenatal radiological diagnosis by DR. PRADEEP
Antenatal radiological diagnosis by DR. PRADEEPDRPRADEEPTURUMANI
 
Chest wall deformity
Chest wall deformity Chest wall deformity
Chest wall deformity MISSCOM1
 
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptx
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptxCLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptx
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptxcheshtasharma22
 
Cranio-vertrable junction anamolies
Cranio-vertrable junction anamoliesCranio-vertrable junction anamolies
Cranio-vertrable junction anamoliesAbhay Mange
 

Similar to posteriorfossamalformations-170608150351 (1).pptx (20)

Spinal malformations
Spinal malformationsSpinal malformations
Spinal malformations
 
chiari malformation mukesh.pptx
chiari malformation mukesh.pptxchiari malformation mukesh.pptx
chiari malformation mukesh.pptx
 
Chiarimalformation
ChiarimalformationChiarimalformation
Chiarimalformation
 
Syringomyelia
SyringomyeliaSyringomyelia
Syringomyelia
 
Craniovertebral junction
Craniovertebral junctionCraniovertebral junction
Craniovertebral junction
 
Cervical myelopathy
Cervical myelopathyCervical myelopathy
Cervical myelopathy
 
The Chiari Malformations: A Review With Emphasis on Anatomical Traits
The Chiari Malformations: A Review With Emphasis on Anatomical TraitsThe Chiari Malformations: A Review With Emphasis on Anatomical Traits
The Chiari Malformations: A Review With Emphasis on Anatomical Traits
 
Target scan for fetal anomalies
Target scan for fetal anomalies Target scan for fetal anomalies
Target scan for fetal anomalies
 
Chiari malformation
Chiari malformationChiari malformation
Chiari malformation
 
Vestibular schwannoma
Vestibular schwannomaVestibular schwannoma
Vestibular schwannoma
 
VESTIBULAR SCHWANNOMA.pptx
VESTIBULAR SCHWANNOMA.pptxVESTIBULAR SCHWANNOMA.pptx
VESTIBULAR SCHWANNOMA.pptx
 
Disorders of neural tube
Disorders of neural tubeDisorders of neural tube
Disorders of neural tube
 
Antenatal radiological diagnosis by DR. PRADEEP
Antenatal radiological diagnosis by DR. PRADEEPAntenatal radiological diagnosis by DR. PRADEEP
Antenatal radiological diagnosis by DR. PRADEEP
 
Chest wall deformity
Chest wall deformity Chest wall deformity
Chest wall deformity
 
Chest Wall Deformity
Chest Wall DeformityChest Wall Deformity
Chest Wall Deformity
 
Potts spine PART 1
Potts spine PART 1Potts spine PART 1
Potts spine PART 1
 
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptx
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptxCLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptx
CLINICAL FEATURES, INVESTIGATIONS AND PROGNOSIS OF BRAIN SEMINAR 2.pptx
 
Cranio-vertrable junction anamolies
Cranio-vertrable junction anamoliesCranio-vertrable junction anamolies
Cranio-vertrable junction anamolies
 
Tuberculosis of spine
Tuberculosis of spineTuberculosis of spine
Tuberculosis of spine
 
Spina bifida
Spina bifidaSpina bifida
Spina bifida
 

Recently uploaded

DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 

Recently uploaded (20)

DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 

posteriorfossamalformations-170608150351 (1).pptx

  • 2. 1. Posterior fossa anatomy 1. Chiari malformations 2. Dandy walker malformation 3. Joubert syndrome 4. Rhomencephalosynapsis 2
  • 3. • The Posterior fossa is the largest and deepest of all the cranial fossae . • Bowl shaped, relatively protected space that lies below the tentorium. • Contains the HINDBRAIN – Brainstem , the vermis anteriorly and the cerebellar hemispheres posterolaterally . • Posterior fossa CSF containing spaces include 1. Part of the cerebral aqueduct 2. Fourth ventricle 3. CSF cisterns that surround the brainstem and cerebellum . 5
  • 4. • Anterior wall – 1. Dorsum sellae of the sphenoid body 2. Clivus of the basioccipital bone • Lateral wall – 1. Petrous temporal bone • Floor – Occipital squamae • Superiorly – with the supratentorial compartment through the U shaped tentorial incisura • Inferiorly – Cervical subarachnoid space through the ovoid foramen magnum . 6
  • 5. • Conventional magnetic resonance (MR) imaging allows detailed evaluation of the anatomy of the posterior fossa and its contents. • A midline sagittal T1- or T2-weighted sequence is ideal for showing the size of the posterior fossa, the shape and size of the vermis, and the size and morphology of the fourth ventricle and brainstem 7
  • 6. • BRAINSTEM • The brainstem has three anatomic divisions: The midbrain, pons, and medulla. • The midbrain (mesencephalon) lies partly above and partly below the tentorium. • The bulb-shaped pons nestles into the gentle curve of the clivus. • The medulla is the most caudal brainstem segment and represents the transition from the brain to the spinal cord. • An important imaging landmark is the prominent “bump” along the dorsal medulla created by the nucleus gracilis. • This demarcates the junction between the fourth ventricle (obex) and central canal of the spinal cord. The nucleus gracilis normally lies above the foramen magnum. 8
  • 8. • Chiari malformations were first described in the late nineteenth century by the Austrian pathologist Hans Chiari. • He described what seemed to be a related group of hindbrain malformations associated with hydrocephalus and divided them into three types: Chiari 1-3. • Chiari 1 and 2 are pathogenetically distinct disorders. 14
  • 9. Chiari 1 Malformation • Most common variant of the chiari malformations • Characterised by caudal descent of the cerebellar tonsil through the foramen magnum. • Symptoms are proportional to the degree of descent
  • 10. ETIOLOGY • The pathogenesis of CM1 is incompletely understood and remains controversial. • Primary paraxial mesodermal insufficiency with underdeveloped occipital somites has also been invoked to explain the development of CM1. • Other theories suggest that disorders of neural crest-derived elements could lead to hyper- or hypoossification of the basi-chondro-cranium, resulting in morphometric changes in the posterior fossa. • A combination of altered bony anatomy and abnormal CSF hydrodynamics is the most widely accepted concept
  • 11. PRESENTATION • Between one-third and one-half of all patients with imaging findings consistent with CM1 are asymptomatic at the time of diagnosis. • Presentation of symptomatic CM1 differs with age. • Children who are two years and younger most commonly present with oropharyngeal dysfunction (nearly 80%). • Those between three and five years present with headache (57%) or symptoms related to syringomyelia (86%) and scoliosis (38%). • Uncommon presentations include hypersomnolence and sleep apnea. • Valsalva-induced suboccipital headache (i.e., with coughing or sneezing), neck pain, and syncope are common in adults.
  • 12. Radiographic features • Distance is measured by drawing a line from the inner margins foramen magnum (basion to opisthion)- McRae’s Line, and measuring the inferior most part of the tonsils • above foramen magnum: normal • <5 mm: also normal but the term benign tonsillar ectopia can be used • >5 mm: Chiari 1 malformation
  • 13. Axial Sections : the medulla is embraced by the tonsils and little if any CSF is present - crowded foramen magnum.
  • 14. Sagittal : • tonsils are pointed, rather than rounded and referred to as peg-like • sulci are vertically oriented, forming so-called sergeant stripes
  • 15. ASSOCIATIONS • Cervical cord syrinx is present in ~35% (range 20-56%): more common in symptomatic patients • Hydrocephalus in up to 30% of cases and both are thought to result from abnormal CSF flow dynamics through the central canal of the cord and around the medulla • In ~35% (range 23-45%) of cases there are associated skeletal anomalies : • ◦ platybasia/basilar invagination • ◦ atlanto-occipital assimilation • ◦ Sprengel deformity • ◦ Syndromic associations • ▪ Klippel-Feil syndrome • ▪ Crouzon syndrome
  • 16. TREATMENT OPTIONS. • Asymptomatic tonsillar ectopia in the absence of an associated syrinx or scoliosis is usually not treated. • Periodic surveillance of patients with documented hydrosyringomyelia is generally recommended, as 12% of syringes show increase in size and may require craniocervical decompression if symptoms worsen. • Treatment of symptomatic CM1 attempts to restore normal CSF fluid dynamics at the foramen magnum . • A suboccipital/posterior C1 decompression with or without partial tonsillar resection is the most common procedure.
  • 17. DIFFERENTIAL DIAGNOSIS • Congenital tonsillar descent (CM1) must be distinguished from normal variants (mild uncomplicated tonsillar ectopia). • The most important pathological differential diagnosis is acquired tonsillar herniation caused by INCREASED INTRACRANIAL PRESSURE OR INTRACRANIAL HYPOTENSION. • Approximately 20% of patients with idiopathic intracranial hypertension (“pseudotumor cerebri”) exhibit cerebellar tonsillar ectopia ≥ 5 mm. • Half of these patients exhibit a peg-like tonsil configuration, and many have a low-lying obex. • Other conditions that reduce posterior cranial fossa volume can also displace the tonsils below the foramen. • Such causes of cranial constriction include CRANIOSYNOSTOSIS, ACHONDROPLASIA, ACROMEGALY, AND PAGET DISEASE.
  • 18. CHIARI 1.5 • Sometimes considered as a Bulbar variant of Chiari I malformation • Combination of cerebellar tonsillar herniation seen in a case of Chiari I malformation along with caudal herniation of some portion of brainstem (often medulla oblongata) through the foramen magnum • Often asymptomatic. Clinical features, if present, may include intermittent neck pain, more on extension of cervical spine
  • 19. Radiographic features MRI MRI if the best method for the diagnosis with sagittal T1 WI to assess tonsillar herniation: • Descent >6 mm favors chiari I malformation and >12 mm suggests chiari 1.5 malformation • Associated findings may include ◦ Posterior angulation of the odontoid process ◦ Hydrocephalus ◦ Crowded small posterior fossa ◦ Syringohydromyelia ◦ Scoliosis
  • 20. CHIARI II MALFORMATION 1. MYELOMENINGOCOELE 2. SMALL POSTERIOR FOSSA 3. DESCENT OF THE BRAINSTEM
  • 21. CHIARI II MALFORMATION • Relatively common congenital malformation of the spine and posterior fossa ( ~1:1000 live births) • Numerous associated abnormalities are also frequently encountered
  • 22. • CM2 is a disorder of neural tube closure but also involves paraxial mesodermal abnormalities of the skull and spine. • A number of steps are required for proper neural tube closure and formation of the focal expansions that subsequently form the cerebral vesicles and ventricles. • Skeletal elements of both the skull and vertebral column become “modeled” around the neural tube. • Only if the posterior neuropore closes will the developing ventricles expand sufficiently for a normal-sized posterior fossa to form around the hindbrain. • If this does not happen, the cerebellum develops in a small posterior fossa with abnormally low tentorial attachments. • The growing cerebellum is squeezed cephalad through the tentorial incisura and stretched inferiorly through the foramen magnum (FM).
  • 23. RADIOGRAPHIC FEATURES Antenatal ultrasound Classical signs described on ultrasound include •Lemon sign •Banana cerebellum sign There may also be evidence of fetal ventriculomegaly due to obstructive effects as a result of downward cerebellar herniation. Additionally many of the associated malformations (e.G. Corpus callosal dysgenesis) may be identified.
  • 24. SKULL AND DURA • The calvarial vault forms from membranous bone. • With failure of neural tube closure and absence of fetal brain distension, normal induction of the calvarial membranous plates does not occur. • Disorganized collections of collagen fibers and deficient radial growth of the developing calvaria ensue. • The results a striking anomaly called lacunar skull (i.e., Lückenschädel)
  • 25. • Focal calvarial thinning and a “scooped-out” appearance are typical imaging findings of lacunar skull. • The calvaria appears thinned with numerous circular or oval lucent defec ts and shallow depressions. • Changes diminish with age and are mostly resolved by six months, although some scalloping of the inner table often persists into adulthood.
  • 26. POSTERIOR FOSSA • Small posterior fossa with a low attachment of the tentorium and low torcula • The brainstem appears 'pulled' down with an elongated and low lying fourth ventricle • The tectal plate appears beaked: inferior colliculus is elongated and points posteriorly, with resulting angulation of the aqueduct which results in aqueductal stenosis and hydrocephalus • Cerebellar tonsils and vermis are displaced inferiorly through foramen magnum which appears crowded SPINE • Spina bifida aperta / myelomeningocele • Tethered Cord
  • 27. CHIARI III MALFORMATION • Extremely rare anomaly • Low occipital and high cervical encephalocele • Herniation of posterior fossa contents, that is, the cerebellum and/or the brainstem, occipital lobe, and fourth ventricle
  • 28. Variants • Chiari IV malformation -extreme cerebellar hypoplasia-now considered to be an obsolete term • Chiari V malformation - absent cerebellum , herniation of the occipital lobe through the foramen magnum
  • 29. DANDY WALKER COMPLEX • Malformation of posterior fossa – Pathogenesis unknown but thought to be due to arrest of development of hindbrain around 7-10 week gestation. • Spectrum of disease that includes: 1. Dandy-Walker malformation 2. Dandy-Walker variant 3. Mega Cistern Magna 4. Posterior Fossa Arachnoid Cyst • Occurs in1:30,000births • Seen in 4-12% of all babies with hydrocephalus
  • 30. DANDY WALKER MALFORMATION TRIAD OF MALFORMATIONS 1. Cystic dilation of fourth ventricle 2. Complete or partial agenesis of the cerebellar vermis 3. Enlarged posterior fossa with displacement of the tentorium and torcular and lateral sinus. • Diagnosed after 18 weeks – closure of cerebellar vermis should happen by that time
  • 31.
  • 32. DANDY WALKER MALFORMATION ULTRASOUND Antenatal sonographic features that would suggest the diagnosis include the combination of : • marked enlargement of the cisterna magna (> or = 10 mm) • complete aplasia of the vermis • a trapezoid-shaped gap between the cerebellar hemispheres Antenatal ultrasound may falsely over diagnose the condition if scanned before 18 weeks due to the vermis not being properly formed before that time.
  • 33. MRI is the modality of choice for assessment of DWM, although both CT and ultrasound will demonstrate the pertinent features. Classically DWM consists of the triad of: • HYPOPLASIA OF THE VERMIS and cephalad rotation of the vermian remnant •CYSTIC DILATATION OF THE FOURTH VENTRICLE extending posteriorly; usually the cerebellar hemispheres are displaced anterolaterally, but with a normal size and morphology •ENLARGED POSTERIOR FOSSA WITH TORCULAR-LAMBDOID INVERSION (torcular lying above the level of the lambdoid due to abnormally high tentorium)
  • 34.
  • 35. DANDY-WALKER VARIANT –Cerebellar dysgenesis without enlargement of the posterior fossa – Variable hypoplasia of the cerebellar vermis – Better prognosis DWV is now considered a mild form of dandy walker Spectrum
  • 36. • Systemic involvement may be present and includes renal (nephronophthisis), ocular (colobomas, retinal dystrophy), hepatic (congenital hepatic fibrosis), and skeletal (various forms of polydactyly) involvement • Anomalies of the kidneys, eyes, extremities, liver, and bile ducts are common in the JSRD spectrum.
  • 37. POSTERIOR FOSSA ARACHNOID CYSTS • Duplications of the arachnoid membrane produce fluid-filled cysts known as arachnoid cysts. • About 10% of arachnoid cysts in children occur in the posterior fossa 1. Macrocephaly 2. Signs of increased intracranial pressure 3. Developmental delay. • However, these cysts may be asymptomatic and discovered incidentally .Arachnoid cysts do not communicate with the fourth ventricle or the subarachnoid space
  • 38.
  • 39. BLAKE POUCH CYST • Caused by the lack of fenestration of the blake pouch • Absence of communication between the fourth ventricle and the subarachnoid space . • The cerebellum has a normal size and shape. • Blake pouch cyst occurs sporadically, and no recurrence risk has been reported. • Hydrocephalus and macrocephaly are the most common presenting features in the neonatal period. • In the absence of shunt-related complications, the prognosis is generally favorable.
  • 40.
  • 41. MEGA CISTERNA MAGNA • Enlarged cisterna magna (-10 mm on midsagittal images) with an intact vermis, a normal fourth ventricle, and, in some patients, an enlarged posterior fossa • Represents a truly focal enlargement of the subarachnoid space in the inferior and posterior portions of the posterior fossa. • Mega cisterna magna freely communicates with the fourth ventricle and the cervical subarachnoid space • Results in consistent absence of hydrocephalus.
  • 42.
  • 43. RHOMBENCEPHALOSYNAPSIS • Characterized by absence of the vermis and continuity of the cerebellar hemispheres, dentate nuclei, and superior cerebellar peduncles . • The majority of patients are nonsyndromic. • Key feature of Gómez-López-Hernández syndrome • May be seen in patients with associated VACTERL 1. Truncal and/ or limb ataxia 2. Abnormal eye movements 3. Head stereotypies 4. Delyed motor development
  • 44. • THE KEY NEUROIMAGING FINDINGS- 1. Agenesis or hypogenesis of the vermis 2. continuity (often called fusion) of the cerebellar hemispheres, superior cerebellar peduncles, and dentate nuclei 3. Creates a horseshoe-shaped arch across the midline, resulting in a keyhole-shaped fourth ventricle