This document discusses applying machine learning algorithms to predict chronic kidney disease. It:
1) Applied three algorithms (C4.5 decision tree, SVM, and Bayesian Network) to a chronic kidney disease dataset containing 400 patients and 24 attributes to classify patients as having chronic kidney disease or not.
2) Found that the C4.5 decision tree algorithm had the best performance based on accuracy (63%), error rate (0.37), kappa statistic (0.97), and other evaluation metrics. SVM and Bayesian Network performance was lower.
3) Concludes C4.5 decision tree is the most efficient algorithm for predicting chronic kidney disease based on this medical dataset.