Czech Technical 
University in 
Prague 
Personalised Access to Linked Data 
Milan Dojchinovski and Tomas Vitvar 
Web Intelligence Research Group 
Czech Technical University in Prague 
The 19th International Conference on Knowledge Engineering 
and Knowledge Management (EKAW 2014) 
November 24-28, 2014, Linköping, Sweden 
Milan Dojchinovski 
milan.dojchinovski@fit.cvut.cz - @m1ci - http://dojchinovski.mk 
Except where otherwise noted, the content of this presentation is licensed under 
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported 
Web Intelligence 
Research Group
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
2 
• Introduction 
• Personalised Resource Recommendations 
• Experiments and Results 
• Conclusion and Future Work
Introduction 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
3 
LOD cloud stats [1]: 
• 294 in Sep 2011 
• 1,091 datasets in Apr 2014 
• 271% growth 
• Find relevant information in LOD is not easy 
- SPARQL, manual dereferencing URIs, … 
• … or ask other people for recommendations and get 
personalised recommendations of resources 
• Linked Data based recommenders can help 
[1] M. Schmachtenberg et al, Adoption of linked data best practices in different topical domains, ISWC 2014.
Related Work 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
4 
• dbRec (Passant, 2010): semantic distance measure 
- function of direct and indirect links 
• Content-based LD recommender (Di Noia et. al, 2012) 
- movies domain, max resource distance: 2 
• Lookup Explore Discovery (Mirizzi et al., 2010) 
- user input required 
- recommendations related to the entities occurring in the query 
• Discovery Hub (Marie et al., 2013) 
- based on the spreading activation 
- utilizes small portion of information DBpedia 
• Aemoo (Musetti et al., 2012) 
- Encyclopedic Knowledge Patterns over DBpedia
Introduction 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
5 
• Method for personalised Linked Data recommendations 
- apply collaborative filtering technique to Linked Data 
- recommendations from users with similar resource interests 
• Two novel metrics: 
- resource similarity and resource relevance 
• Considered aspects: 
- Resource Commonalities 
- how much information two resources share 
- Resource Informativeness 
- how informative the resources are 
- Resource Connectivity 
- how well are resources connected
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
6 
• Introduction 
• Personalised Resource Recommendations 
- Resource Similarity 
- Resource Relevance 
• Experiments and Results 
• Conclusion and Future Work
Resource Recommendation In a Nutshell 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
7 
• Input: RDF graph (including user profiles) 
• Step 1: evaluate user similarities 
- e.g. similarity between resources representing users 
- instances of foaf:Person class 
• Step 2: recommend resource from similar users 
- compute relevance for each resource candidate 
- incorporate the resource (user) similarities 
dc:creator 
dc:creator 
dc:creator 
creator dc:ls:category 
usedAPI 
ls:ls:usedAPI 
ls:tag 
ls:tag 
ls:tag 
ls:tag 
ls:usedAPI 
#microblogginig 
ls:tag 
ls:tag 
ls:tag 
#Alfredo 
#FriendLynx 
#Instagram 
#Twitter-API 
#Facebok-API 
#social 
#music 
#search #Microsoft-Bing- 
API 
#411Sync-API 
#MTV-Billboard-charts 
#Mobile- 
Weather-Search 
#mlachwani
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
8 
• Introduction 
• Personalised Resource Recommendations 
- Resource Similarity 
- Resource Relevance 
• Experiments and Results 
• Conclusion and Future Work
Resource Similarity Computation 
dc:creator 
dc:creator 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
9 
• Assumption 1: the more information two resource share, 
the more similar they are 
#microblogginig 
ls:tag 
#social 
#music 
• 6 resources in the shared context graph 
dc:creator 
creator dc:ls:category 
usedAPI 
ls:ls:usedAPI 
ls:tag 
ls:tag 
ls:tag 
ls:tag 
ls:usedAPI 
ls:tag 
ls:tag 
#Alfredo 
#FriendLynx 
#Instagram 
#Twitter-API 
#Facebok-API 
#search #Microsoft-Bing- 
API 
#411Sync-API 
#MTV-Billboard-charts 
#Mobile- 
Weather-Search 
#mlachwani
Resource Similarity Computation (cont.) 
dc:creator 
#Instagram 
ls:tag 
#microblogginig 
ls:tag 
dc:creator 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
ls:usedAPI 
ls:tag 
ls:tag 
#Facebok-API 
#social 
#411Sync-API 
#music 
#Microsoft-Bing- 
ls:tag 
#Alfredo 
#FriendLynx 
#Twitter-API 
#search 
API 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
Information Content (IC) 
10 
• Assumption 2: less probable shared resources carry more 
similarity information than the more common 
Resource IC 
#MTV-Billboard-charts 
dc:creator 
ls:tag 
ls:tag 
ls:usedAPI 
#mlachwani 
#Mobile- 
creator dc:Weather-Search 
ls:category 
usedAPI 
ls:• Evaluated by computing the node degree value 
- Microsoft-Bing-API (deg. 40) more than Twitter-API (deg. 799)
Resource Similarity Computation (cont.) 
dc:creator 
dc:creator 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
ls:usedAPI 
ls:tag 
#Alfredo 
#FriendLynx 
#Instagram 
#Twitter-API 
#microblogginig 
#social 
#411Sync-API 
#music 
#search #Microsoft-Bing- 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
11 
• Assumption 3: better connected shared resources carry 
more similarity information 
#MTV-Billboard-charts 
dc:creator 
ls:tag 
ls:tag 
ls:usedAPI 
#mlachwani 
creator dc:Weather-Search 
ls:category 
usedAPI 
ls:ls:tag 
ls:tag 
ls:tag 
#Facebok-API 
ls:tag 
API 
#Mobile- 
• The number of simple paths between the resources 
- 2 simple paths between #Alfredo and #Twitter-API
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
12 
• Introduction 
• Personalised Resource Recommendations 
- Resource Similarity 
- Resource Relevance 
• Experiments and Results 
• Conclusion and Future Work
Resource Relevance Computation 
dc:creator 
dc:creator 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
ls:usedAPI 
ls:tag 
#Alfredo 
#FriendLynx 
#Instagram 
#Twitter-API 
#mlachwani similar users 
#Facebok-API 
#microblogginig 
#social 
#411Sync-API 
#music 
#search #Microsoft-Bing- 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
13 
• Recommending resources of type Web APIs for an user 
#MTV-Billboard-charts 
dc:creator 
ls:tag 
ls:tag 
ls:usedAPI 
creator dc:Weather-Search 
ls:category 
usedAPI 
ls:ls:tag 
ls:tag 
ls:tag 
ls:tag 
API 
#Mobile- 
• Recommendations from similar users 
- connectivity between the similar user and the resource candidate 
- number of simple paths 
- informativeness of each resource in these paths
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
14 
• Introduction 
• Personalised Resource Recommendations 
- Resource Similarity 
- Resource Relevance 
• Experiments and Results 
• Conclusion and Future Work
Experiments Setup 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
15 
• Linked Web APIs dataset 
- RDF representation of ProgrammableWeb.com 
- largest service and mashup repository 
• Evaluated accuracy and usefulness of recommendations 
• Accuracy: 
- precision/recall, AUC, NDCG, MAP, MRR 
• Usefulness: 
- serendipity: how surprising the recommendations are 
- diversity: how diverse the recommendations are 
• Evaluated methods: 
- User-KNN, Item-KNN, Most popular, Random 
- LD with RIC, LD without RIC
Accuracy Evaluation 
• Taking into account resource informativeness makes sense 
• Item-KNN and User-KNN do not work well 
- … at least in the Web services domain 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
16 
0.0 0.2 0.4 0.6 0.8 1.0 
0.00 0.05 0.10 0.15 0.20 
Recall 
Precision 
Linked Data based with RIC 
Linked Data based without RIC 
User-KNN 
Item-KNN 
Most popular 
Random
Serendipity and Diversity Evaluation 
• Serendipity score = user resource avg. distance 
• Diversity score = avg. dissimilarity between all resource 
pairs 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
17 
@top-N Random 
Most 
Popular 
User-KNN Item-KNN 
LD without 
RIC 
LD with 
RIC 
@top-5 2.97752 2.66810 2.59197 2.68006 3.18881 3.03271 
@top-10 2.98455 2.67465 2.65514 2.70402 3.54821 3.26700 
@top-15 2.98364 2.65816 2.68101 2.71267 3.73117 3.36509 
@top-20 2.98455 2.65184 2.69780 2.70968 3.84142 3.42444 
@top-5 0.65339 0.58347 0.62092 0.63349 0.83417 0.81949 
@top-10 0.65317 0.61354 0.62411 0.64392 0.86044 0.82912 
@top-15 0.65370 0.60374 0.63159 0.64558 0.87511 0.82884 
@top-20 0.65347 0.60719 0.63276 0.64287 0.88435 0.83114 
serendipity 
diversity
Trade-off: Serendipity, Diversity and Accuracy 
0.30 
0.28 
0.26 
0.24 
0.22 
0.20 
0.18 
0.16 
0.14 
0.12 
0.10 
0.08 
0.06 
0.04 
0.02 
@5 @10 @15 @20 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
• higher serendipity leads 
to lower precision and 
higher recall 
• optimal results @top 5-10 
18 
0.30 
0.28 
0.26 
0.24 
0.22 
0.20 
0.18 
0.16 
0.14 
0.12 
0.10 
0.08 
0.06 
0.04 
0.02 
0.00 
Serendipity 
Precision 
0.834 
0.832 
0.830 
0.828 
0.826 
0.824 
0.822 
0.820 
0.818 
Diversity 
@5 @10 @15 @20 
0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 
Recall 
Precision/Recall 
Diversity 
0.00 
Precision 
3.50 
3.45 
3.40 
3.35 
3.30 
3.25 
3.20 
3.15 
3.10 
3.05 
3.00 
0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 
Recall 
Precision/Recall 
Serendipity 
• higher diversity leads to 
lower precision and 
higher recall 
• optimal results @top 5-10
Outline 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
19 
• Introduction and Motivation 
• Personalised Resource Recommendations 
- Resource Similarity 
- Resource Relevance 
• Experiments and Results 
• Conclusion and Future Work
Conclusion 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
20 
• Method for personalised access to Linked Data 
- recommendations based on the collaborative filtering 
technique 
• Considered aspects: 
- resources’ commonalities 
- resources’ informativeness 
- resources’ connectiviteness 
• Validated on a dataset from the Web services domain 
- Linked Web APIs dataset 
• Future work: 
- consider other multi-domain datasets 
- automatic determination of optimal resource contexts distances 
- publish the Linked Web APIs dataset to the LOD cloud
Feedback 
ls:usedAPI 
#Hashtagram 
ls:usedAPI 
ls:usedAPI 
Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 
21 
Thank you! 
Questions, comments, ideas? 
Milan Dojchinovski 
milan.dojchinovski@fit.cvut.cz 
@m1ci 
http://dojchinovski.mk 
dc:creator 
dc:creator 
dc:creator 
creator dc:ls:category 
usedAPI 
ls:ls:usedAPI 
ls:tag 
ls:tag 
ls:tag 
ls:tag 
ls:usedAPI 
#microblogginig 
ls:tag 
ls:tag 
ls:tag 
#Alfredo 
#FriendLynx 
#Instagram 
#Twitter-API 
#Facebok-API 
#social 
#music 
#search #Microsoft-Bing- 
API 
#411Sync-API 
#MTV-Billboard-charts 
#Mobile- 
Weather-Search 
#mlachwani

Personalised Access to Linked Data

  • 1.
    Czech Technical Universityin Prague Personalised Access to Linked Data Milan Dojchinovski and Tomas Vitvar Web Intelligence Research Group Czech Technical University in Prague The 19th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2014) November 24-28, 2014, Linköping, Sweden Milan Dojchinovski milan.dojchinovski@fit.cvut.cz - @m1ci - http://dojchinovski.mk Except where otherwise noted, the content of this presentation is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported Web Intelligence Research Group
  • 2.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 2 • Introduction • Personalised Resource Recommendations • Experiments and Results • Conclusion and Future Work
  • 3.
    Introduction Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 3 LOD cloud stats [1]: • 294 in Sep 2011 • 1,091 datasets in Apr 2014 • 271% growth • Find relevant information in LOD is not easy - SPARQL, manual dereferencing URIs, … • … or ask other people for recommendations and get personalised recommendations of resources • Linked Data based recommenders can help [1] M. Schmachtenberg et al, Adoption of linked data best practices in different topical domains, ISWC 2014.
  • 4.
    Related Work PersonalisedAccess to Linked Data - @m1ci - http://dojchinovski.mk 4 • dbRec (Passant, 2010): semantic distance measure - function of direct and indirect links • Content-based LD recommender (Di Noia et. al, 2012) - movies domain, max resource distance: 2 • Lookup Explore Discovery (Mirizzi et al., 2010) - user input required - recommendations related to the entities occurring in the query • Discovery Hub (Marie et al., 2013) - based on the spreading activation - utilizes small portion of information DBpedia • Aemoo (Musetti et al., 2012) - Encyclopedic Knowledge Patterns over DBpedia
  • 5.
    Introduction Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 5 • Method for personalised Linked Data recommendations - apply collaborative filtering technique to Linked Data - recommendations from users with similar resource interests • Two novel metrics: - resource similarity and resource relevance • Considered aspects: - Resource Commonalities - how much information two resources share - Resource Informativeness - how informative the resources are - Resource Connectivity - how well are resources connected
  • 6.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 6 • Introduction • Personalised Resource Recommendations - Resource Similarity - Resource Relevance • Experiments and Results • Conclusion and Future Work
  • 7.
    Resource Recommendation Ina Nutshell ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 7 • Input: RDF graph (including user profiles) • Step 1: evaluate user similarities - e.g. similarity between resources representing users - instances of foaf:Person class • Step 2: recommend resource from similar users - compute relevance for each resource candidate - incorporate the resource (user) similarities dc:creator dc:creator dc:creator creator dc:ls:category usedAPI ls:ls:usedAPI ls:tag ls:tag ls:tag ls:tag ls:usedAPI #microblogginig ls:tag ls:tag ls:tag #Alfredo #FriendLynx #Instagram #Twitter-API #Facebok-API #social #music #search #Microsoft-Bing- API #411Sync-API #MTV-Billboard-charts #Mobile- Weather-Search #mlachwani
  • 8.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 8 • Introduction • Personalised Resource Recommendations - Resource Similarity - Resource Relevance • Experiments and Results • Conclusion and Future Work
  • 9.
    Resource Similarity Computation dc:creator dc:creator ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 9 • Assumption 1: the more information two resource share, the more similar they are #microblogginig ls:tag #social #music • 6 resources in the shared context graph dc:creator creator dc:ls:category usedAPI ls:ls:usedAPI ls:tag ls:tag ls:tag ls:tag ls:usedAPI ls:tag ls:tag #Alfredo #FriendLynx #Instagram #Twitter-API #Facebok-API #search #Microsoft-Bing- API #411Sync-API #MTV-Billboard-charts #Mobile- Weather-Search #mlachwani
  • 10.
    Resource Similarity Computation(cont.) dc:creator #Instagram ls:tag #microblogginig ls:tag dc:creator ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI ls:usedAPI ls:tag ls:tag #Facebok-API #social #411Sync-API #music #Microsoft-Bing- ls:tag #Alfredo #FriendLynx #Twitter-API #search API Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk Information Content (IC) 10 • Assumption 2: less probable shared resources carry more similarity information than the more common Resource IC #MTV-Billboard-charts dc:creator ls:tag ls:tag ls:usedAPI #mlachwani #Mobile- creator dc:Weather-Search ls:category usedAPI ls:• Evaluated by computing the node degree value - Microsoft-Bing-API (deg. 40) more than Twitter-API (deg. 799)
  • 11.
    Resource Similarity Computation(cont.) dc:creator dc:creator ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI ls:usedAPI ls:tag #Alfredo #FriendLynx #Instagram #Twitter-API #microblogginig #social #411Sync-API #music #search #Microsoft-Bing- Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 11 • Assumption 3: better connected shared resources carry more similarity information #MTV-Billboard-charts dc:creator ls:tag ls:tag ls:usedAPI #mlachwani creator dc:Weather-Search ls:category usedAPI ls:ls:tag ls:tag ls:tag #Facebok-API ls:tag API #Mobile- • The number of simple paths between the resources - 2 simple paths between #Alfredo and #Twitter-API
  • 12.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 12 • Introduction • Personalised Resource Recommendations - Resource Similarity - Resource Relevance • Experiments and Results • Conclusion and Future Work
  • 13.
    Resource Relevance Computation dc:creator dc:creator ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI ls:usedAPI ls:tag #Alfredo #FriendLynx #Instagram #Twitter-API #mlachwani similar users #Facebok-API #microblogginig #social #411Sync-API #music #search #Microsoft-Bing- Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 13 • Recommending resources of type Web APIs for an user #MTV-Billboard-charts dc:creator ls:tag ls:tag ls:usedAPI creator dc:Weather-Search ls:category usedAPI ls:ls:tag ls:tag ls:tag ls:tag API #Mobile- • Recommendations from similar users - connectivity between the similar user and the resource candidate - number of simple paths - informativeness of each resource in these paths
  • 14.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 14 • Introduction • Personalised Resource Recommendations - Resource Similarity - Resource Relevance • Experiments and Results • Conclusion and Future Work
  • 15.
    Experiments Setup PersonalisedAccess to Linked Data - @m1ci - http://dojchinovski.mk 15 • Linked Web APIs dataset - RDF representation of ProgrammableWeb.com - largest service and mashup repository • Evaluated accuracy and usefulness of recommendations • Accuracy: - precision/recall, AUC, NDCG, MAP, MRR • Usefulness: - serendipity: how surprising the recommendations are - diversity: how diverse the recommendations are • Evaluated methods: - User-KNN, Item-KNN, Most popular, Random - LD with RIC, LD without RIC
  • 16.
    Accuracy Evaluation •Taking into account resource informativeness makes sense • Item-KNN and User-KNN do not work well - … at least in the Web services domain Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 16 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20 Recall Precision Linked Data based with RIC Linked Data based without RIC User-KNN Item-KNN Most popular Random
  • 17.
    Serendipity and DiversityEvaluation • Serendipity score = user resource avg. distance • Diversity score = avg. dissimilarity between all resource pairs Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 17 @top-N Random Most Popular User-KNN Item-KNN LD without RIC LD with RIC @top-5 2.97752 2.66810 2.59197 2.68006 3.18881 3.03271 @top-10 2.98455 2.67465 2.65514 2.70402 3.54821 3.26700 @top-15 2.98364 2.65816 2.68101 2.71267 3.73117 3.36509 @top-20 2.98455 2.65184 2.69780 2.70968 3.84142 3.42444 @top-5 0.65339 0.58347 0.62092 0.63349 0.83417 0.81949 @top-10 0.65317 0.61354 0.62411 0.64392 0.86044 0.82912 @top-15 0.65370 0.60374 0.63159 0.64558 0.87511 0.82884 @top-20 0.65347 0.60719 0.63276 0.64287 0.88435 0.83114 serendipity diversity
  • 18.
    Trade-off: Serendipity, Diversityand Accuracy 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 @5 @10 @15 @20 Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk • higher serendipity leads to lower precision and higher recall • optimal results @top 5-10 18 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 Serendipity Precision 0.834 0.832 0.830 0.828 0.826 0.824 0.822 0.820 0.818 Diversity @5 @10 @15 @20 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 Recall Precision/Recall Diversity 0.00 Precision 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 Recall Precision/Recall Serendipity • higher diversity leads to lower precision and higher recall • optimal results @top 5-10
  • 19.
    Outline Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 19 • Introduction and Motivation • Personalised Resource Recommendations - Resource Similarity - Resource Relevance • Experiments and Results • Conclusion and Future Work
  • 20.
    Conclusion Personalised Accessto Linked Data - @m1ci - http://dojchinovski.mk 20 • Method for personalised access to Linked Data - recommendations based on the collaborative filtering technique • Considered aspects: - resources’ commonalities - resources’ informativeness - resources’ connectiviteness • Validated on a dataset from the Web services domain - Linked Web APIs dataset • Future work: - consider other multi-domain datasets - automatic determination of optimal resource contexts distances - publish the Linked Web APIs dataset to the LOD cloud
  • 21.
    Feedback ls:usedAPI #Hashtagram ls:usedAPI ls:usedAPI Personalised Access to Linked Data - @m1ci - http://dojchinovski.mk 21 Thank you! Questions, comments, ideas? Milan Dojchinovski milan.dojchinovski@fit.cvut.cz @m1ci http://dojchinovski.mk dc:creator dc:creator dc:creator creator dc:ls:category usedAPI ls:ls:usedAPI ls:tag ls:tag ls:tag ls:tag ls:usedAPI #microblogginig ls:tag ls:tag ls:tag #Alfredo #FriendLynx #Instagram #Twitter-API #Facebok-API #social #music #search #Microsoft-Bing- API #411Sync-API #MTV-Billboard-charts #Mobile- Weather-Search #mlachwani