SlideShare a Scribd company logo
1 of 142
Download to read offline
Optical Transport Network
Ing. Jorge García Ceballos
OC-A
jormex0104@gmail.com
Objetivo General
Al término del curso, el
participante explicará la
arquitectura de OTN,
Temario
1. Descripción de la Tecnología OTN
2. Señales de Mantenimiento
Capítulo 1
Descripción de la Tecnología OTN
Contenido
1. Jerarquía de Transporte Óptico
2. Estructura de OTN
3. Multiplexación y Mapeo
4. Descripción de los Encabezados
Introducción
La arquitectura de las redes de
transporte actuales están basadas en las
redes de transporte de SDH.
Las redes de SDH sean diseñado y
están optimizadas básicamente para el
transporte de trafico de Voz.
Actualmente se está experimentando un
crecimiento exponencial del volumen de
tráfico de datos .
Ha surgido la necesidad de emigrar
desde las actuales redes
hacia una estructura más flexible y dinámica
Introducción
El resultado consiste en una red de transporte
Óptico ( OTN ) basada en la tecnología WDM.
La red de transporte óptica es una nueva
jerarquía de transporte óptico definida por
ITU-T G.709, G.805, G.806, G872, G798
Consiste de una capa óptica y una capa
eléctrica
G. 709
Define los requisitos para el módulo de transporte
óptico de orden n, (OTN-n)
Define las señales de la red de transporte óptico, en
términos de:
Jerarquía de transporte óptico (OTH)
La funcionalidad del encabezado en el soporte de múltiples
longitudes de onda
Estructura de trama
Frecuencia de bits
Formatos para la asignación de señales de cliente
OTN – Optical Transport Network
Está compuesta de un conjunto de Elementos de Red
Ópticos.
Interconectados con enlaces de fibra óptica.
Capaz de proporcionara funciones de transporte,
multiplexación, enrutamiento, gestión, supervisión y
control de las señales del cliente
De acuerdo a los requerimientos de la recomendación
G. 872
Características de OTN
Comparado con SDH
Alta capacidad con alta
exactitud, Tbit/second por
fibra, vía DWDM
Servicio transparente para
las señales del cliente
Mapeo asíncono, funciones
de FEC, y costo reducido.
Comparado con WDM
Funcionalidades
mejoradas de OAM & red
para todos los servicios
Control dinámico de la
capa electrica/óptical
Recomendaciones OTN
Gestión
Jitter y
Wander
Protección de
Red
Funciones y
Características
de los Equipos
Estructura y
mapeo
Características
de la capa
Física
Arquitectura
G.874
G.874.1
G.8251
G.8201
G.873.1
G.873.2
G.798
G.806
G.709
G.7041
G.7042
G.959.1
G.693
G.694
G.872
G.8080
OTN
Estructura OTN
Estructura y Capas
ODUk(ODUkP、ODUkT)
OPUk
OTUk OTUkV OTUk OTUkV
OCh OChr
OMSn
OTSn
OPSn
IP/MPLS ATM Ethernet STM-NOPUk: Optical channel Payload
Unit-k
ODUk: Optical channel Data Unit-k
OTUk: completely standardized
Optical channel Transport Unit-k
OTUkV: functionally standardized
Optical channel Transport Unit-k
OCh: Optical Channel with full
functionality
OChr: Optical Channel with
reduced functionality
OMS: Optical Multiplex Section
OTS: Optical Transmission Section
OPS: Optical Physical Section
OTM: Optical Transport Module
OTM-0.m
OTM-nr.m
OTM-n.m
OTM-n.m
n representa el máximo número de lambdas que se soportan a la menor velocidad de bit
suportada en la lambda, m=1,2,3,12,23,123;
OTS_OH, OMS_OH, OCh_OH y COMMS OH, campos dentro del OOS
OSC:Optical Supervisory Channel utilizado para transmitir el OOS
OMSn payload
OCCp OCCp OCCp
OCh payload
ODUk FECOH
OPUkOH
Señal del Cliente
OPUk payloadOHOPUk
ODUk
OTUk[V]
OCh
OCG-n.m
OTM-n.m OTSn payloadOTSn OH
OMSn OH
OCCo
OChOH
OCCo
OCCo
OMU-n.m
Non-associatedOH
OOS
commsOH
OTM-n.m
OTM Overhead Signal (OOS)
λ2
λ1
λn
λOSC
OTM-nr.m
Espaciado fijo de canal, independiente del nivel de la señal
1<n≤16, m=1,2,3,12,23,123
Sin canal de supervisión óptica
OPSn
OCCp OCCp OCCp
OCh payload
ODUk FECOH
OPUkOH
Señal del Cliente
OPUk payloadOHOPUk
ODUk
OTUk[V]
OChr
OCG-nr.m
OTM-nr.m
OTM-16r.m
λ2
λ1
λ16
OTM-0.m
El OTM 0.m soporta un canal óptico no coloreado en un solo enlace óptico con
regeneración 3R en cada extremo.
m=1,2,3
Sin canal de supervisión óptico
OCh paylaod
ODUk FECOH
OPUkOH
Señal del Cliente
OPUk payloadOHOPUk
ODUk
OTUk[V]
OChr
OTM-0.m OPS0
OTM-0.m
Interfaces OTN
User to Network Interface (UNI)
Network Node Interface (NNI)
Inter-domain Interface (IrDI)
Intra-domain Interface (IaDI)
Entre equipos de diferente proveedor (IrVI) (Inter Domain Vendor Interface)
Dentro de la sub-red de un proveedor (IaVI)
El completamente estandarizado OTUk se utiliza en OTM IrDIs y puede utilizarse
en OTM IaDIs
El parcialmente estandarizado OTUk se utiliza en OTM IaDIs
OTM
UNI
OTM NNI
IaDI-IrVI
OTM NNI
IaDI-IaVI
OTM NNI
IaDI-IaVI
Operador de Red B
Proveedor X Proveedor Y
OTM
NNI
IrDI
Operador de
Red
C
USUAR
IO
A
Multiplexación
Multiplexación y Mapeo
Mapeo
Multiplexación
ODTUG3
ODTUG2
OChr
OChr
OChr
OCh
OCh
OCh
OTU3[V]
OTU2[V]
OTU1[V]
Señal del
Cliente
Señal del Cliente
OPU3ODU3
OCCr
OCCr
OCCr
OCC
OCC
OCC
OCG-nr.m
1 ≤ i+j+k ≤ n
OCG-n.m
1 ≤ i+j+k ≤ n
OPU2ODU2
×1
OPU1ODU1
OTM-nr.m
OTS, OMS, OCh, COMMSOSC OOS
OTM-n.m
×4
×1
×1×4
×16×1
×1×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
×1
× i
× j
× k
× i
× j
× 1
Señaldel
Cliente
×1
OTM-0.m
× k
Tipos de OTUk y Capacidad
Tipo de
OTU
Velocidad nominal
OTU
Tolerancia
OTU1 255/238 ×××× 2 488 320
kbit/s
±20 ppm
OTU2 255/237 ×××× 9 953 280
kbit/s
OTU3 255/236 ×××× 39 813 120
kbit/s
NOTA – Las velocidades nominales de OTUk son
aproximadamente: 2 666 057.143 kbit/s (OTU1), 10 709
Velocidad OTUk = 255/(239-k) × STM-N bit rateVelocidad OTUk = 255/(239-k) × STM-N bit rate
Page21
Tipos de ODUk y Capacidad
Tipo de
ODU
Velocidad nominal
ODU
Tolerancia
ODU1 239/238 ×××× 2 488 320
kbit/s
±20 ppm
ODU2 239/237 ×××× 9 953 280
kbit/s
ODU3 239/236 ×××× 39 813 120
kbit/s
NOTA – Las velocidades nominales de ODUk son
aproximadamente: 2 498 775.126 kbit/s (ODU1), 10 037
Velocidad ODUk = 239/(239-k) ×STM-N bit rateVelocidad ODUk = 239/(239-k) ×STM-N bit rate
Tipos de OPUk y Capacidad
Tipo de
OPU
Velocidad Nominal OPU Tolerancia
OPU1 2 488 320 kbit/s
±20 ppmOPU2 238/237 ×××× 9 953 280 kbit/s
OPU3 238/236 ×××× 39 813 120 kbit/s
OPU1-Xv X * 2 488 320 kbit/s
±20 ppmOPU2-Xv X * 238/237 * 9 953 280 kbit/s
OPU3-Xv X * 238/236 * 39 813 120 kbit/s
NOTA– Las velocidades nominales de OPUk son aproximadamente: 2 488 320.000
kbit/s (OPU1 Payload), 9 995 276.962 kbit/s (OPU2 Payload) y 40 150 519.322 kbit/s
(OPU3 Payload). Las velocidades nominales de OPUk-Xv son aproximadamente: X
× 2 488 320.000 kbit/s (OPU1-Xv Payload), X × 9 995 276.962 kbit/s (OPU2-Xv
Payload) y X × 40 150 519.322 kbit/s (OPU3-Xv Payload).
Velocidades OPUk = 238/(239-k) ×STM-N bit rateVelocidades OPUk = 238/(239-k) ×STM-N bit rate
ODUk(TDM)
Las señales de baja velocidad ODUk se
multiplexan en señales de alta velocidad
ODUk utilizando TDM:
Hasta 4 señales ODU1 se multiplexan en un ODU2
Es posible multiplexar una mezcla de señales j (j ≤
4) ODU2 y 16-4j ODU1 en un ODU3
Multiplexación ODU1 en ODU2
ODU1flota en ¼ del área de carga del OPU2.
OTU
2
OTU
2FE
C
Client layer signal
(e.g., STM-16, ATM, GFP)
ODU
1 ODU1O
H
Alignm
ODU
2
x4
Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client layer signal
(e.g., STM-16, ATM, GFP)ODU1
OH
ODU2
OH
OPU2
OH
OPU2
Payload
ODU2
OH
Alignm
OPU2
OH
OTU
2
OH Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client Layer Signal
(e.g. STM-16)ODU1
OH
OPU1
OH
Client layer signal
(e.g., STM-16, ATM, GFP)ODU1
OH
OPU1
OH
Alignm
Alignm
OPU1
OH
OPU1
OH
Descripción de los Encabezados
OOS
TTI: Trail Trace Identifier
PMI: Payload Missing Indication
OCI: Open Connection Indication
BDI-O: Backward Defect Indication –Overhead
BDI-P: Backward Defect Indication – Payload
FDI-O: Forward Defect Indication –Overhead
FDI-P: Forward Defect Indication – Payload
Encabezado
NoAsociado
OTSn n
3
2
OCh
1
General Management Communications
OMSn
FDI-O
FDI-P
OCI
BDI-O
BDI-P
PMI
FDI-P
FDI-O
BDI-O
BDI-P
PMI
TTI
Las funciones OOS
están sujetas a
estandarización, la
velocidad y el
formato no están
estandarizados
Trama OTN (k=1,2,3)
3825
4080
1
7
8
14
15
16
17
3824
1
2
3
4
OPU k payload
OPUkOH
OPUk - Optical Channel Payload Unit
ODUk
OH
ODUk – Optical Channel Data Unit
Client signal
mapped in
OPUk payload
Client signal
OTUK
FEC
OTUk
OH
OTUk – Optical Channel Transport Unit
Alignm
Alignment
k :
1 - 2.5G
2 - 10G
3 - 40G
Encabezado Eléctrico OTN
ODUk OH
TCMACT: Tandem Connection Monitoring
Activation/deactivation control channel
TCMi:Tandem Connection Monitoring i
FTFL:Fault Type & Fault Location reporting
channel
PM: Path Monitoring
EXP:Experimental
GCC1/2: General Communication Channel
1/2
APS/PCC:Automatic Protection Swiching
coordination channel/Protection
Communication Control channel
Alignment OH
FAS: Frame Alignment Signal
MFAS: MultiFrame Alignment Signal
OTUk OH
SM: Section Monitoring
GCC0:General Communication Channel0
RES: Reserved for future international
standardisation
OPUk OH
PSI: Payload Structure Identifier
JC: Justification Control
NJO: negative justification opportunity
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS MFAS SM GCC0 RES JCRES
17
FAS
byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
OA1 OA1 OA1 OA2 OA2 OA2
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS MFAS SM GCC0 RES JCRES
17
FAS (Frame Alignment Signal)
A six byte OTUk-FAS signal is defined in row 1, columns 1 to 6 of the
OTUk overhead.
OA1 is 0xF6(1111 0110 ) ,OA2 is 0x28(0010 1000)。
MFAS
MFAS OH Byte
MFASsequence
1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
....
.
.
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
..
MFAS(MultiFrame Alignment Signal)
defined in row 1, column 7;
The value of the MFAS byte will be incremented each
OTUk/ODUk frame and provides as such a 256 frame
multiframe.
Individual OTUk/ODUk overhead signals may use this
central multiframe to lock their 2-frame, 4 frame, 8-
frame, 16-frame, 32-frame, etc., multiframes to the
principal frame.
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS SM GCC0 RES JCRES
17
MFAS
Page31
Encabezado SM de OTUk
TTI (Trail Trace Identifier)
a one-byte overhead is defined to transport the 64 byte
TTI signal
The 64-byte TTI signal shall be aligned with the OTUk
multiframe and transmitted four times per multiframe.
TTI struture:
16 bytes SAPI:Source Access Point Identifier
16 bytes DAPI:Destination Access Point Identifier
32 bytes operator specific
Operator
specific
TTI BIP-8
BEI/BIAE
BDI
RES
1 2 3 4 5 6 7 8
1 2 3
IAE
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS GCC0 RES JCRES
17
MFAS SM
Encabezado SM de OTUk
BIP-8 (Bit Interleaved Parity-8)
For section monitoring, a one-byte error detection code signal is defined.
This byte provides a bit interleaved parity-8 (BIP-8) code ;
The OTUk BIP-8 is computed over the bits in the OPUk (columns 15 to 3824)
area of OTUk frame i, and inserted in the OTUk BIP-8 overhead location in
OTUk frame i+2
BIP8
OPUk
1 14 15 3824
帧i
帧i+1
帧i+2
Encabezado SM de OTUk
BEI/BIAE(Backward Error Indication/ Backward
Incoming Alignment Error)
A four-bit BEI and BIAE signal is defined.
This signal is used to convey in the upstream
direction the count of interleaved-bit blocks and
incoming alignment error (IAE) condition.
During an IAE condition the code "1011" is inserted
into the BEI/BIAE field and the error count is ignored.
Otherwise the error count (0-8) is inserted into the
BEI/BIAE field.
Operator
specific
TTI BIP-8
BEI/BIAE
BDI
RES
1 2 3 4 5 6 7 8
1 2 3
IAE
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS GCC0 RES JCRESMFAS SM
Encabezado SM de OTUk
BDI (Backward Defect Indication)
A single-bit backward defect indication (BDI)
signal is defined to convey the signal fail status
detected in a section termination sink function in
the upstream direction.
BDI is set to "1" to indicate an OTUk backward
defect indication; otherwise, it is set to "0"
Operator
specific
TTI BIP-8
BEI/BIAE
BDI
RES
1 2 3 4 5 6 7 8
1 2 3
IAE
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS GCC0 RES JCRES
17
MFAS SM
Encabezado SM de OTUk
IAE (Incoming Alignment Error)
A single-bit incoming alignment error (IAE) signal is
defined to allow the S-CMEP ingress point to inform its
peer S-CMEP egress point that an alignment error in the
incoming signal has been detected.
IAE is set to "1" to indicate a frame alignment error,
otherwise it is set to "0".
RES (Reserved)
two bits are reserved (RES) for future international
standardization. They are set to "00".
Operator
specific
TTI BIP-8
BEI/BIAE
BDI
RES
1 2 3 4 5 6 7 8
1 2 3
IAE
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS GCC0 RES JCRES
17
MFAS SM
GCC0 (General Communication Channel)
Two bytes are allocated in the OTUk overhead to support a general
communications channel between OTUk termination points
A clear channel which are located in row 1, columns 11 and 12
RES (Reserved)
Two bytes of OTUk overhead are reserved for future international
standardization
located in row 1, columns 13 and 14
set to all ZEROs
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4
PM
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
Encabezado OTUk GCC0 y RES
Encabezado ODUk PM
TTI / BIP-8 / BEI / BDI
For path monitoring, this overheads’ function are the
same as OTUk SM signal, except BEI signal which
doesn’t support BIAE function.
in row 3, columns 10 to 12
Operator
specific
TTI BIP-8
BEI
BDI
STAT
1 2 3 4 5 6 7 8
1 2 3
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PM
Encabezado ODUk PM
Operator
specific
TTI BIP-8
BEI
BDI
STAT
1 2 3 4 5 6 7 8
1 2 3
63
32
0
15
16
31
SAPI
DAPI
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2 TCM1
TCM4TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PM
Bit 6 7 8 status
0 0 0 Reserved for future international standardization
0 0 1 Normal path signal
0 1 0 Reserved for future international standardization
0 1 1 Reserved for future international standardization
1 0 0 Reserved for future international standardization
1 0 1 Maintenance signal: ODUk - LCK
1 1 0 Maintenance signal: ODUk - OCI
1 1 1 Maintenance signal: ODUk - AIS
STAT (Status)
For path monitoring, three bits are defined as
status bits
They indicate the presence of a maintenance
signal
Encabezado ODUk TCM
TTIi / BIP-8i / BEIi/BIAEi / BDIi
For each tandem connection monitoring field,
this overheads’ function are the same as
OTUk SM signal
Six fields of ODUk TCM overhead are
defined in row 2, columns 5 to 13 and row 3,
columns 1 to 9 of the ODUk overhead
TTIi BIP-8i
BEIi/BIAEi
BDIi
STATi
1 2 3 4 5 6 7 8
1 2 3
63
32
0
15
16
31
SAPI
DAPI
Operator
specific
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS RES JCRESMFAS SM GCC0
PMTCM1TCM2TCM3
TCM6 TCM5 TCM4
Encabezado ODUk TCM
TTIi BIP-8i
BEIi/BIAEi
BDIi
STATi
1 2 3 4 5 6 7 8
1 2 3
63
32
0
15
16
31
SAPI
DAPI
Operator
specific
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIGCC2 APS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
Bit 6 7 8 status
0 0 0 No source TC
0 0 1 In use without IAE
0 1 0 In use without IAE
0 1 1
Reserved for future international
standardization
1 0 0
Reserved for future international
standardization
1 0 1 Maintenance signal: ODUk -LCK
1 1 0 Maintenance signal: ODUk -OCI
1 1 1 Maintenance signal: ODUk -AIS
TCM2TCM3
TCM6 TCM5 TCM4
STAT (Status)
For each tandem connection monitoring field, three
bits are defined as status bits.
They indicate the presence of a maintenance
signal, if there is an incoming alignment error at
the source TC-CMEP, or if there is no source TC-
CMEP active.
Page41
Monitoreo de Conexiones Anidadas
y en Cascada de ODUk
A1 B1 C1 C2 B2 B3 B4 A2
A1 - A2
B1 - B2
C1 - C2
B3 - B4
TCM1 TCM1
TCM2
TCM1
TCM2
TCM3
TCM1
TCM2
TCM1 TCM1
TCM2
TCM1
TCM2
TCM3
TCM4
TCM5
TCM6
TCMi TCM OH field not in use TCMi TCM OH field in use
TCM2
TCM3
TCM4
TCM5
TCM6
TCM2
TCM3
TCM4
TCM5
TCM6
TCM3
TCM4
TCM5
TCM6
TCM3
TCM4
TCM5
TCM6
TCM3
TCM4
TCM5
TCM6
TCM4
TCM5
TCM6
Page42
Monitoreo de Conexiones Overlapping
ODUk
A1 B1 C1 C2B2 A2
A1 - A2
B1 - B2
C1 - C2
TCM1 TCM1
TCM2
TCM1
TCM2
TCM3
TCM1
TCM2
TCM1
TCMi TCM OH field not in use TCMi TCM OH field in use
TCM2
TCM3
TCM4
TCM5
TCM6
TCM2
TCM3
TCM4
TCM5
TCM6
TCM3
TCM4
TCM5
TCM6
TCM3
TCM4
TCM5
TCM6
TCM4
TCM5
TCM6
ODUk TCM ACT
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4
TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIAPS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2
TCMACT (TCM Activation/Deactivation)
A one-byte TCM activation/deactivation field is located in row 2,
column 4.
Its definition is for further study.
ODUk GCC1/GCC2
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIAPS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2
GCC1 / GCC2 (General Communication Channel)
Two fields of two bytes are allocated in the ODUk overhead to support two
general communications channels between any two network elements with
access to the ODUk frame structure (i.e., at 3R regeneration points).
The bytes for GCC1 are located in row 4, columns 1 and 2, and the bytes
for GCC2 are located in bytes row 4, columns 3 and 4 of the ODUk
overhead.
Canal ODUk APS/PCC
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIRES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2 APS/PCC
APS/PCC (Automatic Protection Switching/Protection
Communication Control)
A four-byte ODUk-APS/PCC signal is defined in row 4, columns 5 to 8 of the
ODUk overhead.
For linear protection schemes, the bit assignments for these bytes and the bit
oriented protocol are given in ITU-T Rec. G.873.1. Bit assignment and byte
oriented protocol for ring protection schemes are for further study.
Up to eight levels of nested APS/PCC signals may be present in this field.
Canal ODUk FTFL
FTFL Fault Type & Fault Location)
One byte is allocated in the ODUk overhead to transport a 256-byte fault type
and fault location (FTFL) message.
The byte is located in row 2, column 14 of the ODUk overhead.
The 256-byte FTFL message consists of two 128-byte fields. The forward
field is allocated to bytes 0 through 127 of the FTFL message. The backward
field is allocated to bytes 128 through 255 of the FTFL message .
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
RES JC
RES JC
NJOPSIAPS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2
FTFL
Encabezado ODUk Experimental y
Reservado
EXP (Experimental)
Two bytes are allocated in the ODUk overhead for experimental use.
located in row 3, columns 13 and 14 of the ODUk overhead
There is no requirement to forward the EXP overhead beyond the (sub)network.
RES
Nine bytes are reserved in the ODUk overhead for future international
standardization
located in row 2, columns 1 to 3 and row 4, columns 9 to 14 of the ODUk overhead
set to all ZEROs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
FTFL RES JC
RES JC
NJOPSIAPS/PCC
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2
EXP
RES
RES
Identificador de Estructura de Carga
de OPUk
PSI (Payload Structure Identifier)
One byte is allocated in the OPUk
overhead to transport a 256-byte payload
structure identifier (PSI) signal
aligned with the ODUk multiframe.
PSI[0] contains a one-byte payload type.
PSI[1] to PSI[255] are mapping and
concatenation specific .
255
0
1
PT
Mapping
& concatenation
specific
RES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
RES JC
RES JC
NJOAPS/PCC RES
EXP
FAS RES JCRES
17
MFAS SM GCC0
PMTCM1
GCC2
FTFL
PSI
Códigos de Tipo de Carga
MSB 1 2 3 4 LSB 1 2 3 4 Hex code Interpretation
0 0 0 0 0 0 0 1 01 Experimental mapping
0 0 0 0 0 0 1 0 02 Asynchronous CBR mapping
0 0 0 0 0 0 1 1 03 Bit synchronous CBR mapping
0 0 0 0 0 1 0 0 04 ATM mapping
0 0 0 0 0 1 0 1 05 GFP mapping
0 0 0 0 0 1 1 0 06 Virtual Concatenated signal
0 0 0 1 0 0 0 0 10 Bit stream with octet timing mapping
0 0 0 1 0 0 0 1 11 Bit stream without octet timing mapping
0 0 1 0 0 0 0 0 20 ODU multiplex structure
0 1 0 1 0 1 0 1 55 Not available
0 1 1 0 0 1 1 0 66 Not available
1 0 0 0 x x x x 80-8F Reserved codes for proprietary use
1 1 1 1 1 1 0 1 FD NULL test signal mapping
1 1 1 1 1 1 1 0 FE PRBS test signal mapping
1 1 1 1 1 1 1 1 FF Not available
Encabezado OPUk
JC / NJO / RES (contorl de justificación / oportunidad de
justificación negativa / reservado)
Se reservan siete bytes en el encabezado OPUk para mapeo y
concatenación
Estos bytes se localizan en las filas 1 a 3, columnas 15 y 16 y columna 16 fila
4.
255 bytes en el PSI están reservados para propósitos específicos de
concatenación
RES
1
2
3
4
TCM3
TCM6 TCM5
TCM2
TCM4TCM
ACT
GCC1
RES JC
JC
APS/PCC RES
EXP
FAS RES JCRESMFAS SM GCC0
PMTCM1
GCC2 PSI
FTFL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
RES
NJO
Señales de Mantenimiento
Señales de Mantenimiento
FDI((((forward defect indication))))
FDI is a signal sent downstream as an indication that an upstream defect
has been detected.
An FDI signal is detected in a trail termination sink function to suppress
defects or failures that would otherwise be detected as a consequence of
the interruption of the transport of the original signal at an upstream point..
AIS and FDI are similar signals. AIS is used as term when the signal is in
the digital domain. FDI is used as the term when the signal is in the optical
domain.
FDI is transported as non associated overhead in the OTM overhead
signal (OOS).
Señales de Mantenimiento
AIS((((alarm indication signal))))
AIS is a signal sent downstream as an indication that an
upstream defect has been detected. An AIS signal is generated
in an adaptation sink function
An AIS signal is detected in a trail termination sink function to
suppress defects or failures that would otherwise be detected as
a consequence of the interruption of the transport of the original
signal at an upstream point.
Señales de Mantenimiento
AIS((((alarm indication signal))))
ODUk-AIS is specified as all "1"s in the entire ODUk signal,
excluding the frame alignment overhead (FA OH), OTUk
overhead (OTUk OH) and ODUk FTFL
The presence of ODUk-AIS is detected by monitoring the ODUk
STAT bits in the PM and TCMi overhead fields
1
2
3
4
1 17 3824
All-1s pattern
87 14
FTFL
FA OH OTUk OH
STAT
STAT
STAT
STAT
STAT
STAT
STAT
Señales de Mantenimiento
BDI (Backward Defect Indication)
Backward Defect Indication Payload defect (dBDI-P) is monitored at
the OTS and OMS layers. The purpose of monitoring this parameter
is to allow for single ended supervision of the trail
BDI-P (dBDI-P) defect shall be declared/cleared at the trail
termination sink function within X ms/Y ms of detecting the far-end
defect causing the insertion of BDI-P into the OOS.
X and Y are for further study.
During signal fail conditions of the overhead signal, dBDI-P shall be
set to false
Señales de Mantenimiento
PMI (Payload Missing Indication)
PMI defect is monitored at the OTS and OMS layers. The purpose of
monitoring this parameter is to suppress downstream loss of signal alarms
at the trail termination sink due to upstream defects causing missing
payload at the start of the trail.
PMI defect (dPMI) shall be declared/cleared at the trail termination sink
function within X ms/Y ms of detecting the missing payload condition
causing the insertion of PMI into the OOS
During signal fail conditions of the overhead signal, dPMI shall be set to
false .
Señales de Mantenimiento
OCI (open connection indication)
A signal sent downstream as an indication that upstream the signal is not connected to a
trail termination source
The presence of ODUk-OCI is detected by monitoring the ODUk STAT bits in the PM
and TCMi overhead fields.
The repeating "0110 0110" pattern is the default pattern; other patterns are also allowed
as long as the STAT bits in the PM and TCMi overhead fields are set to "110".
1
2
3
4
1 17 382487 14
FTFL
FA OH OTUk OH
STAT
STAT
STAT
STAT
STAT
STAT
STAT
Repeating “0110 0110” pattern
Señales de Mantenimiento
LCK (locked)
A signal sent downstream as an indication that upstream the connection is
"locked", and no signal is passed through.
The presence of ODUk-LCK is detected by monitoring the ODUk STAT
bits in the PM and TCMi overhead fields.
dLCK shall be declared if the accepted STAT information (AcSTAT) is
“101”. dLCK shall be cleared if the accepted STAT information is not equal
to “101”.
During signal fail conditions of the data signal, dLCK shall be set to false.
1
2
3
4
1 17 382487 14
FTFL
FA OH OTUk OH
STAT
STAT
STAT
STAT
STAT
STAT
STAT
Repeating “0101 0101”pattern
Señales de Mantenimiento
IAE (Incoming Alignment Error)
IAE at the OTUk layer: dIAE shall be declared/cleared if the IAE bit in
the SM overhead field (byte 3, bit 6) is “1”/ “0” for X consecutive frames.
X shall be 5.
IAE at the ODUkT layer: dIAE shall be declared/cleared if the accepted
STAT information (AcSTAT) is/is not “010”.
During signal fail conditions of the data signal, dIAE shall be set to
false .
BIAE (Backward Incoming Alignment Error)
dBIAE shall be declared/cleared if the BEI/BIAE bits in the SM/TCM overhead
field (byte 3, bit 1 to 4) are/are not “1011” for X consecutive frames. X shall be 3.
During signal fail conditions of the data signal, dBIAE shall be set to false .
Page60
Señales de Mantenimiento y
Administración
Management
function
signal
Network layers
OTUk ODUkP ODUkT
Alignment LOF/LOM Y Y –
Connectivity TTI Y Y Y
Maintenance
Signal
AIS Y Y Y
OCI – Y Y
LCK – Y Y
LTC – – Y
BDI Y Y Y
BEI Y Y Y
IAE/BIAE Y – Y
Signal quality BIP-8 Y Y Y
Page61
OTN Layer Network Trail
NODE A using general OTU, generate SM、PM、TCM1。
NODE B using regenerator OTU, terminate SM, generate SM。
NODE C using Line unit OTU, terminate SM、TCM1, generate SM。
NODE D using general OTU, terminate SM、PM。
NODE A
TM
NODE D
TM
NODE B
REG
NODE C
ODU ADM
OTS OTS OTS
OMS OMS OMS
OTU/OCH OTU/OCH OTU/OCH
ODUkT
ODUkP
Client
signal
Eventos de Alarma y Desempeño
Alarmas
Layer Alarm
OTUk OTUk_LOF、OTUk_AIS、OTUk_LOM、OTUk_TIM、OTUk_DEG、
OTUk_EXC、OTUk_BDI、BEFFEC_EXC
ODUk_PM ODUk_PM_TIM、ODUk_PM_DEG、ODUk_PM_EXC、
ODUk_PM_BDI、ODUk_PM_LCK、ODUk_PM_OCI、
ODUk_PM_AIS、ODUk_LOFLOM
ODUk_TCMi ODUk_TCMi_TIM、ODUk_TCMi_DEG 、ODUk_TCMi_EXC 、
ODUk_TCMi_BDI、 ODUk_TCMi_LCK、ODUk_TCMi_OCI、
ODUk_TCMi_AIS、ODUk_TCMi_LTC
OPUk OPUk_PLM、OPU2_MSIM、OPU3_MSIM
Remark: k=1,2,3,5G, i=1~6;
Eventos de Desempeño
layer Performance events
OTUk OTUk_BBE 、OTUk_BBER、OTUk_BIAES、OTUk_ES、OTUk_FEBBE、
OTUk_FEBBER、OTUk_FEES、OTUk_FESES、OTUk_FESESR、
OTUk_FEUAS、OTUk_IAES、OTUk_SES、OTUk_SESR、OTUk_UAS、
FEC_AFT_COR_ER
ODUk_PM ODUk_PM_BBE、ODUk_PM_BBER、ODUk_PM_ES、ODUk_PM_FEBBE、
ODUk_PM_FEBBER、ODUk_PM_FEES、ODUk_PM_FESES、
ODUk_PM_FESESR、ODUk_PM_FEUAS、ODUk_PM_SES、ODUk_PM_SESR、
ODUk_PM_UAS
ODUk_TCM
i
ODUk_TCMi_BBE、ODUk_TCMi_BBER、ODUk_TCMi_BIAES、ODUk_TCMi_ES、
ODUk_TCMi_FEBBE、ODUk_TCMi_FEBBER、ODUk_TCMi_FEES、
ODUk_TCMi_FESES、ODUk_TCMi_FESESR、ODUk_TCMi_FEUAS、
ODUk_TCMi_IAES、ODUk_TCMi_SES、ODUk_TCMi_SESR、ODUk_TCMi_UAS
K=1,2,3,5G i=1~6.
Escenarios Típicos de OTN
Page66
Illustration
XXXX = color (255/153/0) hypothetical condition (e.g. fiber broken, insert
LCK)
XXXX = color (102/153/0) Consequent Action(e.g. insert AIS,BDI)
XXXX = color (0/0/0) detect defect(e.g. R_LOS,ODUK_PM_AIS)
fiber
NODEA
Page67
Scenarios hypothesis
These hypothesis apply to all scenarios :
TIM insert AIS downward, TIM suppression
enable
Monitoring both SAPI and DAPI to report
TIM
ALS、APR function disable
BIP-8 monitoring only report DEG
Page68
Contents
2. Typical Scenarios of OTN
2.1 point to point ODU2
2.2 ODU1 ADM
2.3 4*GE service convergence
2.4 TCM nested
2.5 TCM cascaded
Page69
Case 1:point to point ODU2
Bidirectional client service between A and C station.
A, C (ODU TM):general OTU (LSX)
B (OTU REG):regenerator OTU (LSXR)
A B C
OTU2 OTU2
ODU2P
Page70
Functional block
OCh
source
function
ODU2P
source
function
OTU2
source
function
ODU2P
sink
function
OTU2
sink
function
OCh sink
function
OCh
sink
function
OTU2
sink
function
OTU2
source
function
OCh
source
function
OTU2
source
function
OTU2
sink
function
OCh
source
function
OCh
sink
function
A,C
B
Page71
Insert LCK at node A
A B C
ODU2_PM_LCK
ODU2_PM_BD
I
ODU2_LCK
ODU2_PM_aBDI
Page72
Fiber broken between A and B
A B C
ODU2_PM_AIS
OTU2_BDI
ODU2_PM_BDI
R_LO
S
Fiber broken
X
ODU2_aAIS
OTU2_aBDI
Page73
Fiber degrade between A and B
A B C
ODU2_PM_DEG
OTU2_DE
G
/
Fiber degrade OTU2_aBEI
ODU2_PM_aBEI
OTU2_BEI performance
ODU2_PM_BEI performance
Page74
Fiber badly degrade
A B C
ODU2_PM_AIS
OTU2_LO
F
/
Fiber degrade OTU2_aBDI
ODU2_PM_aBDI
OTU2_BDI
ODU2_PM_B
DI
ODU2_aAIS
Page75
Receiving TTI is mismatch at B
A B C
ODU2_PM_AIS
OTU2_TIM
OTU2_BDI
ODU2_PM_BDI
SM_ExDAPI mismatch
ODU2_aAIS
OTU2_aBDI
ODU2_PM_aBDI
Page76
Receiving TTI is mismatch at C
A B C
ODU2_PM_TIM
ODU2_PM_BDI
PM_ExDAPI mismatch
ODU2_PM_aBDI
Page77
Client signal lost at A
A B C
x
Fiber broken
ClientSFR_LO
S
Page78
Contents
2. Typical Scenarios of OTN
2.1 point to point ODU2
2.2 ODU1 ADM
2.3 4*GE service convergence
2.4 TCM nested
2.5 TCM cascaded
Page79
Case 2:ODU1 ADM
One wavelength (OTU2) transmit among different stations, include 4
ODU1::::
The first ODU1service: ABC bidirectional
The second ODU1service:ABCD bidirectional
The third ODU1service: ABCDE bidirectional
The forth ODU1service: EF bidirectional
A B C D E F
ODU1P
ODU1P
ODU1P
ODU1P
OTU2
ODU2P
OTU2
ODU2P
OTU2
ODU2P
OTU2
ODU2P
OTU2
ODU2P
Page80
ODU1 ADM functional block
OCh
source
function
ODU2P
source
function
OTU2
source
function
ODU2P
sink
function
OTU2
sink
function
OCh
sink
function
ODU2
source
function
OTU2
source
function
ODU2
sink
function
OTU2
sink
function
OCh
source
function
OCh
sink
function
ODU1P
source
function
ODU1P
sink
function
ODU1
XC
function
OCh
sink
function
OTU2
sink
function
OCh
source
function
OTU2
source
function
ODU2
sink
function
ODU2
source
function
ODU1
XC
function
A,F
B
Page81
ODU1 ADM functional block
ODU2
source
function
OTU2
source
function
ODU2
sink
function
OTU2
sink
function
OCh
source
function
OCh sink
function
OCh
sink
function
OTU2
sink
function
OCh
source
function
OTU2
source
function
ODU2
sink
function
ODU2
source
function
ODU1
XC
function
ODU1
source
function
ODU1
sink
function
ODU1
sink
function
ODU1
源功能
C,D,E
Page82
Insert ODU1_LCK at A
A B C D E F
ODU1_LCK
ODU1_PM_LCK
ODU1_PM_BDI
A insert ODU1_LCK to the third ODU1 service between
A,E
Page83
Insert ODU2_LCK at A
A B C D E F
ODU2_LCK
ODU2_PM_LCK
ODU2_PM_BDI
3×ODU1_PM_BD
I
ODU1_PM_AIS
ODU1_PM_AIS
ODU1_PM_AIS
Page84
Fiber broken between A and B
A B C D E F
OTU2_BDI
ODU2_PM_BDI
ODU1_PM_BDI
ODU1_PM_BDI
ODU1_PM_BDI
R_LOS
Fiber broken
X
ODU1_PM_A
IS
ODU1_PM_AIS
ODU1_PM_AIS
Page85
Fiber degrade between A and B
A B C D E F
OTU2_DEG
ODU2_PM_DEG
ODU1_PM_DEG
ODU1_PM_DEG
ODU1_PM_DEG
/
Fiber degrade
OTU2_BEI performance
ODU2_PM_BEI performance
ODU1_PM_BEI performance
ODU1_PM_BEI performance
ODU1_PM_BEI performance
Page86
Contents
2. Typical Scenarios of OTN
2.1 point to point ODU2
2.2 ODU1 ADM
2.3 4*GE service convergence
2.4 TCM nested
2.5 TCM cascaded
Page87
Case 3:4*GE service
convergence
4*GE service converge at node C using one wavelength (5G) in
network:
The first GE service : BC bidirectional
The second GE service: ABC bidirectional
The third GE service: DC bidirectional
The forth GE service: EDC bidirectional
A B C D E
GE GE
GE GE
OTU5G
ODU5G
OTU5G
ODU5G
OTU5G
ODU5G
OTU5G
ODU5G
Page88
Functional block
OCh
source
function
ODU5G
source
function
OTU5G
source
function
ODU5G
sink
function
OTU5G
sink
function
OCh sink
function
ODU5G
source
function
OTU5G
source
function
ODU5G
sink
function
OTU5G
sink
function
OCh
source
function
OCh sink
function
GE
XC
function
OCh sink
function
OTU5G
sink
function
OCh
source
function
OTU5G
source
function
ODU5G
sink
function
ODU5G
source
function
GE
XC
function
A,E
B,C,D
Page89
Insert LCK at A
ODU5G_PM_LCK
ODU5G_LCK
ODU5G_PM_BDI
A B C D E
Page90
Fiber broken between A and B
A B C D E
Fiber broken
OTU5G_BDI
ODU5G_PM_B
DI
x
R_LOS
Page91
Fiber degrade between A and B
A B C D E
Fiber degrade
OTU5G_BEI performance
ODU5G_PM_BEI
performance
/
OTU5G_DEG
ODU5G_PM_DEG
Page92
Contents
2. Typical Scenarios of OTN
2.1 point to point ODU2
2.2 ODU1 ADM
2.3 4*GE service convergence
2.4 TCM nested
2.5 TCM cascaded
Page93
Case 4: nested TCM
OTU1 service transmit among different stations
ODU1 service between A and F
A B C D E F
TCM2
TCM1
OTU1 OTU1OTU1OTU1OTU1
ODU1
Page94
OCh
sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
Functional block
TCM1
source
function
OTU1
source
function
TCM1
sink
function
OTU1
sink
function
OCh
source
function
OCh sink
function
ODU1P
source
function
ODU1P
sink
function
ODU1
XC
function
OCh
sink
function
OCh
source
function
OTU1 sink
function
OTU1
source
function
ODU1
XC
function
B
TCM2
source
function
OTU1
source
function
TCM2
sink
function
OTU1
sink
function
OCh
source
function
OCh
sink
function
OCh sink
function
OCh
source
function
OTU1
sink
function
OTU1
source
function
ODU1
XC
function
A,F
C
Page95
Functional block
OTU1
source
function
OTU1
sink
function
OCh
source
function
OCh sink
function
OCh sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
TCM2
sink
function
TCM2
source
function
ODU1
XC
function
OTU1
source
function
OTU1
sink
function
OCh
source
function
OCh
sink
function
OCh sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
TCM1
sink
function
TCM1
source
function
ODU1
XC
function
D
E
Page96
Insert LCK at A
A B C D E F
ODU1_LCK
ODU1_PM_LCK
ODU1_PM_BDI
TCM2
TCM1
Page97
Insert LCK at B on TCM
Operating Mode
A B C D E F
ODU1_LCK
ODU1_TCM1_LCKODU1_PM_AIS
ODU1_PM_BD
I
ODU1_TCM1_B
DI
TCM2
TCM1
Page98
Insert LCK at B on TCM
monitoring Mode
A B C D E F
ODU1_LCK
ODU1_TCM1_LCK
ODU1_PM_LCK
ODU1_PM_B
DI
ODU1_TCM1_BDI
TCM2
TCM1
Page99
Insert LCK at C on TCM
Operating Mode
A B C D E F
ODU1_LCK
ODU1_TCM2_LCK
ODU1_TCM1_AIS
ODU1_PM_AIS
ODU1_PM_B
DI ODU1_TCM1_B
DI
ODU1_TCM2_B
DI
TCM2
TCM1
Page100
Insert LCK at C on TCM
Operating Mode
A B C D E F
ODU1_LCK
ODU1_TCM2_LCK
ODU1_TCM1_LC
K
ODU1_PM_LCK
ODU1_PM_B
DI ODU1_TCM1_B
DI
ODU1_TCM2_B
DI
TCM2
TCM1
Page101
Fiber broken between A and B
A B C D E F
Fiber broken
R_LOS ODU1_PM_AIS
x
OTU1_BDI
ODU1_PM_BD
I
TCM2
TCM1
Page102
Fiber broken between B and C
A B C D E F
Fiber
broken
R_LOS ODU1_PM_AIS
x
ODU1_TCM1_AI
S
ODU1_PM_BD
I
OTU1_BDI
ODU1_TCM1_B
DI
TCM2
TCM1
Page103
Fiber broken between C and D
A B C D E F
Fiber broken
R_LOS
ODU1_PM_AIS
x
ODU1_TCM1_AI
S
ODU1_PM_BDI
ODU1_TCM1_B
DI
OTU1_BDI
ODU1_TCM2_B
DI
TCM2
TCM1
Page104
Fiber broken between D and E
A B C D E F
Fiber
broken
R_LOS
ODU1_PM_AIS
x
ODU1_PM_B
DI ODU1_TCM1_BDI OTU1_B
DI
TCM2
TCM1
Page105
Fiber degrade between A and B
A B C D E F
ODU1_PM_DEGFiber
degrade
/
OTU1_DEG
OTU1_BEI performance
ODU1_PM_BEI performance
TCM2
TCM1
Page106
Fiber degrade between B and C
A B C D E F
ODU1_PM_DEGFiber
degrade
/
OTU1_DEG
ODU1_TCM1_DEG
OTU1_PM_BEI performance
OTU1_BEI performance
ODU1_TCM1_BEI performance
TCM2
TCM1
Page107
Fiber degrade between C and D
A B C D E F
ODU1_PM_DEGFiber
degrade
/
ODU1_TCM1_DEGOTU1_DEG
ODU1_TCM2_DEG
ODU1_TCM1_BEI performance
ODU1_PM_BEI performance OTU1_BEI performance
ODU1_TCM2_BEI performance
TCM2
TCM1
Page108
Without TCM1 source on
operating mode
A B C D E F
ODU1_PM_AIS
Without TCM1 source
ODU1_TCM1_LTC
ODU1_TCM1_TIM
ODU1_PM_BD
I ODU1_TCM1_BD
I
TCM2
TCM1
Page109
Without TCM1 source on
monitoring mode
A B C D E F
Without TCM1 source
ODU1_TCM1_LTC
ODU1_TCM1_TIM
ODU1_TCM1_B
DI
TCM2
TCM1
Page110
Without TCM2 source on operating
mode
A B C D E F
ODU1_PM_AIS
Without
TCM2
source
ODU1_TCM2_LTC
ODU1_TCM2_TIM
ODU1_PM_B
DI
ODU1_TCM1_BD
I
ODU1_TCM1_AI
S
ODU1_TCM2_BDI
TCM2
TCM1
Page111
Without TCM2 source on
monitoring mode
A B C D E F
Without
TCM2
source
ODU1_TCM2_LTC
ODU1_TCM2_BDI
TCM2
TCM1
Page112
Receiving TTI is mismatch at D
on operating mode
A B C D E F
ODU1_PM_AIS
ExDAPI mismatchODU1_TCM1_AI
S
ODU1_TCM2_TIM
ODU1_PM_BD
I ODU1_TCM1_BD
I
ODU1_TCM2_BDI
TCM2
TCM1
Page113
Receiving TTI is mismatch at D
on monitoring mode
A B C D E F
ExDAPI mismatch
ODU1_TCM2_TIM
ODU1_TCM2_B
DI
TCM2
TCM1
Page114
Contents
2. Typical Scenarios of OTN
2.1 point to point ODU2
2.2 ODU1 ADM
2.3 4*GE service convergence
2.4 TCM nested
2.5 TCM cascaded
Page115
Case 5:TCM cascaded
OTU1 service transmit among different stations
ODU1 service between A and F
A B C D E F
TCM1 TCM2
OTU1 OTU1OTU1OTU1OTU1
ODU1
Page116
Functional block
OCh
sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
TCM1
source
function
OTU1
source
function
TCM1
sink
function
OTU1
sink
function
OCh
source
function
OCh
sink
function
ODU1P
source
function
ODU1P
sink
function
ODU1
XC
function
OCh sink
function
OCh
source
function
OTU1
sink
function
OTU1
source
function
ODU1
XC
function
B
TCM2
source
function
OTU1
source
function
TCM2
sink
function
OTU1
sink
function
OCh
source
function
OCh
sink
function
OCh
sink
function
OCh
source
function
OTU1
sink
function
OTU1
source
function
ODU1
XC
function
A,F
D
Page117
Functional block
OTU1
source
function
OTU1
sink
function
OCh
source
function
OCh sink
function
OCh
sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
TCM2
sink
function
TCM2
source
function
ODU1
XC
function
OTU1
source
function
OTU1
sink
function
OCh
source
function
OCh
sink
function
OCh sink
function
OTU1
sink
function
OCh
source
function
OTU1
source
function
TCM1
sink
function
TCM1
source
function
ODU1
XC
function
C
E
Page118
Insert LCK at A
A B C D E F
ODU1_LCK ODU1_PM_LCK
TCM1 TCM2
ODU1_PM_BDI
Page119
Insert LCK at B on operating
mode
A B C D E F
ODU1_LCK
ODU1_TCM1_LCK
ODU1_PM_AIS
ODU1_PM_B
DI
ODU1_TCM1_BDI
TCM1 TCM2
Page120
Insert LCK at B on monitoring
mode
A B C D E F
ODU1_LCK
ODU1_TCM1_LCK
ODU1_PM_LCK
ODU1_PM_B
DI
ODU1_TCM1_B
DI
TCM1 TCM2
Page121
Insert LCK at D on operating
mode
A B C D E F
ODU1_LCK
ODU1_TCM2_LCK
ODU1_PM_AIS
ODU1_PM_B
DI
ODU1_TCM2_B
DI
TCM1 TCM2
Page122
Insert LCK at D on monitoring
mode
A B C D E F
ODU1_LCK
ODU1_TCM2_LCK
ODU1_PM_LCK
ODU1_PM_BD
I
ODU1_TCM2_BD
I
TCM1 TCM2
Page123
Fiber broken between A and B
A B C D E F
Fiber
broken
R_LOS ODU1_PM_AIS
x
OTU1_BDI
ODU1_PM_BDI
TCM1 TCM2
Page124
Fiber broken between B and C
A B C D E F
Fiber
broken
R_LOS ODU1_PM_AI
S
x
ODU1_PM_B
DI
OTU1_BDI
ODU1_TCM1_BDI
TCM1 TCM2
Page125
Fiber broken between C and D
A B C D E F
Fiber broken
R_LOS
ODU1_PM_A
IS
x
ODU1_PM_B
DI
OTU1_BDI
TCM1 TCM2
Page126
Fiber broken between D and E
A B C D E F
Fiber broken
R_LOS ODU1_PM_AIS
x
ODU1_PM_B
DI
OTU1_BDI
ODU1_TCM2_BD
I
TCM1 TCM2
Page127
Fiber degrade between A and B
A B C D E F
ODU1_PM_DEGFiber
degrade
/
OTU1_DEG
OTU1_BEI performance
ODU1_PM_BEI performance
TCM1 TCM2
Page128
Fiber degrade between B and C
A B C D E F
ODU1_PM_DEGFiber
degrade
/
OTU1_DEG
ODU1_TCM1_DEG
OTU1_BEI performance
ODU1_TCM1_BEI
performance
TCM1 TCM2
Page129
Fiber degrade between C and D
A B C D E F
ODU1_PM_DEGFiber
degrade/
OTU1_DEG
OTU1_BEI
performance
ODU1_PM_B
EI
performance
TCM1 TCM2
Page130
Without TCM1 source on
operating mode
A B C D E F
ODU1_PM_AISWithout
TCM1
source
ODU1_TCM1_LTC
ODU1_TCM1_TIM
ODU1_PM_B
DI
ODU1_TCM1_B
DI
TCM1 TCM2
Page131
Without TCM1 source on
monitoring mode
A B C D E F
Without
TCM1
source
ODU1_TCM1_LTC
ODU1_TCM1_TIM
ODU1_TCM1_BDI
TCM1 TCM2
Page132
Receiving TTI is mismatch at C
on operating mode
A B C D E F
ODU1_PM_AISExDAPI mismatch
ODU1_TCM1_TI
M
ODU1_PM_B
DI ODU1_TCM1_BDI
TCM1 TCM2
Page133
Receiving TTI is mismatch at C
on monitoring mode
A B C D E F
ExDAPI mismatch
ODU1_TCM1_TI
M
ODU1_TCM1_B
DI
TCM1 TCM2
Page134
Questions
What kind of the components compose
the OTM-n.m?
OTSn, OMSn, OCh, OTUk/OTUkV, ODUk,
OPUk
What’s the difference with the BIP-8 byte
function among SM,PM,TCMi?
All of them the BIP-8 is computed over the
bits in the OPUk (columns 15 to 3824) area,
but for different layers on OTUk, ODUkP,
ODUKT.
How many types of the TCM applications
we have?
Page135
Summary
1. Optical transport hierarchy
2. OTN interface structure
3. Multiplexing/mapping principles and bit rates
4. Overhead description
5. Maintenance signals and function for different layers
6. Alarm and performance events
7. Typical Scenarios of OTN
Page136
Abbreviations and Acronyms
3R Re-amplification, Reshaping and Retiming
AI Adapted Information
AIS Alarm Indication Signal
APS Automatic Protection Switching
BDI Backward Defect Indication
BDI-O Backward Defect Indication Overhead
BDI-P Backward Defect Indication Payload
BEI Backward Error Indication
BI Backward Indication
BIAE Backward Incoming Alignment Error
BIP Bit Interleaved Parity
CBR Constant Bit Rate
Page137
Abbreviations and Acronyms
CMEP Connection Monitoring End Point
DAPI Destination Access Point Identifier
EXP Experimental
ExTI Expected Trace Identifier
FAS Frame Alignment Signal
FDI Forward Defect Indication
FDI-O Forward Defect Indication Overhead
FDI-P Forward Defect Indication Payload
FEC Forward Error Correction
GCC General Communication Channel
IaDI Intra-Domain Interface
IAE Incoming Alignment Error
Page138
Abbreviations and Acronyms
IrDI Inter-Domain Interface
JOH Justification Overhead
MFAS MultiFrame Alignment Signal
MFI Multiframe Indicator
MSI Multiplex Structure Identifier
NNI Network Node Interface
OCC Optical Channel Carrier
OCCo Optical Channel Carrier – overhead
OCCp Optical Channel Carrier – payload
OCCr Optical Channel Carrier with reduced functionality
OCG Optical Carrier Group
OCGr Optical Carrier Group with reduced functionality
Page139
Abbreviations and Acronyms
OCh Optical channel with full functionality
OChr Optical channel with reduced functionality
OCI Open Connection Indication
ODTUG Optical channel Data Tributary Unit Group
ODTUjk Optical channel Data Tributary Unit j into k
ODU Optical Channel Data Unit
ODUk Optical Channel Data Unit-k
OH Overhead
OMS Optical Multiplex Section
OMU Optical Multiplex Unit
ONNI Optical Network Node Interface
OOS OTM Overhead Signal
OPS Optical Physical Section
Page140
Abbreviations and Acronyms
OPU Optical Channel Payload Unit
OPUk Optical Channel Payload Unit-k
OSC Optical Supervisory Channel
OTH Optical Transport Hierarchy
OTM Optical Transport Module
OTN Optical Transport Network
OTS Optical Transmission Section
OTU Optical Channel Transport Unit
OTUk completely standardized Optical Channel Transport Unit-k
OTUkV functionally standardized Optical Channel Transport Unit-k
PCC Protection Communication Channel
PLD Payload
PMI Payload Missing Indication
Page141
Abbreviations and Acronyms
PRBS Pseudo Random Binary Sequence
PSI Payload Structure Identifier
PT Payload Type
RES Reserved for future international standardization
SAPI Source Access Point Identifier
Sk Sink
SM Section Monitoring
So Source
TCM Tandem Connection Monitoring
TS Tributary Slot
TxTI Transmitted Trace Identifier
UNI User-to-Network Interface
Otn septiembre

More Related Content

What's hot

Over view of Transmission Technologies & Optical Fiber Communication
Over view of Transmission Technologies & Optical Fiber Communication Over view of Transmission Technologies & Optical Fiber Communication
Over view of Transmission Technologies & Optical Fiber Communication Naveen Jakhar, I.T.S
 
Switching conditions in SDH protection schemes.
Switching conditions in SDH protection schemes.Switching conditions in SDH protection schemes.
Switching conditions in SDH protection schemes.MapYourTech
 
Idea Huawei DWDM-Training.pptx
Idea Huawei DWDM-Training.pptxIdea Huawei DWDM-Training.pptx
Idea Huawei DWDM-Training.pptxGaneshVats2
 
Why synchronization is not required in otn?
Why synchronization is not required in otn?Why synchronization is not required in otn?
Why synchronization is not required in otn?MapYourTech
 
Optical Transport Network (OTN) Tutorial
Optical Transport Network (OTN) TutorialOptical Transport Network (OTN) Tutorial
Optical Transport Network (OTN) Tutorialibrahimnabil17
 
dwdm
 dwdm dwdm
dwdmg d
 
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLS
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLSCisco DWDM Chromatic Dispertion Calculation in CTP\XLS
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLSValery Kayukov
 
AIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM International
 
Submarine Amplifiers and Systems
Submarine Amplifiers and SystemsSubmarine Amplifiers and Systems
Submarine Amplifiers and SystemsCPqD
 
SDH MAPPING AND MULTIPLEXING
SDH MAPPING AND MULTIPLEXINGSDH MAPPING AND MULTIPLEXING
SDH MAPPING AND MULTIPLEXINGNiranjan Poojary
 
Optical Transport Technologies and Trends
Optical Transport Technologies and TrendsOptical Transport Technologies and Trends
Optical Transport Technologies and TrendsMyNOG
 

What's hot (20)

Optical Transport Network
Optical Transport NetworkOptical Transport Network
Optical Transport Network
 
optics ppt
optics pptoptics ppt
optics ppt
 
Over view of Transmission Technologies & Optical Fiber Communication
Over view of Transmission Technologies & Optical Fiber Communication Over view of Transmission Technologies & Optical Fiber Communication
Over view of Transmission Technologies & Optical Fiber Communication
 
Switching conditions in SDH protection schemes.
Switching conditions in SDH protection schemes.Switching conditions in SDH protection schemes.
Switching conditions in SDH protection schemes.
 
Introductin sdh-pdh
Introductin sdh-pdhIntroductin sdh-pdh
Introductin sdh-pdh
 
Fundamental of dwdm
Fundamental of dwdmFundamental of dwdm
Fundamental of dwdm
 
Idea Huawei DWDM-Training.pptx
Idea Huawei DWDM-Training.pptxIdea Huawei DWDM-Training.pptx
Idea Huawei DWDM-Training.pptx
 
Why synchronization is not required in otn?
Why synchronization is not required in otn?Why synchronization is not required in otn?
Why synchronization is not required in otn?
 
Optical Transport Network (OTN) Tutorial
Optical Transport Network (OTN) TutorialOptical Transport Network (OTN) Tutorial
Optical Transport Network (OTN) Tutorial
 
SDH BASICS
SDH BASICSSDH BASICS
SDH BASICS
 
SDH Frame Structure
SDH Frame StructureSDH Frame Structure
SDH Frame Structure
 
dwdm
 dwdm dwdm
dwdm
 
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLS
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLSCisco DWDM Chromatic Dispertion Calculation in CTP\XLS
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLS
 
AIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network Architecture
 
Submarine Amplifiers and Systems
Submarine Amplifiers and SystemsSubmarine Amplifiers and Systems
Submarine Amplifiers and Systems
 
SDH ALARMS
SDH ALARMSSDH ALARMS
SDH ALARMS
 
SDH and TDM telecom
SDH and TDM telecomSDH and TDM telecom
SDH and TDM telecom
 
E1 To Stm
E1 To Stm E1 To Stm
E1 To Stm
 
SDH MAPPING AND MULTIPLEXING
SDH MAPPING AND MULTIPLEXINGSDH MAPPING AND MULTIPLEXING
SDH MAPPING AND MULTIPLEXING
 
Optical Transport Technologies and Trends
Optical Transport Technologies and TrendsOptical Transport Technologies and Trends
Optical Transport Technologies and Trends
 

Viewers also liked

Evolucion Red de Transporte WDM
Evolucion Red de Transporte WDMEvolucion Red de Transporte WDM
Evolucion Red de Transporte WDMFrancisco Apablaza
 
Taller No 3 SONET y SDH
Taller No 3 SONET y SDHTaller No 3 SONET y SDH
Taller No 3 SONET y SDHRagdamanthys
 
Metro ethernet rediris
Metro ethernet redirisMetro ethernet rediris
Metro ethernet redirisFersenties
 
Evolving from Legacy SDH to Packet Transport Network
Evolving from Legacy SDH to Packet Transport NetworkEvolving from Legacy SDH to Packet Transport Network
Evolving from Legacy SDH to Packet Transport NetworkArief Gunawan
 
Introducción al núcleo de las redes de telecomunicaciones (core networks)
Introducción al núcleo de las redes de telecomunicaciones (core networks)Introducción al núcleo de las redes de telecomunicaciones (core networks)
Introducción al núcleo de las redes de telecomunicaciones (core networks)Carlos Hazin
 
Cisco Packet Transport Network – MPLS-TP
Cisco Packet Transport Network – MPLS-TPCisco Packet Transport Network – MPLS-TP
Cisco Packet Transport Network – MPLS-TPCisco Canada
 

Viewers also liked (9)

Evolucion Red de Transporte WDM
Evolucion Red de Transporte WDMEvolucion Red de Transporte WDM
Evolucion Red de Transporte WDM
 
Taller No 3 SONET y SDH
Taller No 3 SONET y SDHTaller No 3 SONET y SDH
Taller No 3 SONET y SDH
 
Metro ethernet rediris
Metro ethernet redirisMetro ethernet rediris
Metro ethernet rediris
 
Nociones básicas de SDH
Nociones básicas de SDHNociones básicas de SDH
Nociones básicas de SDH
 
Evolving from Legacy SDH to Packet Transport Network
Evolving from Legacy SDH to Packet Transport NetworkEvolving from Legacy SDH to Packet Transport Network
Evolving from Legacy SDH to Packet Transport Network
 
05 intro wan
05 intro wan05 intro wan
05 intro wan
 
Introducción al núcleo de las redes de telecomunicaciones (core networks)
Introducción al núcleo de las redes de telecomunicaciones (core networks)Introducción al núcleo de las redes de telecomunicaciones (core networks)
Introducción al núcleo de las redes de telecomunicaciones (core networks)
 
Cisco Packet Transport Network – MPLS-TP
Cisco Packet Transport Network – MPLS-TPCisco Packet Transport Network – MPLS-TP
Cisco Packet Transport Network – MPLS-TP
 
Cisco: MPLS en Castellano
Cisco: MPLS en CastellanoCisco: MPLS en Castellano
Cisco: MPLS en Castellano
 

Similar to Otn septiembre

QSFP28-100G-SR4-T01#111001.pdf
QSFP28-100G-SR4-T01#111001.pdfQSFP28-100G-SR4-T01#111001.pdf
QSFP28-100G-SR4-T01#111001.pdfGLsun Mall
 
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfqsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfGLsun Mall
 
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfqsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfGLsun Mall
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos otaijmpict
 
Ofdm oqam performances for high speed optical communication in long haul fibe...
Ofdm oqam performances for high speed optical communication in long haul fibe...Ofdm oqam performances for high speed optical communication in long haul fibe...
Ofdm oqam performances for high speed optical communication in long haul fibe...IAEME Publication
 
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
Coherent  Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )Coherent  Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )BhaSkar Nath
 
LTE-Advanced Physical Layer
LTE-Advanced Physical LayerLTE-Advanced Physical Layer
LTE-Advanced Physical LayerPraveen Kumar
 
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...CBO GmbH
 
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...CBO GmbH
 
Cpqd's SDN activities in optical dwdm terabit networks
Cpqd's SDN activities in optical dwdm terabit networksCpqd's SDN activities in optical dwdm terabit networks
Cpqd's SDN activities in optical dwdm terabit networksCPqD
 
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...CBO GmbH
 
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...CBO GmbH
 
04 optix bws 1600g v100r002 equipment networking and application issue1.21
04 optix bws 1600g v100r002 equipment networking and application issue1.2104 optix bws 1600g v100r002 equipment networking and application issue1.21
04 optix bws 1600g v100r002 equipment networking and application issue1.21yuyur
 
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...CBO GmbH
 
The paper was prepared by communication student of wollega university It was ...
The paper was prepared by communication student of wollega university It was ...The paper was prepared by communication student of wollega university It was ...
The paper was prepared by communication student of wollega university It was ...ugushe
 
Anywave Technical Seminar July 2016 OFDM ISDB-T2
Anywave Technical Seminar   July 2016 OFDM ISDB-T2Anywave Technical Seminar   July 2016 OFDM ISDB-T2
Anywave Technical Seminar July 2016 OFDM ISDB-T2Frank Massa
 
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...CBO GmbH
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...CBO GmbH
 

Similar to Otn septiembre (20)

OFDM
OFDMOFDM
OFDM
 
DMRC SDH theory
DMRC SDH theoryDMRC SDH theory
DMRC SDH theory
 
QSFP28-100G-SR4-T01#111001.pdf
QSFP28-100G-SR4-T01#111001.pdfQSFP28-100G-SR4-T01#111001.pdf
QSFP28-100G-SR4-T01#111001.pdf
 
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfqsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
 
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdfqsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
qsfp28-100g-sr4-850nm-100m-optical-transceiver-111001.pdf
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos ota
 
Ofdm oqam performances for high speed optical communication in long haul fibe...
Ofdm oqam performances for high speed optical communication in long haul fibe...Ofdm oqam performances for high speed optical communication in long haul fibe...
Ofdm oqam performances for high speed optical communication in long haul fibe...
 
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
Coherent  Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )Coherent  Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
 
LTE-Advanced Physical Layer
LTE-Advanced Physical LayerLTE-Advanced Physical Layer
LTE-Advanced Physical Layer
 
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
 
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...
BlueOptics Bo67hxx680d 2 4 8gbase dwdm xfp transceiver c-band 80km singlemode...
 
Cpqd's SDN activities in optical dwdm terabit networks
Cpqd's SDN activities in optical dwdm terabit networksCpqd's SDN activities in optical dwdm terabit networks
Cpqd's SDN activities in optical dwdm terabit networks
 
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...
BlueOptics Bo67hxx640d 2 4 8gbase dwdm xfp transceiver c band 40km singlemode...
 
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...
BlueOptics Bo67jxx680d 10gbase dwdm xfp transceiver c band 80 km singlemode l...
 
04 optix bws 1600g v100r002 equipment networking and application issue1.21
04 optix bws 1600g v100r002 equipment networking and application issue1.2104 optix bws 1600g v100r002 equipment networking and application issue1.21
04 optix bws 1600g v100r002 equipment networking and application issue1.21
 
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
 
The paper was prepared by communication student of wollega university It was ...
The paper was prepared by communication student of wollega university It was ...The paper was prepared by communication student of wollega university It was ...
The paper was prepared by communication student of wollega university It was ...
 
Anywave Technical Seminar July 2016 OFDM ISDB-T2
Anywave Technical Seminar   July 2016 OFDM ISDB-T2Anywave Technical Seminar   July 2016 OFDM ISDB-T2
Anywave Technical Seminar July 2016 OFDM ISDB-T2
 
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...
BlueOptics BO31J13610DC 10GBASE-LR XFP Transceiver 1310nm 10KM Singlemode LC ...
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
 

Recently uploaded

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 

Recently uploaded (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 

Otn septiembre

  • 1. Optical Transport Network Ing. Jorge García Ceballos OC-A jormex0104@gmail.com
  • 2. Objetivo General Al término del curso, el participante explicará la arquitectura de OTN,
  • 3. Temario 1. Descripción de la Tecnología OTN 2. Señales de Mantenimiento
  • 4. Capítulo 1 Descripción de la Tecnología OTN
  • 5. Contenido 1. Jerarquía de Transporte Óptico 2. Estructura de OTN 3. Multiplexación y Mapeo 4. Descripción de los Encabezados
  • 6. Introducción La arquitectura de las redes de transporte actuales están basadas en las redes de transporte de SDH. Las redes de SDH sean diseñado y están optimizadas básicamente para el transporte de trafico de Voz. Actualmente se está experimentando un crecimiento exponencial del volumen de tráfico de datos . Ha surgido la necesidad de emigrar desde las actuales redes hacia una estructura más flexible y dinámica
  • 7. Introducción El resultado consiste en una red de transporte Óptico ( OTN ) basada en la tecnología WDM. La red de transporte óptica es una nueva jerarquía de transporte óptico definida por ITU-T G.709, G.805, G.806, G872, G798 Consiste de una capa óptica y una capa eléctrica
  • 8. G. 709 Define los requisitos para el módulo de transporte óptico de orden n, (OTN-n) Define las señales de la red de transporte óptico, en términos de: Jerarquía de transporte óptico (OTH) La funcionalidad del encabezado en el soporte de múltiples longitudes de onda Estructura de trama Frecuencia de bits Formatos para la asignación de señales de cliente
  • 9. OTN – Optical Transport Network Está compuesta de un conjunto de Elementos de Red Ópticos. Interconectados con enlaces de fibra óptica. Capaz de proporcionara funciones de transporte, multiplexación, enrutamiento, gestión, supervisión y control de las señales del cliente De acuerdo a los requerimientos de la recomendación G. 872
  • 10. Características de OTN Comparado con SDH Alta capacidad con alta exactitud, Tbit/second por fibra, vía DWDM Servicio transparente para las señales del cliente Mapeo asíncono, funciones de FEC, y costo reducido. Comparado con WDM Funcionalidades mejoradas de OAM & red para todos los servicios Control dinámico de la capa electrica/óptical
  • 11. Recomendaciones OTN Gestión Jitter y Wander Protección de Red Funciones y Características de los Equipos Estructura y mapeo Características de la capa Física Arquitectura G.874 G.874.1 G.8251 G.8201 G.873.1 G.873.2 G.798 G.806 G.709 G.7041 G.7042 G.959.1 G.693 G.694 G.872 G.8080 OTN
  • 13. Estructura y Capas ODUk(ODUkP、ODUkT) OPUk OTUk OTUkV OTUk OTUkV OCh OChr OMSn OTSn OPSn IP/MPLS ATM Ethernet STM-NOPUk: Optical channel Payload Unit-k ODUk: Optical channel Data Unit-k OTUk: completely standardized Optical channel Transport Unit-k OTUkV: functionally standardized Optical channel Transport Unit-k OCh: Optical Channel with full functionality OChr: Optical Channel with reduced functionality OMS: Optical Multiplex Section OTS: Optical Transmission Section OPS: Optical Physical Section OTM: Optical Transport Module OTM-0.m OTM-nr.m OTM-n.m
  • 14. OTM-n.m n representa el máximo número de lambdas que se soportan a la menor velocidad de bit suportada en la lambda, m=1,2,3,12,23,123; OTS_OH, OMS_OH, OCh_OH y COMMS OH, campos dentro del OOS OSC:Optical Supervisory Channel utilizado para transmitir el OOS OMSn payload OCCp OCCp OCCp OCh payload ODUk FECOH OPUkOH Señal del Cliente OPUk payloadOHOPUk ODUk OTUk[V] OCh OCG-n.m OTM-n.m OTSn payloadOTSn OH OMSn OH OCCo OChOH OCCo OCCo OMU-n.m Non-associatedOH OOS commsOH OTM-n.m OTM Overhead Signal (OOS) λ2 λ1 λn λOSC
  • 15. OTM-nr.m Espaciado fijo de canal, independiente del nivel de la señal 1<n≤16, m=1,2,3,12,23,123 Sin canal de supervisión óptica OPSn OCCp OCCp OCCp OCh payload ODUk FECOH OPUkOH Señal del Cliente OPUk payloadOHOPUk ODUk OTUk[V] OChr OCG-nr.m OTM-nr.m OTM-16r.m λ2 λ1 λ16
  • 16. OTM-0.m El OTM 0.m soporta un canal óptico no coloreado en un solo enlace óptico con regeneración 3R en cada extremo. m=1,2,3 Sin canal de supervisión óptico OCh paylaod ODUk FECOH OPUkOH Señal del Cliente OPUk payloadOHOPUk ODUk OTUk[V] OChr OTM-0.m OPS0 OTM-0.m
  • 17. Interfaces OTN User to Network Interface (UNI) Network Node Interface (NNI) Inter-domain Interface (IrDI) Intra-domain Interface (IaDI) Entre equipos de diferente proveedor (IrVI) (Inter Domain Vendor Interface) Dentro de la sub-red de un proveedor (IaVI) El completamente estandarizado OTUk se utiliza en OTM IrDIs y puede utilizarse en OTM IaDIs El parcialmente estandarizado OTUk se utiliza en OTM IaDIs OTM UNI OTM NNI IaDI-IrVI OTM NNI IaDI-IaVI OTM NNI IaDI-IaVI Operador de Red B Proveedor X Proveedor Y OTM NNI IrDI Operador de Red C USUAR IO A
  • 19. Multiplexación y Mapeo Mapeo Multiplexación ODTUG3 ODTUG2 OChr OChr OChr OCh OCh OCh OTU3[V] OTU2[V] OTU1[V] Señal del Cliente Señal del Cliente OPU3ODU3 OCCr OCCr OCCr OCC OCC OCC OCG-nr.m 1 ≤ i+j+k ≤ n OCG-n.m 1 ≤ i+j+k ≤ n OPU2ODU2 ×1 OPU1ODU1 OTM-nr.m OTS, OMS, OCh, COMMSOSC OOS OTM-n.m ×4 ×1 ×1×4 ×16×1 ×1×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 × i × j × k × i × j × 1 Señaldel Cliente ×1 OTM-0.m × k
  • 20. Tipos de OTUk y Capacidad Tipo de OTU Velocidad nominal OTU Tolerancia OTU1 255/238 ×××× 2 488 320 kbit/s ±20 ppm OTU2 255/237 ×××× 9 953 280 kbit/s OTU3 255/236 ×××× 39 813 120 kbit/s NOTA – Las velocidades nominales de OTUk son aproximadamente: 2 666 057.143 kbit/s (OTU1), 10 709 Velocidad OTUk = 255/(239-k) × STM-N bit rateVelocidad OTUk = 255/(239-k) × STM-N bit rate
  • 21. Page21 Tipos de ODUk y Capacidad Tipo de ODU Velocidad nominal ODU Tolerancia ODU1 239/238 ×××× 2 488 320 kbit/s ±20 ppm ODU2 239/237 ×××× 9 953 280 kbit/s ODU3 239/236 ×××× 39 813 120 kbit/s NOTA – Las velocidades nominales de ODUk son aproximadamente: 2 498 775.126 kbit/s (ODU1), 10 037 Velocidad ODUk = 239/(239-k) ×STM-N bit rateVelocidad ODUk = 239/(239-k) ×STM-N bit rate
  • 22. Tipos de OPUk y Capacidad Tipo de OPU Velocidad Nominal OPU Tolerancia OPU1 2 488 320 kbit/s ±20 ppmOPU2 238/237 ×××× 9 953 280 kbit/s OPU3 238/236 ×××× 39 813 120 kbit/s OPU1-Xv X * 2 488 320 kbit/s ±20 ppmOPU2-Xv X * 238/237 * 9 953 280 kbit/s OPU3-Xv X * 238/236 * 39 813 120 kbit/s NOTA– Las velocidades nominales de OPUk son aproximadamente: 2 488 320.000 kbit/s (OPU1 Payload), 9 995 276.962 kbit/s (OPU2 Payload) y 40 150 519.322 kbit/s (OPU3 Payload). Las velocidades nominales de OPUk-Xv son aproximadamente: X × 2 488 320.000 kbit/s (OPU1-Xv Payload), X × 9 995 276.962 kbit/s (OPU2-Xv Payload) y X × 40 150 519.322 kbit/s (OPU3-Xv Payload). Velocidades OPUk = 238/(239-k) ×STM-N bit rateVelocidades OPUk = 238/(239-k) ×STM-N bit rate
  • 23. ODUk(TDM) Las señales de baja velocidad ODUk se multiplexan en señales de alta velocidad ODUk utilizando TDM: Hasta 4 señales ODU1 se multiplexan en un ODU2 Es posible multiplexar una mezcla de señales j (j ≤ 4) ODU2 y 16-4j ODU1 en un ODU3
  • 24. Multiplexación ODU1 en ODU2 ODU1flota en ¼ del área de carga del OPU2. OTU 2 OTU 2FE C Client layer signal (e.g., STM-16, ATM, GFP) ODU 1 ODU1O H Alignm ODU 2 x4 Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client layer signal (e.g., STM-16, ATM, GFP)ODU1 OH ODU2 OH OPU2 OH OPU2 Payload ODU2 OH Alignm OPU2 OH OTU 2 OH Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client Layer Signal (e.g. STM-16)ODU1 OH OPU1 OH Client layer signal (e.g., STM-16, ATM, GFP)ODU1 OH OPU1 OH Alignm Alignm OPU1 OH OPU1 OH
  • 25. Descripción de los Encabezados
  • 26. OOS TTI: Trail Trace Identifier PMI: Payload Missing Indication OCI: Open Connection Indication BDI-O: Backward Defect Indication –Overhead BDI-P: Backward Defect Indication – Payload FDI-O: Forward Defect Indication –Overhead FDI-P: Forward Defect Indication – Payload Encabezado NoAsociado OTSn n 3 2 OCh 1 General Management Communications OMSn FDI-O FDI-P OCI BDI-O BDI-P PMI FDI-P FDI-O BDI-O BDI-P PMI TTI Las funciones OOS están sujetas a estandarización, la velocidad y el formato no están estandarizados
  • 27. Trama OTN (k=1,2,3) 3825 4080 1 7 8 14 15 16 17 3824 1 2 3 4 OPU k payload OPUkOH OPUk - Optical Channel Payload Unit ODUk OH ODUk – Optical Channel Data Unit Client signal mapped in OPUk payload Client signal OTUK FEC OTUk OH OTUk – Optical Channel Transport Unit Alignm Alignment k : 1 - 2.5G 2 - 10G 3 - 40G
  • 28. Encabezado Eléctrico OTN ODUk OH TCMACT: Tandem Connection Monitoring Activation/deactivation control channel TCMi:Tandem Connection Monitoring i FTFL:Fault Type & Fault Location reporting channel PM: Path Monitoring EXP:Experimental GCC1/2: General Communication Channel 1/2 APS/PCC:Automatic Protection Swiching coordination channel/Protection Communication Control channel Alignment OH FAS: Frame Alignment Signal MFAS: MultiFrame Alignment Signal OTUk OH SM: Section Monitoring GCC0:General Communication Channel0 RES: Reserved for future international standardisation OPUk OH PSI: Payload Structure Identifier JC: Justification Control NJO: negative justification opportunity RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS MFAS SM GCC0 RES JCRES 17
  • 29. FAS byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 OA1 OA1 OA1 OA2 OA2 OA2 RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS MFAS SM GCC0 RES JCRES 17 FAS (Frame Alignment Signal) A six byte OTUk-FAS signal is defined in row 1, columns 1 to 6 of the OTUk overhead. OA1 is 0xF6(1111 0110 ) ,OA2 is 0x28(0010 1000)。
  • 30. MFAS MFAS OH Byte MFASsequence 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 .... . . 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .. MFAS(MultiFrame Alignment Signal) defined in row 1, column 7; The value of the MFAS byte will be incremented each OTUk/ODUk frame and provides as such a 256 frame multiframe. Individual OTUk/ODUk overhead signals may use this central multiframe to lock their 2-frame, 4 frame, 8- frame, 16-frame, 32-frame, etc., multiframes to the principal frame. RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS SM GCC0 RES JCRES 17 MFAS
  • 31. Page31 Encabezado SM de OTUk TTI (Trail Trace Identifier) a one-byte overhead is defined to transport the 64 byte TTI signal The 64-byte TTI signal shall be aligned with the OTUk multiframe and transmitted four times per multiframe. TTI struture: 16 bytes SAPI:Source Access Point Identifier 16 bytes DAPI:Destination Access Point Identifier 32 bytes operator specific Operator specific TTI BIP-8 BEI/BIAE BDI RES 1 2 3 4 5 6 7 8 1 2 3 IAE 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS GCC0 RES JCRES 17 MFAS SM
  • 32. Encabezado SM de OTUk BIP-8 (Bit Interleaved Parity-8) For section monitoring, a one-byte error detection code signal is defined. This byte provides a bit interleaved parity-8 (BIP-8) code ; The OTUk BIP-8 is computed over the bits in the OPUk (columns 15 to 3824) area of OTUk frame i, and inserted in the OTUk BIP-8 overhead location in OTUk frame i+2 BIP8 OPUk 1 14 15 3824 帧i 帧i+1 帧i+2
  • 33. Encabezado SM de OTUk BEI/BIAE(Backward Error Indication/ Backward Incoming Alignment Error) A four-bit BEI and BIAE signal is defined. This signal is used to convey in the upstream direction the count of interleaved-bit blocks and incoming alignment error (IAE) condition. During an IAE condition the code "1011" is inserted into the BEI/BIAE field and the error count is ignored. Otherwise the error count (0-8) is inserted into the BEI/BIAE field. Operator specific TTI BIP-8 BEI/BIAE BDI RES 1 2 3 4 5 6 7 8 1 2 3 IAE 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS GCC0 RES JCRESMFAS SM
  • 34. Encabezado SM de OTUk BDI (Backward Defect Indication) A single-bit backward defect indication (BDI) signal is defined to convey the signal fail status detected in a section termination sink function in the upstream direction. BDI is set to "1" to indicate an OTUk backward defect indication; otherwise, it is set to "0" Operator specific TTI BIP-8 BEI/BIAE BDI RES 1 2 3 4 5 6 7 8 1 2 3 IAE 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS GCC0 RES JCRES 17 MFAS SM
  • 35. Encabezado SM de OTUk IAE (Incoming Alignment Error) A single-bit incoming alignment error (IAE) signal is defined to allow the S-CMEP ingress point to inform its peer S-CMEP egress point that an alignment error in the incoming signal has been detected. IAE is set to "1" to indicate a frame alignment error, otherwise it is set to "0". RES (Reserved) two bits are reserved (RES) for future international standardization. They are set to "00". Operator specific TTI BIP-8 BEI/BIAE BDI RES 1 2 3 4 5 6 7 8 1 2 3 IAE 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS GCC0 RES JCRES 17 MFAS SM
  • 36. GCC0 (General Communication Channel) Two bytes are allocated in the OTUk overhead to support a general communications channel between OTUk termination points A clear channel which are located in row 1, columns 11 and 12 RES (Reserved) Two bytes of OTUk overhead are reserved for future international standardization located in row 1, columns 13 and 14 set to all ZEROs RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4 PM TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 Encabezado OTUk GCC0 y RES
  • 37. Encabezado ODUk PM TTI / BIP-8 / BEI / BDI For path monitoring, this overheads’ function are the same as OTUk SM signal, except BEI signal which doesn’t support BIAE function. in row 3, columns 10 to 12 Operator specific TTI BIP-8 BEI BDI STAT 1 2 3 4 5 6 7 8 1 2 3 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PM
  • 38. Encabezado ODUk PM Operator specific TTI BIP-8 BEI BDI STAT 1 2 3 4 5 6 7 8 1 2 3 63 32 0 15 16 31 SAPI DAPI RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM1 TCM4TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PM Bit 6 7 8 status 0 0 0 Reserved for future international standardization 0 0 1 Normal path signal 0 1 0 Reserved for future international standardization 0 1 1 Reserved for future international standardization 1 0 0 Reserved for future international standardization 1 0 1 Maintenance signal: ODUk - LCK 1 1 0 Maintenance signal: ODUk - OCI 1 1 1 Maintenance signal: ODUk - AIS STAT (Status) For path monitoring, three bits are defined as status bits They indicate the presence of a maintenance signal
  • 39. Encabezado ODUk TCM TTIi / BIP-8i / BEIi/BIAEi / BDIi For each tandem connection monitoring field, this overheads’ function are the same as OTUk SM signal Six fields of ODUk TCM overhead are defined in row 2, columns 5 to 13 and row 3, columns 1 to 9 of the ODUk overhead TTIi BIP-8i BEIi/BIAEi BDIi STATi 1 2 3 4 5 6 7 8 1 2 3 63 32 0 15 16 31 SAPI DAPI Operator specific RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS RES JCRESMFAS SM GCC0 PMTCM1TCM2TCM3 TCM6 TCM5 TCM4
  • 40. Encabezado ODUk TCM TTIi BIP-8i BEIi/BIAEi BDIi STATi 1 2 3 4 5 6 7 8 1 2 3 63 32 0 15 16 31 SAPI DAPI Operator specific RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM ACT GCC1 FTFL RES JC RES JC NJOPSIGCC2 APS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 Bit 6 7 8 status 0 0 0 No source TC 0 0 1 In use without IAE 0 1 0 In use without IAE 0 1 1 Reserved for future international standardization 1 0 0 Reserved for future international standardization 1 0 1 Maintenance signal: ODUk -LCK 1 1 0 Maintenance signal: ODUk -OCI 1 1 1 Maintenance signal: ODUk -AIS TCM2TCM3 TCM6 TCM5 TCM4 STAT (Status) For each tandem connection monitoring field, three bits are defined as status bits. They indicate the presence of a maintenance signal, if there is an incoming alignment error at the source TC-CMEP, or if there is no source TC- CMEP active.
  • 41. Page41 Monitoreo de Conexiones Anidadas y en Cascada de ODUk A1 B1 C1 C2 B2 B3 B4 A2 A1 - A2 B1 - B2 C1 - C2 B3 - B4 TCM1 TCM1 TCM2 TCM1 TCM2 TCM3 TCM1 TCM2 TCM1 TCM1 TCM2 TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 TCMi TCM OH field not in use TCMi TCM OH field in use TCM2 TCM3 TCM4 TCM5 TCM6 TCM2 TCM3 TCM4 TCM5 TCM6 TCM3 TCM4 TCM5 TCM6 TCM3 TCM4 TCM5 TCM6 TCM3 TCM4 TCM5 TCM6 TCM4 TCM5 TCM6
  • 42. Page42 Monitoreo de Conexiones Overlapping ODUk A1 B1 C1 C2B2 A2 A1 - A2 B1 - B2 C1 - C2 TCM1 TCM1 TCM2 TCM1 TCM2 TCM3 TCM1 TCM2 TCM1 TCMi TCM OH field not in use TCMi TCM OH field in use TCM2 TCM3 TCM4 TCM5 TCM6 TCM2 TCM3 TCM4 TCM5 TCM6 TCM3 TCM4 TCM5 TCM6 TCM3 TCM4 TCM5 TCM6 TCM4 TCM5 TCM6
  • 43. ODUk TCM ACT RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4 TCM ACT GCC1 FTFL RES JC RES JC NJOPSIAPS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 TCMACT (TCM Activation/Deactivation) A one-byte TCM activation/deactivation field is located in row 2, column 4. Its definition is for further study.
  • 44. ODUk GCC1/GCC2 RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 FTFL RES JC RES JC NJOPSIAPS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 GCC1 / GCC2 (General Communication Channel) Two fields of two bytes are allocated in the ODUk overhead to support two general communications channels between any two network elements with access to the ODUk frame structure (i.e., at 3R regeneration points). The bytes for GCC1 are located in row 4, columns 1 and 2, and the bytes for GCC2 are located in bytes row 4, columns 3 and 4 of the ODUk overhead.
  • 45. Canal ODUk APS/PCC RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 FTFL RES JC RES JC NJOPSIRES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 APS/PCC APS/PCC (Automatic Protection Switching/Protection Communication Control) A four-byte ODUk-APS/PCC signal is defined in row 4, columns 5 to 8 of the ODUk overhead. For linear protection schemes, the bit assignments for these bytes and the bit oriented protocol are given in ITU-T Rec. G.873.1. Bit assignment and byte oriented protocol for ring protection schemes are for further study. Up to eight levels of nested APS/PCC signals may be present in this field.
  • 46. Canal ODUk FTFL FTFL Fault Type & Fault Location) One byte is allocated in the ODUk overhead to transport a 256-byte fault type and fault location (FTFL) message. The byte is located in row 2, column 14 of the ODUk overhead. The 256-byte FTFL message consists of two 128-byte fields. The forward field is allocated to bytes 0 through 127 of the FTFL message. The backward field is allocated to bytes 128 through 255 of the FTFL message . RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 RES JC RES JC NJOPSIAPS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 FTFL
  • 47. Encabezado ODUk Experimental y Reservado EXP (Experimental) Two bytes are allocated in the ODUk overhead for experimental use. located in row 3, columns 13 and 14 of the ODUk overhead There is no requirement to forward the EXP overhead beyond the (sub)network. RES Nine bytes are reserved in the ODUk overhead for future international standardization located in row 2, columns 1 to 3 and row 4, columns 9 to 14 of the ODUk overhead set to all ZEROs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 FTFL RES JC RES JC NJOPSIAPS/PCC FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 EXP RES RES
  • 48. Identificador de Estructura de Carga de OPUk PSI (Payload Structure Identifier) One byte is allocated in the OPUk overhead to transport a 256-byte payload structure identifier (PSI) signal aligned with the ODUk multiframe. PSI[0] contains a one-byte payload type. PSI[1] to PSI[255] are mapping and concatenation specific . 255 0 1 PT Mapping & concatenation specific RES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 RES JC RES JC NJOAPS/PCC RES EXP FAS RES JCRES 17 MFAS SM GCC0 PMTCM1 GCC2 FTFL PSI
  • 49. Códigos de Tipo de Carga MSB 1 2 3 4 LSB 1 2 3 4 Hex code Interpretation 0 0 0 0 0 0 0 1 01 Experimental mapping 0 0 0 0 0 0 1 0 02 Asynchronous CBR mapping 0 0 0 0 0 0 1 1 03 Bit synchronous CBR mapping 0 0 0 0 0 1 0 0 04 ATM mapping 0 0 0 0 0 1 0 1 05 GFP mapping 0 0 0 0 0 1 1 0 06 Virtual Concatenated signal 0 0 0 1 0 0 0 0 10 Bit stream with octet timing mapping 0 0 0 1 0 0 0 1 11 Bit stream without octet timing mapping 0 0 1 0 0 0 0 0 20 ODU multiplex structure 0 1 0 1 0 1 0 1 55 Not available 0 1 1 0 0 1 1 0 66 Not available 1 0 0 0 x x x x 80-8F Reserved codes for proprietary use 1 1 1 1 1 1 0 1 FD NULL test signal mapping 1 1 1 1 1 1 1 0 FE PRBS test signal mapping 1 1 1 1 1 1 1 1 FF Not available
  • 50. Encabezado OPUk JC / NJO / RES (contorl de justificación / oportunidad de justificación negativa / reservado) Se reservan siete bytes en el encabezado OPUk para mapeo y concatenación Estos bytes se localizan en las filas 1 a 3, columnas 15 y 16 y columna 16 fila 4. 255 bytes en el PSI están reservados para propósitos específicos de concatenación RES 1 2 3 4 TCM3 TCM6 TCM5 TCM2 TCM4TCM ACT GCC1 RES JC JC APS/PCC RES EXP FAS RES JCRESMFAS SM GCC0 PMTCM1 GCC2 PSI FTFL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 RES NJO
  • 52. Señales de Mantenimiento FDI((((forward defect indication)))) FDI is a signal sent downstream as an indication that an upstream defect has been detected. An FDI signal is detected in a trail termination sink function to suppress defects or failures that would otherwise be detected as a consequence of the interruption of the transport of the original signal at an upstream point.. AIS and FDI are similar signals. AIS is used as term when the signal is in the digital domain. FDI is used as the term when the signal is in the optical domain. FDI is transported as non associated overhead in the OTM overhead signal (OOS).
  • 53. Señales de Mantenimiento AIS((((alarm indication signal)))) AIS is a signal sent downstream as an indication that an upstream defect has been detected. An AIS signal is generated in an adaptation sink function An AIS signal is detected in a trail termination sink function to suppress defects or failures that would otherwise be detected as a consequence of the interruption of the transport of the original signal at an upstream point.
  • 54. Señales de Mantenimiento AIS((((alarm indication signal)))) ODUk-AIS is specified as all "1"s in the entire ODUk signal, excluding the frame alignment overhead (FA OH), OTUk overhead (OTUk OH) and ODUk FTFL The presence of ODUk-AIS is detected by monitoring the ODUk STAT bits in the PM and TCMi overhead fields 1 2 3 4 1 17 3824 All-1s pattern 87 14 FTFL FA OH OTUk OH STAT STAT STAT STAT STAT STAT STAT
  • 55. Señales de Mantenimiento BDI (Backward Defect Indication) Backward Defect Indication Payload defect (dBDI-P) is monitored at the OTS and OMS layers. The purpose of monitoring this parameter is to allow for single ended supervision of the trail BDI-P (dBDI-P) defect shall be declared/cleared at the trail termination sink function within X ms/Y ms of detecting the far-end defect causing the insertion of BDI-P into the OOS. X and Y are for further study. During signal fail conditions of the overhead signal, dBDI-P shall be set to false
  • 56. Señales de Mantenimiento PMI (Payload Missing Indication) PMI defect is monitored at the OTS and OMS layers. The purpose of monitoring this parameter is to suppress downstream loss of signal alarms at the trail termination sink due to upstream defects causing missing payload at the start of the trail. PMI defect (dPMI) shall be declared/cleared at the trail termination sink function within X ms/Y ms of detecting the missing payload condition causing the insertion of PMI into the OOS During signal fail conditions of the overhead signal, dPMI shall be set to false .
  • 57. Señales de Mantenimiento OCI (open connection indication) A signal sent downstream as an indication that upstream the signal is not connected to a trail termination source The presence of ODUk-OCI is detected by monitoring the ODUk STAT bits in the PM and TCMi overhead fields. The repeating "0110 0110" pattern is the default pattern; other patterns are also allowed as long as the STAT bits in the PM and TCMi overhead fields are set to "110". 1 2 3 4 1 17 382487 14 FTFL FA OH OTUk OH STAT STAT STAT STAT STAT STAT STAT Repeating “0110 0110” pattern
  • 58. Señales de Mantenimiento LCK (locked) A signal sent downstream as an indication that upstream the connection is "locked", and no signal is passed through. The presence of ODUk-LCK is detected by monitoring the ODUk STAT bits in the PM and TCMi overhead fields. dLCK shall be declared if the accepted STAT information (AcSTAT) is “101”. dLCK shall be cleared if the accepted STAT information is not equal to “101”. During signal fail conditions of the data signal, dLCK shall be set to false. 1 2 3 4 1 17 382487 14 FTFL FA OH OTUk OH STAT STAT STAT STAT STAT STAT STAT Repeating “0101 0101”pattern
  • 59. Señales de Mantenimiento IAE (Incoming Alignment Error) IAE at the OTUk layer: dIAE shall be declared/cleared if the IAE bit in the SM overhead field (byte 3, bit 6) is “1”/ “0” for X consecutive frames. X shall be 5. IAE at the ODUkT layer: dIAE shall be declared/cleared if the accepted STAT information (AcSTAT) is/is not “010”. During signal fail conditions of the data signal, dIAE shall be set to false . BIAE (Backward Incoming Alignment Error) dBIAE shall be declared/cleared if the BEI/BIAE bits in the SM/TCM overhead field (byte 3, bit 1 to 4) are/are not “1011” for X consecutive frames. X shall be 3. During signal fail conditions of the data signal, dBIAE shall be set to false .
  • 60. Page60 Señales de Mantenimiento y Administración Management function signal Network layers OTUk ODUkP ODUkT Alignment LOF/LOM Y Y – Connectivity TTI Y Y Y Maintenance Signal AIS Y Y Y OCI – Y Y LCK – Y Y LTC – – Y BDI Y Y Y BEI Y Y Y IAE/BIAE Y – Y Signal quality BIP-8 Y Y Y
  • 61. Page61 OTN Layer Network Trail NODE A using general OTU, generate SM、PM、TCM1。 NODE B using regenerator OTU, terminate SM, generate SM。 NODE C using Line unit OTU, terminate SM、TCM1, generate SM。 NODE D using general OTU, terminate SM、PM。 NODE A TM NODE D TM NODE B REG NODE C ODU ADM OTS OTS OTS OMS OMS OMS OTU/OCH OTU/OCH OTU/OCH ODUkT ODUkP Client signal
  • 62. Eventos de Alarma y Desempeño
  • 63. Alarmas Layer Alarm OTUk OTUk_LOF、OTUk_AIS、OTUk_LOM、OTUk_TIM、OTUk_DEG、 OTUk_EXC、OTUk_BDI、BEFFEC_EXC ODUk_PM ODUk_PM_TIM、ODUk_PM_DEG、ODUk_PM_EXC、 ODUk_PM_BDI、ODUk_PM_LCK、ODUk_PM_OCI、 ODUk_PM_AIS、ODUk_LOFLOM ODUk_TCMi ODUk_TCMi_TIM、ODUk_TCMi_DEG 、ODUk_TCMi_EXC 、 ODUk_TCMi_BDI、 ODUk_TCMi_LCK、ODUk_TCMi_OCI、 ODUk_TCMi_AIS、ODUk_TCMi_LTC OPUk OPUk_PLM、OPU2_MSIM、OPU3_MSIM Remark: k=1,2,3,5G, i=1~6;
  • 64. Eventos de Desempeño layer Performance events OTUk OTUk_BBE 、OTUk_BBER、OTUk_BIAES、OTUk_ES、OTUk_FEBBE、 OTUk_FEBBER、OTUk_FEES、OTUk_FESES、OTUk_FESESR、 OTUk_FEUAS、OTUk_IAES、OTUk_SES、OTUk_SESR、OTUk_UAS、 FEC_AFT_COR_ER ODUk_PM ODUk_PM_BBE、ODUk_PM_BBER、ODUk_PM_ES、ODUk_PM_FEBBE、 ODUk_PM_FEBBER、ODUk_PM_FEES、ODUk_PM_FESES、 ODUk_PM_FESESR、ODUk_PM_FEUAS、ODUk_PM_SES、ODUk_PM_SESR、 ODUk_PM_UAS ODUk_TCM i ODUk_TCMi_BBE、ODUk_TCMi_BBER、ODUk_TCMi_BIAES、ODUk_TCMi_ES、 ODUk_TCMi_FEBBE、ODUk_TCMi_FEBBER、ODUk_TCMi_FEES、 ODUk_TCMi_FESES、ODUk_TCMi_FESESR、ODUk_TCMi_FEUAS、 ODUk_TCMi_IAES、ODUk_TCMi_SES、ODUk_TCMi_SESR、ODUk_TCMi_UAS K=1,2,3,5G i=1~6.
  • 66. Page66 Illustration XXXX = color (255/153/0) hypothetical condition (e.g. fiber broken, insert LCK) XXXX = color (102/153/0) Consequent Action(e.g. insert AIS,BDI) XXXX = color (0/0/0) detect defect(e.g. R_LOS,ODUK_PM_AIS) fiber NODEA
  • 67. Page67 Scenarios hypothesis These hypothesis apply to all scenarios : TIM insert AIS downward, TIM suppression enable Monitoring both SAPI and DAPI to report TIM ALS、APR function disable BIP-8 monitoring only report DEG
  • 68. Page68 Contents 2. Typical Scenarios of OTN 2.1 point to point ODU2 2.2 ODU1 ADM 2.3 4*GE service convergence 2.4 TCM nested 2.5 TCM cascaded
  • 69. Page69 Case 1:point to point ODU2 Bidirectional client service between A and C station. A, C (ODU TM):general OTU (LSX) B (OTU REG):regenerator OTU (LSXR) A B C OTU2 OTU2 ODU2P
  • 71. Page71 Insert LCK at node A A B C ODU2_PM_LCK ODU2_PM_BD I ODU2_LCK ODU2_PM_aBDI
  • 72. Page72 Fiber broken between A and B A B C ODU2_PM_AIS OTU2_BDI ODU2_PM_BDI R_LO S Fiber broken X ODU2_aAIS OTU2_aBDI
  • 73. Page73 Fiber degrade between A and B A B C ODU2_PM_DEG OTU2_DE G / Fiber degrade OTU2_aBEI ODU2_PM_aBEI OTU2_BEI performance ODU2_PM_BEI performance
  • 74. Page74 Fiber badly degrade A B C ODU2_PM_AIS OTU2_LO F / Fiber degrade OTU2_aBDI ODU2_PM_aBDI OTU2_BDI ODU2_PM_B DI ODU2_aAIS
  • 75. Page75 Receiving TTI is mismatch at B A B C ODU2_PM_AIS OTU2_TIM OTU2_BDI ODU2_PM_BDI SM_ExDAPI mismatch ODU2_aAIS OTU2_aBDI ODU2_PM_aBDI
  • 76. Page76 Receiving TTI is mismatch at C A B C ODU2_PM_TIM ODU2_PM_BDI PM_ExDAPI mismatch ODU2_PM_aBDI
  • 77. Page77 Client signal lost at A A B C x Fiber broken ClientSFR_LO S
  • 78. Page78 Contents 2. Typical Scenarios of OTN 2.1 point to point ODU2 2.2 ODU1 ADM 2.3 4*GE service convergence 2.4 TCM nested 2.5 TCM cascaded
  • 79. Page79 Case 2:ODU1 ADM One wavelength (OTU2) transmit among different stations, include 4 ODU1:::: The first ODU1service: ABC bidirectional The second ODU1service:ABCD bidirectional The third ODU1service: ABCDE bidirectional The forth ODU1service: EF bidirectional A B C D E F ODU1P ODU1P ODU1P ODU1P OTU2 ODU2P OTU2 ODU2P OTU2 ODU2P OTU2 ODU2P OTU2 ODU2P
  • 80. Page80 ODU1 ADM functional block OCh source function ODU2P source function OTU2 source function ODU2P sink function OTU2 sink function OCh sink function ODU2 source function OTU2 source function ODU2 sink function OTU2 sink function OCh source function OCh sink function ODU1P source function ODU1P sink function ODU1 XC function OCh sink function OTU2 sink function OCh source function OTU2 source function ODU2 sink function ODU2 source function ODU1 XC function A,F B
  • 81. Page81 ODU1 ADM functional block ODU2 source function OTU2 source function ODU2 sink function OTU2 sink function OCh source function OCh sink function OCh sink function OTU2 sink function OCh source function OTU2 source function ODU2 sink function ODU2 source function ODU1 XC function ODU1 source function ODU1 sink function ODU1 sink function ODU1 源功能 C,D,E
  • 82. Page82 Insert ODU1_LCK at A A B C D E F ODU1_LCK ODU1_PM_LCK ODU1_PM_BDI A insert ODU1_LCK to the third ODU1 service between A,E
  • 83. Page83 Insert ODU2_LCK at A A B C D E F ODU2_LCK ODU2_PM_LCK ODU2_PM_BDI 3×ODU1_PM_BD I ODU1_PM_AIS ODU1_PM_AIS ODU1_PM_AIS
  • 84. Page84 Fiber broken between A and B A B C D E F OTU2_BDI ODU2_PM_BDI ODU1_PM_BDI ODU1_PM_BDI ODU1_PM_BDI R_LOS Fiber broken X ODU1_PM_A IS ODU1_PM_AIS ODU1_PM_AIS
  • 85. Page85 Fiber degrade between A and B A B C D E F OTU2_DEG ODU2_PM_DEG ODU1_PM_DEG ODU1_PM_DEG ODU1_PM_DEG / Fiber degrade OTU2_BEI performance ODU2_PM_BEI performance ODU1_PM_BEI performance ODU1_PM_BEI performance ODU1_PM_BEI performance
  • 86. Page86 Contents 2. Typical Scenarios of OTN 2.1 point to point ODU2 2.2 ODU1 ADM 2.3 4*GE service convergence 2.4 TCM nested 2.5 TCM cascaded
  • 87. Page87 Case 3:4*GE service convergence 4*GE service converge at node C using one wavelength (5G) in network: The first GE service : BC bidirectional The second GE service: ABC bidirectional The third GE service: DC bidirectional The forth GE service: EDC bidirectional A B C D E GE GE GE GE OTU5G ODU5G OTU5G ODU5G OTU5G ODU5G OTU5G ODU5G
  • 88. Page88 Functional block OCh source function ODU5G source function OTU5G source function ODU5G sink function OTU5G sink function OCh sink function ODU5G source function OTU5G source function ODU5G sink function OTU5G sink function OCh source function OCh sink function GE XC function OCh sink function OTU5G sink function OCh source function OTU5G source function ODU5G sink function ODU5G source function GE XC function A,E B,C,D
  • 89. Page89 Insert LCK at A ODU5G_PM_LCK ODU5G_LCK ODU5G_PM_BDI A B C D E
  • 90. Page90 Fiber broken between A and B A B C D E Fiber broken OTU5G_BDI ODU5G_PM_B DI x R_LOS
  • 91. Page91 Fiber degrade between A and B A B C D E Fiber degrade OTU5G_BEI performance ODU5G_PM_BEI performance / OTU5G_DEG ODU5G_PM_DEG
  • 92. Page92 Contents 2. Typical Scenarios of OTN 2.1 point to point ODU2 2.2 ODU1 ADM 2.3 4*GE service convergence 2.4 TCM nested 2.5 TCM cascaded
  • 93. Page93 Case 4: nested TCM OTU1 service transmit among different stations ODU1 service between A and F A B C D E F TCM2 TCM1 OTU1 OTU1OTU1OTU1OTU1 ODU1
  • 94. Page94 OCh sink function OTU1 sink function OCh source function OTU1 source function Functional block TCM1 source function OTU1 source function TCM1 sink function OTU1 sink function OCh source function OCh sink function ODU1P source function ODU1P sink function ODU1 XC function OCh sink function OCh source function OTU1 sink function OTU1 source function ODU1 XC function B TCM2 source function OTU1 source function TCM2 sink function OTU1 sink function OCh source function OCh sink function OCh sink function OCh source function OTU1 sink function OTU1 source function ODU1 XC function A,F C
  • 95. Page95 Functional block OTU1 source function OTU1 sink function OCh source function OCh sink function OCh sink function OTU1 sink function OCh source function OTU1 source function TCM2 sink function TCM2 source function ODU1 XC function OTU1 source function OTU1 sink function OCh source function OCh sink function OCh sink function OTU1 sink function OCh source function OTU1 source function TCM1 sink function TCM1 source function ODU1 XC function D E
  • 96. Page96 Insert LCK at A A B C D E F ODU1_LCK ODU1_PM_LCK ODU1_PM_BDI TCM2 TCM1
  • 97. Page97 Insert LCK at B on TCM Operating Mode A B C D E F ODU1_LCK ODU1_TCM1_LCKODU1_PM_AIS ODU1_PM_BD I ODU1_TCM1_B DI TCM2 TCM1
  • 98. Page98 Insert LCK at B on TCM monitoring Mode A B C D E F ODU1_LCK ODU1_TCM1_LCK ODU1_PM_LCK ODU1_PM_B DI ODU1_TCM1_BDI TCM2 TCM1
  • 99. Page99 Insert LCK at C on TCM Operating Mode A B C D E F ODU1_LCK ODU1_TCM2_LCK ODU1_TCM1_AIS ODU1_PM_AIS ODU1_PM_B DI ODU1_TCM1_B DI ODU1_TCM2_B DI TCM2 TCM1
  • 100. Page100 Insert LCK at C on TCM Operating Mode A B C D E F ODU1_LCK ODU1_TCM2_LCK ODU1_TCM1_LC K ODU1_PM_LCK ODU1_PM_B DI ODU1_TCM1_B DI ODU1_TCM2_B DI TCM2 TCM1
  • 101. Page101 Fiber broken between A and B A B C D E F Fiber broken R_LOS ODU1_PM_AIS x OTU1_BDI ODU1_PM_BD I TCM2 TCM1
  • 102. Page102 Fiber broken between B and C A B C D E F Fiber broken R_LOS ODU1_PM_AIS x ODU1_TCM1_AI S ODU1_PM_BD I OTU1_BDI ODU1_TCM1_B DI TCM2 TCM1
  • 103. Page103 Fiber broken between C and D A B C D E F Fiber broken R_LOS ODU1_PM_AIS x ODU1_TCM1_AI S ODU1_PM_BDI ODU1_TCM1_B DI OTU1_BDI ODU1_TCM2_B DI TCM2 TCM1
  • 104. Page104 Fiber broken between D and E A B C D E F Fiber broken R_LOS ODU1_PM_AIS x ODU1_PM_B DI ODU1_TCM1_BDI OTU1_B DI TCM2 TCM1
  • 105. Page105 Fiber degrade between A and B A B C D E F ODU1_PM_DEGFiber degrade / OTU1_DEG OTU1_BEI performance ODU1_PM_BEI performance TCM2 TCM1
  • 106. Page106 Fiber degrade between B and C A B C D E F ODU1_PM_DEGFiber degrade / OTU1_DEG ODU1_TCM1_DEG OTU1_PM_BEI performance OTU1_BEI performance ODU1_TCM1_BEI performance TCM2 TCM1
  • 107. Page107 Fiber degrade between C and D A B C D E F ODU1_PM_DEGFiber degrade / ODU1_TCM1_DEGOTU1_DEG ODU1_TCM2_DEG ODU1_TCM1_BEI performance ODU1_PM_BEI performance OTU1_BEI performance ODU1_TCM2_BEI performance TCM2 TCM1
  • 108. Page108 Without TCM1 source on operating mode A B C D E F ODU1_PM_AIS Without TCM1 source ODU1_TCM1_LTC ODU1_TCM1_TIM ODU1_PM_BD I ODU1_TCM1_BD I TCM2 TCM1
  • 109. Page109 Without TCM1 source on monitoring mode A B C D E F Without TCM1 source ODU1_TCM1_LTC ODU1_TCM1_TIM ODU1_TCM1_B DI TCM2 TCM1
  • 110. Page110 Without TCM2 source on operating mode A B C D E F ODU1_PM_AIS Without TCM2 source ODU1_TCM2_LTC ODU1_TCM2_TIM ODU1_PM_B DI ODU1_TCM1_BD I ODU1_TCM1_AI S ODU1_TCM2_BDI TCM2 TCM1
  • 111. Page111 Without TCM2 source on monitoring mode A B C D E F Without TCM2 source ODU1_TCM2_LTC ODU1_TCM2_BDI TCM2 TCM1
  • 112. Page112 Receiving TTI is mismatch at D on operating mode A B C D E F ODU1_PM_AIS ExDAPI mismatchODU1_TCM1_AI S ODU1_TCM2_TIM ODU1_PM_BD I ODU1_TCM1_BD I ODU1_TCM2_BDI TCM2 TCM1
  • 113. Page113 Receiving TTI is mismatch at D on monitoring mode A B C D E F ExDAPI mismatch ODU1_TCM2_TIM ODU1_TCM2_B DI TCM2 TCM1
  • 114. Page114 Contents 2. Typical Scenarios of OTN 2.1 point to point ODU2 2.2 ODU1 ADM 2.3 4*GE service convergence 2.4 TCM nested 2.5 TCM cascaded
  • 115. Page115 Case 5:TCM cascaded OTU1 service transmit among different stations ODU1 service between A and F A B C D E F TCM1 TCM2 OTU1 OTU1OTU1OTU1OTU1 ODU1
  • 118. Page118 Insert LCK at A A B C D E F ODU1_LCK ODU1_PM_LCK TCM1 TCM2 ODU1_PM_BDI
  • 119. Page119 Insert LCK at B on operating mode A B C D E F ODU1_LCK ODU1_TCM1_LCK ODU1_PM_AIS ODU1_PM_B DI ODU1_TCM1_BDI TCM1 TCM2
  • 120. Page120 Insert LCK at B on monitoring mode A B C D E F ODU1_LCK ODU1_TCM1_LCK ODU1_PM_LCK ODU1_PM_B DI ODU1_TCM1_B DI TCM1 TCM2
  • 121. Page121 Insert LCK at D on operating mode A B C D E F ODU1_LCK ODU1_TCM2_LCK ODU1_PM_AIS ODU1_PM_B DI ODU1_TCM2_B DI TCM1 TCM2
  • 122. Page122 Insert LCK at D on monitoring mode A B C D E F ODU1_LCK ODU1_TCM2_LCK ODU1_PM_LCK ODU1_PM_BD I ODU1_TCM2_BD I TCM1 TCM2
  • 123. Page123 Fiber broken between A and B A B C D E F Fiber broken R_LOS ODU1_PM_AIS x OTU1_BDI ODU1_PM_BDI TCM1 TCM2
  • 124. Page124 Fiber broken between B and C A B C D E F Fiber broken R_LOS ODU1_PM_AI S x ODU1_PM_B DI OTU1_BDI ODU1_TCM1_BDI TCM1 TCM2
  • 125. Page125 Fiber broken between C and D A B C D E F Fiber broken R_LOS ODU1_PM_A IS x ODU1_PM_B DI OTU1_BDI TCM1 TCM2
  • 126. Page126 Fiber broken between D and E A B C D E F Fiber broken R_LOS ODU1_PM_AIS x ODU1_PM_B DI OTU1_BDI ODU1_TCM2_BD I TCM1 TCM2
  • 127. Page127 Fiber degrade between A and B A B C D E F ODU1_PM_DEGFiber degrade / OTU1_DEG OTU1_BEI performance ODU1_PM_BEI performance TCM1 TCM2
  • 128. Page128 Fiber degrade between B and C A B C D E F ODU1_PM_DEGFiber degrade / OTU1_DEG ODU1_TCM1_DEG OTU1_BEI performance ODU1_TCM1_BEI performance TCM1 TCM2
  • 129. Page129 Fiber degrade between C and D A B C D E F ODU1_PM_DEGFiber degrade/ OTU1_DEG OTU1_BEI performance ODU1_PM_B EI performance TCM1 TCM2
  • 130. Page130 Without TCM1 source on operating mode A B C D E F ODU1_PM_AISWithout TCM1 source ODU1_TCM1_LTC ODU1_TCM1_TIM ODU1_PM_B DI ODU1_TCM1_B DI TCM1 TCM2
  • 131. Page131 Without TCM1 source on monitoring mode A B C D E F Without TCM1 source ODU1_TCM1_LTC ODU1_TCM1_TIM ODU1_TCM1_BDI TCM1 TCM2
  • 132. Page132 Receiving TTI is mismatch at C on operating mode A B C D E F ODU1_PM_AISExDAPI mismatch ODU1_TCM1_TI M ODU1_PM_B DI ODU1_TCM1_BDI TCM1 TCM2
  • 133. Page133 Receiving TTI is mismatch at C on monitoring mode A B C D E F ExDAPI mismatch ODU1_TCM1_TI M ODU1_TCM1_B DI TCM1 TCM2
  • 134. Page134 Questions What kind of the components compose the OTM-n.m? OTSn, OMSn, OCh, OTUk/OTUkV, ODUk, OPUk What’s the difference with the BIP-8 byte function among SM,PM,TCMi? All of them the BIP-8 is computed over the bits in the OPUk (columns 15 to 3824) area, but for different layers on OTUk, ODUkP, ODUKT. How many types of the TCM applications we have?
  • 135. Page135 Summary 1. Optical transport hierarchy 2. OTN interface structure 3. Multiplexing/mapping principles and bit rates 4. Overhead description 5. Maintenance signals and function for different layers 6. Alarm and performance events 7. Typical Scenarios of OTN
  • 136. Page136 Abbreviations and Acronyms 3R Re-amplification, Reshaping and Retiming AI Adapted Information AIS Alarm Indication Signal APS Automatic Protection Switching BDI Backward Defect Indication BDI-O Backward Defect Indication Overhead BDI-P Backward Defect Indication Payload BEI Backward Error Indication BI Backward Indication BIAE Backward Incoming Alignment Error BIP Bit Interleaved Parity CBR Constant Bit Rate
  • 137. Page137 Abbreviations and Acronyms CMEP Connection Monitoring End Point DAPI Destination Access Point Identifier EXP Experimental ExTI Expected Trace Identifier FAS Frame Alignment Signal FDI Forward Defect Indication FDI-O Forward Defect Indication Overhead FDI-P Forward Defect Indication Payload FEC Forward Error Correction GCC General Communication Channel IaDI Intra-Domain Interface IAE Incoming Alignment Error
  • 138. Page138 Abbreviations and Acronyms IrDI Inter-Domain Interface JOH Justification Overhead MFAS MultiFrame Alignment Signal MFI Multiframe Indicator MSI Multiplex Structure Identifier NNI Network Node Interface OCC Optical Channel Carrier OCCo Optical Channel Carrier – overhead OCCp Optical Channel Carrier – payload OCCr Optical Channel Carrier with reduced functionality OCG Optical Carrier Group OCGr Optical Carrier Group with reduced functionality
  • 139. Page139 Abbreviations and Acronyms OCh Optical channel with full functionality OChr Optical channel with reduced functionality OCI Open Connection Indication ODTUG Optical channel Data Tributary Unit Group ODTUjk Optical channel Data Tributary Unit j into k ODU Optical Channel Data Unit ODUk Optical Channel Data Unit-k OH Overhead OMS Optical Multiplex Section OMU Optical Multiplex Unit ONNI Optical Network Node Interface OOS OTM Overhead Signal OPS Optical Physical Section
  • 140. Page140 Abbreviations and Acronyms OPU Optical Channel Payload Unit OPUk Optical Channel Payload Unit-k OSC Optical Supervisory Channel OTH Optical Transport Hierarchy OTM Optical Transport Module OTN Optical Transport Network OTS Optical Transmission Section OTU Optical Channel Transport Unit OTUk completely standardized Optical Channel Transport Unit-k OTUkV functionally standardized Optical Channel Transport Unit-k PCC Protection Communication Channel PLD Payload PMI Payload Missing Indication
  • 141. Page141 Abbreviations and Acronyms PRBS Pseudo Random Binary Sequence PSI Payload Structure Identifier PT Payload Type RES Reserved for future international standardization SAPI Source Access Point Identifier Sk Sink SM Section Monitoring So Source TCM Tandem Connection Monitoring TS Tributary Slot TxTI Transmitted Trace Identifier UNI User-to-Network Interface

Editor's Notes

  1. Confidential Information of Huawei. No Spreading Without Permission
  2. SM = Section Monitoring
  3. PM = Path Monitoring
  4. Confidential Information of Huawei. No Spreading Without Permission
  5. Confidential Information of Huawei. No Spreading Without Permission
  6. ODUk TCM ACT coordination protocol
  7. Confidential Information of Huawei. No Spreading Without Permission
  8. Confidential Information of Huawei. No Spreading Without Permission
  9. Confidential Information of Huawei. No Spreading Without Permission
  10. Confidential Information of Huawei. No Spreading Without Permission