Oscillation
Tuning
fork
Spring of
mass
Are oscillatory
motion is
periodic
motion?
Terminologies of Oscillatory
motion
E M E
Extreme
position
Mean
position
O
Extreme
position
Extreme
position
Mean
position
O
Extreme
position
E M E
Extreme
position
Mean
position
O
Extreme
position
AGAR ISE CARTESIAN SE
UNDERSTAND KARE TO EK
EXTREME POINT + AND –VE.
- +
P called left
extreme or –ve
extreme.
R called right
exteme or + ve
extreme.
R
Isme bhi 2 Type
displacement hoga
particle agar left side ka
distanct cover karega to
–ve displacement and
RHD + displacement.
Mean position se
extreme position
ke distance ko
amplidtude kehte
hai.
Isme bhi 2 type.
A+ and A-
Ek extreme se
dusre extreme ka
distance range or
path length hai.
One osclllation = mean positin se start and
cover right extreme then left exteme then
again come mean position.
Harmonic motion
Harmonic motion
Koi bhi spring jab
movement karta hai to
oske displacement,
velocitiy and
acceleration me time ke
based continuous
changes ata hai jise
graph se show kiya hai.
Jise meths ke zarie
show karte hai.
Simple Harmonic Motion
SHM me 2 type hai linear
and angular.
Linear means straight
motion and angular mean
making angle motion.
Linear simple Harmonic motion
F
Now remaining concept is
same because again
distance and force are in
opposite directin so same
forumula
F = -kx
Definition of linear SHM
F= restoring force.
Aise motion linear
nahi hosakte kynki
inka distance depend
hota rehta hai gravity
ki waha se.
Differential Equation of the linear S.H.M
F = ma
But Acc. to
newton second
law Force
formula is
F=ma.
But Acceleration is a = dv/dt
Velocity is v = dx/dt
Now put v ka value
in acceleration
forumula dv me.
Substituting equation (iii) in equation
(i)
Divide
by m
Expression for Acceleration
in linear S.H.M
Left extreme
position
Right extreme
position
Mean
position
PX
a = ?
V = ?
x = ?
Straight line me
object motion karte
ek point P per rukta
hai. Jiska distance x
& time t.
With help of x we
can fine
acceleration,
velocity and
distance.
We already found
a = d2x/dt2
- Sign indicate
acceleration and
displacement are in
opposite direction.
We know angular
velocity is const.
then…
Kya ho agar particle
mean position pe ho.
To displacement zero
hoga.
Expression for Velocity in
Linear S.H.M
Multiply and divide by dx
Separating the
variable
Where ‘c’ constant of integration.
By square root
both side
Expression for Maximum
and Minimum velocity
Expression for Displacement
in Linear S.H.M
Taking sin both
side,
S.H.M. As a Projection of U.C.M.
on any Diameter
S.H.M.
S.H.M. As a Projection of U.C.M. on any Diameter
A O B
C
D
Let AB and CD be
the diameter of the
circle and ‘O’ be
the Centre of the
circle.
S.H.M. As a Projection of U.C.M. on any Diameter
A
O
B
C
D
At time t=0,
the particle P0
is at point D
P0
From ‘P0’ draw
a perpendicular
on diameter AB
M0
S.H.M. As a Projection of U.C.M. on any Diameter
A
O
B
C
D
P0
M0
Now if particle
performing
UCM
P1
M1
M2P2
S.H.M. As a Projection of U.C.M. on any Diameter
S.H.M. As a Projection of U.C.M. on any Diameter
A O
B
C
D
A O B
A O
B
C
D
A O B
Derivation of S.H.M as a projection
of U.C.M on any diameter
S.H.M. As a Projection of U.C.M. on any Diameter
A O B
C
D
Consider, a particle
performing U.C.M
with an angular
velocity ω along a
circle of radius ‘a’.
a
ω
S.H.M. As a Projection of U.C.M. on any Diameter
Suppose the
particle start from
position Po.
α
‘α’ is the initial
phase angle or
epoch.
Let, in time ‘t’ the
particle reaches
point P
θ = ?
S.H.M. As a Projection of U.C.M. on any Diameter
S.H.M. As a Projection of U.C.M. on any Diameter
M
Expression for displacement(x)
x
S.H.M. As a Projection of U.C.M. on any Diameter
M
Expression for displacement(x)
x
S.H.M. As a Projection of U.C.M. on any Diameter
M
Expression for displacement(x)
x
S.H.M. As a Projection of U.C.M. on any Diameter
a = constant
S.H.M. As a Projection of U.C.M. on any Diameter
M
Phase of S.H.M 1
Magnitude matlab angle
, distance, a, v ka
measure asani se
karsakte hai. Aur saath
saath direction pata
karsakte hai motion
kidhar horaha hai.
Agar mujhe angle pata ho to me
easily x ki value find kar sakta
hoo.
If angle is 0 degree
iska matlab
displacement
particle mean
postion se start ho
rahe hai.
OB wala particle zero se start
hua hai. Isliye angle 0. and DB
wala object distance cover
karke 90 degree angle bana
raha hai.
Magnitude means
oscillation ki state
bataye mean a,v,t,x
etc.
INITIAL PHASE (EPOCH) OF S.H.M.
YEH wo phase hai jaha per
particle apni initial stage per
hai abhi movement start nahi
ki isliye angle 0 means mean
postion.
Expression fro time period and
frequency in linear S.H.M
x
Hamara
particle R
side hai.
Graphical Representation of
S.H.M- Mean position-1
A
0
0 -A 0
0
Introduction to Simple pendulum
Simple pedulam me ek
heavy mass jise bob kehte
hai. String jisse bob tigh
kiya hai.
Pendulam ki length bob se
rigid ka distance hai.
Motion of Simple Pendulam as
S.H.M.
If pendulum is
displaced through a
angle θ
Motion of Simple Pendulum as a S.H.M.
mg
x
Expression for time period
Laws of simple pendulum
Second pendulum
If π =constant.
Damped Force
NO
Why?
Differential equation of Damped
Harmonic Oscillations
Displacement equation of dumped
harmonic oscillation
Oscillation 2017
Oscillation 2017
Oscillation 2017
Oscillation 2017
Oscillation 2017
Oscillation 2017

Oscillation 2017

Editor's Notes

  • #3 Oscillation ko samjhn se pehle hum different type ki moitoin ko samjht hai .
  • #4 Zameeen ke nazdik agar koi motin hota hai jaise ke stone ka phekna stone curve banate hue kucch dori pe girjayga.
  • #6 bhavra
  • #10 Exception hai oscillation motion matlab wo motion jo repeat hota hai to and fro up and down like but periodic motion wo motin jo time based par repeat hota hai like mausam ka cycle. Isme waqt lagta hai repeat hone me lekin oscillation ek repeatative motion haie.
  • #12 Yahan spring 2 high kheenchao kar rahi hai jise extreme position se dikhaya andar aur bahar. Point O wo position hai jahan spring ki dono extreme position ke beech ka hissa jahan wo dono side se equal hai ose mean position kaha hai. Wahan par spring ki force zero hoti hai. Nahi zyada nahi kum medium. Fark dekhe to zero hoga.
  • #14 Wo jagah jaha spring ki khichaon sabse zyada hota hahi ose extreme positon kehte hai. Par hamare pass do extreme positon hai andar aur bahar. To dono ko kaise samjhe.
  • #15 To hum agar ise Cartesian se samjhe matlab is ka graph me coordinate se samjhe to ek extreme point graph ke –ve and ek +ve ki taraf araha hai . That based oska naam hoga.
  • #27 Jab mean postitin se spring +ve ki taraf badti hai to wo stretch hoti hai jis se osper ek opposite force lagta hai wo force jo mean position se aye distance ke opposite hota hai. Spring ke phelne se lagna wala force chahta hai ke spring dobara nazdik ajay dobara nazdic ane per wo comress hota hai again osper inertia lagta hai matlab chalete rehne wali body chalti rehti hai. Compress hone per mean positin se distance +ve hota lekin spring dobara phelne ke force distance ke opposite kaam karti hai . Jiski waja se force and distance hamesh ek dusre ke opposite rehte hahi.
  • #34 First point ka mat;lab hai F equal hoti hai displacement ke . magnitude ka matlab haiForce ka directin kya hoga wo depend karta hai displacement and mean position per.
  • #38 Yeh equation hame linear SHM ki malum ki hai. Newtwon ke second law ke mtabic force ka formula hai F=ma. Jisme accerlaration hai rate of change of velocity matlab change in velocity with time. Aur velocity ka formula hai distance per unit time.
  • #39 F=ma me a ki value ai ose put kardo oske baad jo f ki value hai ose f= -Kx me put karo.
  • #40 Yaha per hum k/m = constant ki jagaj w constant lenge is angular velocity w ke bare me hum age padhege. Abhi sirf samajh le.
  • #42 Ab hum acceralration SHM ko samjhte hai yahan ek straight line hai jasper straight motion hora hai. Hame pata L = left extreme posoiton and R, O etc.ore ospe object motion kar raha hai. Jab koi particle motion perfume karta hai to oska displacement continuous change hota rehta hai. Jo ek postion pe rokta hai jise P bole jo ek particular time pe hua ho os time ko T se reperesent karege. Mean position se os particle p ka distance ko x suppose karege. Is distance ke zariye jum derive karege aceleratin, velocity aur displacement ko.
  • #49 Jo system SHM perform karta hai osme extreme position me velocity zero hoti haih kyuni os position per momentum = mv. Yeh zero hojati hai.
  • #53 Mean position pe distance zero hota hai jab yeh value velocity equation me rakhe to.
  • #58 Alpha ke bare me hum baat me vistar me padhe ge.
  • #59 Ab jum displacement base kuch cases dekhte hai os based per formula banate hai. Jab particle start hota hai mean postion se oski staritng t=0 aur x=0 hoga. X ki vlaue formula put karne per.
  • #62 Yaha humlog samjhege jab koi object circle circular ghumta hai to andar ke point S.H.M oscillation karte hai.ise samjhte hai is circle se.
  • #63 Circle pe ek point D hai jaha object Po ruka hai. Oswwaqt oski time and initial position is zero. Po perpendicular Mo hai. AB & CD diameter hai.
  • #64 Circle pe ek point D hai jaha object Po ruka hai. Oswwaqt oski time and initial position is zero. Po perpendicular Mo hai. AB & CD diameter hai. Now dekhte hai ke jab particle circular motion me ghumta hai to line AB me kitna oscillation hota hai.
  • #70 Yaha humlog samjhege jab koi object circle circular ghumta hai to andar ke point S.H.M oscillation karte hai.ise samjhte hai is circle se.
  • #75 Yaha sin tita ka formula hai opposite / hypotanous.
  • #80 Ab hum phase ke bare me padege ose hum displacement se understand karte hai. Hame phele se pata hai ke agar koi object D se start karta hao to P0 oska angle alpha hai aur thoda distance baat ka omega. In dono ko milane se hame total angle wt+ alpha milta hai. Per phase kya hai. Ose age samjhe ge.
  • #87 Yahan per initial phase matlab starting phase se hone wale angle(magnitude) and direction change + or -. Phase shm ki definition hai displacement ka formula. To agar tiem zero ho tab shm alpha hoga. Jo means positon or initial stage me hi mumkin hai.
  • #88 Yaha phase oski state of oscillation ko bata raha hai. A,v,x changes ko time based.
  • #92 Time period hai one oscillation. Abhi mera object right R side me hai. Oswaqt time=0 hoga to yeh value formula put karne per kya alylga. To mean position se R tak distance x hai. Dekhte hai x ki
  • #118 Length combination hai string aur bob ke radius ka total hai.