This document presents an implementation and analysis of parallelizing the training of a multilayer perceptron neural network. It describes distributing the calculations across processor nodes by assigning each processor responsibility for a fraction of nodes in each layer. Theoretical speedups of 1-16x are estimated and experimental speedups of 2-10x are observed for networks with over 60,000 nodes trained on up to 16 processors. Node parallelization provides near linear speedup for training multilayer perceptrons.