SlideShare a Scribd company logo
Origin of the Solar System
Stars spew out 1/2 their mass as gas & dust as they die
In the interstellar medium, dust and gas coalesces into clouds
New generations of stars (and their planets, if any) form in
these clouds
• Interstellar cloud of gas &
dust collapsed under its own
gravity
• Prediction: protoplanetary
nebulae should be observed
• Explains all of the major
features of solar system, and
also the exceptions
• Observations continue to
support this theory
Nebular theory
Protoplanetary disks
Protoplanetary disks last for only about 1-10 million years
The next billion years: Debris disks
• Gas and fine dust blows away after
~ 10 million years
• Jupiter must have formed by then
• Older stars have ‘debris disks’
around them
• Need a supply of larger objects to
regenerate the dust that gets
blown away
• evidence of planets forming around
other stars
• Debris disks are analogous to the
Oort cloud and Kuiper belt of
comets, and the asteroid belt
Debris disks around stars > 100 million years old are very
common!
(artist’s drawing of a debris disk)
Zodiacal light
Any GOOD hypothesis about the origin of the solar system
must explain most - if not all - of its characteristics:
1. All of the planets orbit the sun in the same direction,
and in the same plane
2. The planets closest to the sun are small and rocky,
have few moons
3. The planets further from the sun are large and
contain more gas and icy materials
4. Most of the Moons orbit their planets in the same
direction as the planets orbit the sun
5. Oldest meteorites are about 4.566 billion years old
6. Planetary surfaces are all younger than the oldest
meteorites
Relative sizes of the planets
Sizes of the planets relative to Sun
Sun-planet distance (relative to Earth: AU)
Mercury 0.4 AU
Venus 0.7
Earth 1.0
Mars 1.5
Jupiter 5.2
Saturn 9.5
Uranus 19
Neptune 30
1 AU = 150 million km
Other residents of the solar system:
1. Dwarf planets
diameter = 1000-3000 km, smaller than Moon, orbit the sun
Other residents of the solar system
2. Asteroids - rocky, d < 1000 km, orbit the sun
Asteroid belt
Asteroids are
really quite rare…
3. Comets - rock & ice, wide
range of sizes (~10 m to
100 km)
Other residents of the solar system
Other residents of the solar system
4. Moons - orbit planets, some are larger than Mercury
Asteroids and comets
are leftover
planetesimals
Some moons are
captured
planetesimals
Other residents of the solar system
5. Meteoroids - small fragments of asteroids that enter
earth’s atmosphere (dust to boulder sized)
Meteor!
Zodiacal light
Any GOOD hypothesis about the origin of the solar system
must explain most - if not all - of its characteristics:
1. All of the planets orbit the sun in the same direction,
and in the same plane
2. The planets closest to the sun are small and rocky,
have few moons
3. The planets further from the sun are large and
contain more gas and icy materials
4. Most of the Moons orbit their planets in the same
direction as the planets orbit the sun
5. Oldest meteorites are about 4.566 billion years old
6. Planetary surfaces are all younger than the oldest
meteorites
Protoplanetary disks last for only about 1-10 million years
H, He gas is present throughout the disk
Icy compounds and rock/metal
Rock & metal ice line
Condensation: gas becomes solid
What are the planets made of?
Element how many atoms gas or solid at
(total) Earth Jupiter
________________________________________________
Hydrogen 705,700 gas gas
Helium 275,200 gas gas
Carbon 3,032 gas soot (solid)
Nitrogen 1,105 gas ice
Oxygen 5,920 H2O gas H2O ice
Silicon 653 rock rock
Iron 1,169 metal metal
Planet formation: Terrerstrial vs. giant planets
Giant (“jovian”)
1. Lots of solids in the
disk (cold > 5 AU)
2. Cores form from
ice, rock and metal
3. Grow large, quickly
(~1 million years)
4. Big enough to trap
H and He gas from
disk
Terrestrial (“earth like”)
1. Very little solid material in
disk at 1 AU
2. Form from rock and metal
only
3. Grow slowly (~100 million
years)
4. Too small to trap any gas
from disk
Connecting the dots: From planet formation to early Earth
Computational astrophysics meets field geology!
1 million years
10 million years
>100 million years,
3.8 billion years ago
Hot+Dry (H2O gas) H2O ice
Jupiter
habitable zone
Terrestrial planets form by accretion of solids
Dust >rocks >planetesimals >embryos >planets
The Moon-Forming Event
•A protoplanet the size of Mars (1/10 Earth’s mass) struck Earth, forming t
Moon 4.5 billion years ago
•Oceans boiled away, silicate-vapor atmosphere for at least 1 Myr
•Earth had already differentiated into core & mantle structure by this time
t=0 : IMPACT! 6 minutes 20 minutes 32 minutes
But what if you don’t know:
• the initial number of parent & daughter atoms?
• how much of the P & D’s have entered or left the rock?
Solution: Isochron dating, requires a 4th measurement
(the amount of a stable isotope of one of the
elements)
48.8 Gyr
Slope = D(now)/P(now)
melt
solid
Make measurements for different minerals in rock. If
data are linear, there is a strong correlation between:
•The amount of P in each sample
•The extent to which the sample has been enriched in D
Stable isotope geochronology
87
Sr/
86
Sr
87Rb/86Sr
Formation of Jovian Planets: Fast! (< 10 Myr)
Core accretion: icy planetesimals clump together first
Gravitational instability: dense clump of nebular gas
forms first
The Nebular theory predicts
most other sun-like stars
should have planets
Do they?
358 planets have been found around other stars!!!
http://www.exoplanets.org
Detecting planets around other
stars: Doppler method
Transit method (Kepler Mission)

More Related Content

Similar to Origin-of-SS.ppt

What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: StructureWhat is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
Uday Kumar Shil
 
Solar system ms santos
Solar system ms santosSolar system ms santos
Solar system ms santos
romacalderon
 
Qwertyuiooasdfghjklzxcvbnm.1234566843345
Qwertyuiooasdfghjklzxcvbnm.1234566843345Qwertyuiooasdfghjklzxcvbnm.1234566843345
Qwertyuiooasdfghjklzxcvbnm.1234566843345
aboodwwea17
 
Saturn
SaturnSaturn
Saturn
Hasan Nawaz
 
Solar system p0wer point presentation
Solar system p0wer point presentationSolar system p0wer point presentation
Solar system p0wer point presentationsarithaspr
 
Chapter 2 Solar System
Chapter 2 Solar SystemChapter 2 Solar System
Chapter 2 Solar SystemMelissa
 
Study of Solar system
Study of Solar systemStudy of Solar system
Study of Solar system
Jahangir Alam
 
Solar system PPT
Solar system PPT Solar system PPT
Solar system PPT
Namisha2001
 
Ch08 solar system
Ch08 solar systemCh08 solar system
Ch08 solar system
wphaneuf
 
pprt_20231103_202234_0000.pptx
pprt_20231103_202234_0000.pptxpprt_20231103_202234_0000.pptx
pprt_20231103_202234_0000.pptx
sahuprashant27122002
 
Seameo qitep pha_dhani
Seameo qitep pha_dhaniSeameo qitep pha_dhani
Seameo qitep pha_dhaniMank Zein
 
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
Haileyesus Wondwossen
 
Solar system pp
Solar system ppSolar system pp
Solar system ppmrspena
 
Solar System
Solar SystemSolar System
Professor’s Questions Set 5Provide comprehensive answers to th.docx
Professor’s Questions Set 5Provide comprehensive answers to th.docxProfessor’s Questions Set 5Provide comprehensive answers to th.docx
Professor’s Questions Set 5Provide comprehensive answers to th.docx
wkyra78
 

Similar to Origin-of-SS.ppt (20)

What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: StructureWhat is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
What is Solar system? FORMATION OF SOLAR SYSTEM. SOLAR SYSTEM: Structure
 
Space Lecture
Space LectureSpace Lecture
Space Lecture
 
Chapter 24 & 25-solar system
Chapter 24 & 25-solar systemChapter 24 & 25-solar system
Chapter 24 & 25-solar system
 
Solar system ms santos
Solar system ms santosSolar system ms santos
Solar system ms santos
 
Qwertyuiooasdfghjklzxcvbnm.1234566843345
Qwertyuiooasdfghjklzxcvbnm.1234566843345Qwertyuiooasdfghjklzxcvbnm.1234566843345
Qwertyuiooasdfghjklzxcvbnm.1234566843345
 
Saturn
SaturnSaturn
Saturn
 
Solar system p0wer point presentation
Solar system p0wer point presentationSolar system p0wer point presentation
Solar system p0wer point presentation
 
Chapter 2 Solar System
Chapter 2 Solar SystemChapter 2 Solar System
Chapter 2 Solar System
 
Study of Solar system
Study of Solar systemStudy of Solar system
Study of Solar system
 
Solar system PPT
Solar system PPT Solar system PPT
Solar system PPT
 
Ch08 solar system
Ch08 solar systemCh08 solar system
Ch08 solar system
 
Solar system
Solar systemSolar system
Solar system
 
Solar system
Solar systemSolar system
Solar system
 
pprt_20231103_202234_0000.pptx
pprt_20231103_202234_0000.pptxpprt_20231103_202234_0000.pptx
pprt_20231103_202234_0000.pptx
 
Seameo qitep pha_dhani
Seameo qitep pha_dhaniSeameo qitep pha_dhani
Seameo qitep pha_dhani
 
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
Into the Edge of the Stars Humanity’s changing vision of the cosmos Presenter...
 
Solar system pp
Solar system ppSolar system pp
Solar system pp
 
Solar System
Solar SystemSolar System
Solar System
 
Solar System
Solar SystemSolar System
Solar System
 
Professor’s Questions Set 5Provide comprehensive answers to th.docx
Professor’s Questions Set 5Provide comprehensive answers to th.docxProfessor’s Questions Set 5Provide comprehensive answers to th.docx
Professor’s Questions Set 5Provide comprehensive answers to th.docx
 

Recently uploaded

Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 

Origin-of-SS.ppt

  • 1. Origin of the Solar System
  • 2. Stars spew out 1/2 their mass as gas & dust as they die
  • 3. In the interstellar medium, dust and gas coalesces into clouds
  • 4. New generations of stars (and their planets, if any) form in these clouds
  • 5. • Interstellar cloud of gas & dust collapsed under its own gravity • Prediction: protoplanetary nebulae should be observed • Explains all of the major features of solar system, and also the exceptions • Observations continue to support this theory Nebular theory
  • 7.
  • 8. Protoplanetary disks last for only about 1-10 million years
  • 9.
  • 10.
  • 11. The next billion years: Debris disks • Gas and fine dust blows away after ~ 10 million years • Jupiter must have formed by then • Older stars have ‘debris disks’ around them • Need a supply of larger objects to regenerate the dust that gets blown away • evidence of planets forming around other stars • Debris disks are analogous to the Oort cloud and Kuiper belt of comets, and the asteroid belt
  • 12. Debris disks around stars > 100 million years old are very common!
  • 13. (artist’s drawing of a debris disk)
  • 15. Any GOOD hypothesis about the origin of the solar system must explain most - if not all - of its characteristics: 1. All of the planets orbit the sun in the same direction, and in the same plane 2. The planets closest to the sun are small and rocky, have few moons 3. The planets further from the sun are large and contain more gas and icy materials 4. Most of the Moons orbit their planets in the same direction as the planets orbit the sun 5. Oldest meteorites are about 4.566 billion years old 6. Planetary surfaces are all younger than the oldest meteorites
  • 16. Relative sizes of the planets
  • 17. Sizes of the planets relative to Sun
  • 18. Sun-planet distance (relative to Earth: AU) Mercury 0.4 AU Venus 0.7 Earth 1.0 Mars 1.5 Jupiter 5.2 Saturn 9.5 Uranus 19 Neptune 30 1 AU = 150 million km
  • 19. Other residents of the solar system: 1. Dwarf planets diameter = 1000-3000 km, smaller than Moon, orbit the sun
  • 20. Other residents of the solar system 2. Asteroids - rocky, d < 1000 km, orbit the sun
  • 23. 3. Comets - rock & ice, wide range of sizes (~10 m to 100 km) Other residents of the solar system
  • 24. Other residents of the solar system 4. Moons - orbit planets, some are larger than Mercury
  • 25. Asteroids and comets are leftover planetesimals Some moons are captured planetesimals
  • 26. Other residents of the solar system 5. Meteoroids - small fragments of asteroids that enter earth’s atmosphere (dust to boulder sized)
  • 29. Any GOOD hypothesis about the origin of the solar system must explain most - if not all - of its characteristics: 1. All of the planets orbit the sun in the same direction, and in the same plane 2. The planets closest to the sun are small and rocky, have few moons 3. The planets further from the sun are large and contain more gas and icy materials 4. Most of the Moons orbit their planets in the same direction as the planets orbit the sun 5. Oldest meteorites are about 4.566 billion years old 6. Planetary surfaces are all younger than the oldest meteorites
  • 30. Protoplanetary disks last for only about 1-10 million years
  • 31.
  • 32.
  • 33. H, He gas is present throughout the disk Icy compounds and rock/metal Rock & metal ice line Condensation: gas becomes solid
  • 34. What are the planets made of? Element how many atoms gas or solid at (total) Earth Jupiter ________________________________________________ Hydrogen 705,700 gas gas Helium 275,200 gas gas Carbon 3,032 gas soot (solid) Nitrogen 1,105 gas ice Oxygen 5,920 H2O gas H2O ice Silicon 653 rock rock Iron 1,169 metal metal
  • 35. Planet formation: Terrerstrial vs. giant planets Giant (“jovian”) 1. Lots of solids in the disk (cold > 5 AU) 2. Cores form from ice, rock and metal 3. Grow large, quickly (~1 million years) 4. Big enough to trap H and He gas from disk Terrestrial (“earth like”) 1. Very little solid material in disk at 1 AU 2. Form from rock and metal only 3. Grow slowly (~100 million years) 4. Too small to trap any gas from disk
  • 36. Connecting the dots: From planet formation to early Earth Computational astrophysics meets field geology!
  • 37. 1 million years 10 million years >100 million years, 3.8 billion years ago Hot+Dry (H2O gas) H2O ice Jupiter habitable zone
  • 38. Terrestrial planets form by accretion of solids Dust >rocks >planetesimals >embryos >planets
  • 39. The Moon-Forming Event •A protoplanet the size of Mars (1/10 Earth’s mass) struck Earth, forming t Moon 4.5 billion years ago •Oceans boiled away, silicate-vapor atmosphere for at least 1 Myr •Earth had already differentiated into core & mantle structure by this time t=0 : IMPACT! 6 minutes 20 minutes 32 minutes
  • 40.
  • 41. But what if you don’t know: • the initial number of parent & daughter atoms? • how much of the P & D’s have entered or left the rock?
  • 42. Solution: Isochron dating, requires a 4th measurement (the amount of a stable isotope of one of the elements) 48.8 Gyr Slope = D(now)/P(now)
  • 44. Make measurements for different minerals in rock. If data are linear, there is a strong correlation between: •The amount of P in each sample •The extent to which the sample has been enriched in D
  • 46. Formation of Jovian Planets: Fast! (< 10 Myr) Core accretion: icy planetesimals clump together first Gravitational instability: dense clump of nebular gas forms first
  • 47. The Nebular theory predicts most other sun-like stars should have planets Do they?
  • 48. 358 planets have been found around other stars!!! http://www.exoplanets.org
  • 49. Detecting planets around other stars: Doppler method