SlideShare a Scribd company logo
Semi Design Presents..
N-MOS Fabrication Process
Fig. (1) Pure Si single crystal
Si-substrate
Fig. (2) P-type impurity is lightly
doped
- - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (3) SiO2 Deposited over si surface
Fig. (4) Photoresist is deposited
over SiO2 layer
Thick SiO2
(1 µm)
Photoresist
Thick SiO2
(1 µm)
- - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (5) Photoresist layer is
exposed to UV Light through a
mask
Photoresist
Thick SiO2
(1 µm)
UV Light
Mask-1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Mask-1 is used to expose the SiO2
where S, D and G is to be formed.
N-MOS Fabrication Process
Fig. (6) Developer removes unpolymerised photoresist. It
will cause no effect on Si surface
Polymerised
Photoresist
Thick SiO2
(1 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (7) Etching [HF acid is used] will remove SiO2 layer
which is in direct contact with etching solution
Thick SiO2
(1 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (7) unpolymerised photoresist is also etched away
[using H2SO4]
Thick SiO2
(1 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (8) A thin layer of SiO2 grown over the entire chip surface
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (9) A thin layer of polysilicon is grown over the entire chip
surface to form GATE
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
Polysilicon layer
(1 – 2 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (10) A layer of photoresist is grown over polysilicon layer
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
Polysilicon
layer
Photoresist
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (11) Photoresist is exposed to UV Light
UV Light
Mask-2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Mask-2 is used to deposit
Polysilicon to form gate.
N-MOS Fabrication Process
Fig. (12) Etching will remove that portion of Thin SiO2 which is
not exposed to UV light
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
Polysilicon
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (13) Polymerised photoresist is also stripped away
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
Polysilicon used as GATE
(1 – 2 µm)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N-MOS Fabrication Process
Fig. (14) n+ Doping to form SOURCE and DRAIN
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
Thin SiO2
(0.1 µm)
GATE
- - -
- - -
n+
- - - -
- -
n+
SOURCE DRAIN
N-MOS Fabrication Process
Step - Metallization
Fig. (15) A thick layer of SiO2 (1 µm) is again grown.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
N-MOS Fabrication Process
Step - Metallization
Fig. (16) Photoresist is grown over thick SiO2. Selected areas of the poly GATE and SOURCE and
DRAIN are exposed where contact cuts are to be made
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Photoresist
Mask-3
UV Light
Mask-3 is used to make contact cuts for S, D and G.
N-MOS Fabrication Process
Step - Metallization
Fig. (17) The region of photoresist which is not exposed by UV light will become soft. This
unpolymerised photoresist and SiO2 below it are etched away.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Photoresist
Mask-3
N-MOS Fabrication Process
Step - Metallization
Fig. (18) The contact cuts are formed for S, D and G (hardened photoresist is stripped away).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Photoresist
Mask-3
N-MOS Fabrication Process
Step - Metallization
Fig. (19) Metal (aluminium) is deposited over the surface of whole chip (1 µm thickness).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Metal (1µm)
N-MOS Fabrication Process
Step - Metallization
Fig. (20) Photoresist is deposited over the metal.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Metal (1µm)
Photoresist
N-MOS Fabrication Process
Step - Metallization
Fig. (21) UV Light is passed through Mask-4 (with a aim of removing all metal other than metal in
contact-cuts).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Metal (1µm)
Photoresist
UV Light
Mask-4
Mask-4 is used to deposit metal in contact cuts of S, D and G.
N-MOS Fabrication Process
Step - Metallization
Fig. (22) Photoresist and metal which is not exposed to UV light are etched away.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thick SiO2
(1 µm)
- - -
- - -
n+
- - - -
- -
n+ Thick SiO2
(1 µm)
Metal (1µm)
Photoresist
Mask-4
N-MOS Fabrication Process
Step - Metallization
Fig. (23) Final n-MOS Transistor
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
- - -
n+
- - - -
- -
n+
SOURCE DRAIN
GATE

More Related Content

What's hot

Cmos fabrication
Cmos fabricationCmos fabrication
Cmos fabrication
jigyashamaru
 
Vlsi design and fabrication ppt
Vlsi design and fabrication  pptVlsi design and fabrication  ppt
Vlsi design and fabrication pptManjushree Mashal
 
VLSI Design(Fabrication)
VLSI Design(Fabrication)VLSI Design(Fabrication)
VLSI Design(Fabrication)
Trijit Mallick
 
CMOS
CMOS CMOS
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
Anil Yadav
 
Finfets
FinfetsFinfets
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12
HIMANSHU DIWAKAR
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
Dr. Vishal Sharma
 
Short Channel Effect In MOSFET
Short Channel Effect In MOSFETShort Channel Effect In MOSFET
Short Channel Effect In MOSFET
Sudhanshu Srivastava
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 
Nmos Fabrication
Nmos FabricationNmos Fabrication
Nmos Fabrication
Ratan Debnath
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
ashish bait
 
Mos transistor
Mos transistorMos transistor
Mos transistor
Murali Rai
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
HIMANSHU DIWAKAR
 
MOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active ResistorMOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active Resistor
Sudhanshu Janwadkar
 

What's hot (20)

Cmos fabrication
Cmos fabricationCmos fabrication
Cmos fabrication
 
Vlsi design and fabrication ppt
Vlsi design and fabrication  pptVlsi design and fabrication  ppt
Vlsi design and fabrication ppt
 
VLSI Design(Fabrication)
VLSI Design(Fabrication)VLSI Design(Fabrication)
VLSI Design(Fabrication)
 
CMOS Fabrication Process
CMOS Fabrication ProcessCMOS Fabrication Process
CMOS Fabrication Process
 
CMOS
CMOS CMOS
CMOS
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
Cmos process flow
Cmos process flowCmos process flow
Cmos process flow
 
Finfets
FinfetsFinfets
Finfets
 
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
 
Vlsi stick daigram (JCE)
Vlsi stick daigram (JCE)Vlsi stick daigram (JCE)
Vlsi stick daigram (JCE)
 
Short Channel Effect In MOSFET
Short Channel Effect In MOSFETShort Channel Effect In MOSFET
Short Channel Effect In MOSFET
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
Nmos Fabrication
Nmos FabricationNmos Fabrication
Nmos Fabrication
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
 
MOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active ResistorMOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active Resistor
 

n-MOS Fabrication Process

  • 2. N-MOS Fabrication Process Fig. (1) Pure Si single crystal Si-substrate Fig. (2) P-type impurity is lightly doped - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 3. N-MOS Fabrication Process Fig. (3) SiO2 Deposited over si surface Fig. (4) Photoresist is deposited over SiO2 layer Thick SiO2 (1 µm) Photoresist Thick SiO2 (1 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 4. N-MOS Fabrication Process Fig. (5) Photoresist layer is exposed to UV Light through a mask Photoresist Thick SiO2 (1 µm) UV Light Mask-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Mask-1 is used to expose the SiO2 where S, D and G is to be formed.
  • 5. N-MOS Fabrication Process Fig. (6) Developer removes unpolymerised photoresist. It will cause no effect on Si surface Polymerised Photoresist Thick SiO2 (1 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 6. N-MOS Fabrication Process Fig. (7) Etching [HF acid is used] will remove SiO2 layer which is in direct contact with etching solution Thick SiO2 (1 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 7. N-MOS Fabrication Process Fig. (7) unpolymerised photoresist is also etched away [using H2SO4] Thick SiO2 (1 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 8. N-MOS Fabrication Process Fig. (8) A thin layer of SiO2 grown over the entire chip surface Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 9. N-MOS Fabrication Process Fig. (9) A thin layer of polysilicon is grown over the entire chip surface to form GATE Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) Polysilicon layer (1 – 2 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 10. N-MOS Fabrication Process Fig. (10) A layer of photoresist is grown over polysilicon layer Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) Polysilicon layer Photoresist - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 11. N-MOS Fabrication Process Fig. (11) Photoresist is exposed to UV Light UV Light Mask-2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Mask-2 is used to deposit Polysilicon to form gate.
  • 12. N-MOS Fabrication Process Fig. (12) Etching will remove that portion of Thin SiO2 which is not exposed to UV light Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) Polysilicon - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 13. N-MOS Fabrication Process Fig. (13) Polymerised photoresist is also stripped away Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) Polysilicon used as GATE (1 – 2 µm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  • 14. N-MOS Fabrication Process Fig. (14) n+ Doping to form SOURCE and DRAIN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) Thin SiO2 (0.1 µm) GATE - - - - - - n+ - - - - - - n+ SOURCE DRAIN
  • 15. N-MOS Fabrication Process Step - Metallization Fig. (15) A thick layer of SiO2 (1 µm) is again grown. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm)
  • 16. N-MOS Fabrication Process Step - Metallization Fig. (16) Photoresist is grown over thick SiO2. Selected areas of the poly GATE and SOURCE and DRAIN are exposed where contact cuts are to be made - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Photoresist Mask-3 UV Light Mask-3 is used to make contact cuts for S, D and G.
  • 17. N-MOS Fabrication Process Step - Metallization Fig. (17) The region of photoresist which is not exposed by UV light will become soft. This unpolymerised photoresist and SiO2 below it are etched away. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Photoresist Mask-3
  • 18. N-MOS Fabrication Process Step - Metallization Fig. (18) The contact cuts are formed for S, D and G (hardened photoresist is stripped away). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Photoresist Mask-3
  • 19. N-MOS Fabrication Process Step - Metallization Fig. (19) Metal (aluminium) is deposited over the surface of whole chip (1 µm thickness). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Metal (1µm)
  • 20. N-MOS Fabrication Process Step - Metallization Fig. (20) Photoresist is deposited over the metal. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Metal (1µm) Photoresist
  • 21. N-MOS Fabrication Process Step - Metallization Fig. (21) UV Light is passed through Mask-4 (with a aim of removing all metal other than metal in contact-cuts). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Metal (1µm) Photoresist UV Light Mask-4 Mask-4 is used to deposit metal in contact cuts of S, D and G.
  • 22. N-MOS Fabrication Process Step - Metallization Fig. (22) Photoresist and metal which is not exposed to UV light are etched away. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Thick SiO2 (1 µm) - - - - - - n+ - - - - - - n+ Thick SiO2 (1 µm) Metal (1µm) Photoresist Mask-4
  • 23. N-MOS Fabrication Process Step - Metallization Fig. (23) Final n-MOS Transistor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - n+ - - - - - - n+ SOURCE DRAIN GATE