This document summarizes a research paper on developing user profiles from search engine queries to enable personalized search results. It discusses how current search engines generally return the same results regardless of individual user interests. The paper proposes methods to construct user profiles capturing both positive and negative preferences from search histories and click-through data. Experimental results showed profiles including both preferences performed best by improving query clustering and separating similar vs. dissimilar queries. Future work aims to use profiles for collaborative filtering and predicting new query intents.