SlideShare a Scribd company logo
1 of 28
Thermodynamics M. D. Eastin
Clausius-Clapeyron Equation
Cloud drops first form when the vaporization equilibrium point is reached
(i.e., the air parcel becomes saturated)
Here we develop an equation that describes how the vaporization/condensation
equilibrium point changes as a function of pressure and temperature
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solid
Thermodynamics M. D. Eastin
Outline:
 Review of Water Phases
 Review of Latent Heats
 Changes to our Notation
 Clausius-Clapeyron Equation
 Basic Idea
 Derivation
 Applications
 Equilibrium with respect to Ice
 Applications
Clausius-Clapeyron Equation
Thermodynamics M. D. Eastin
Homogeneous Systems (single phase):
Gas Phase (water vapor):
• Behaves like an ideal gas
• Can apply the first and second laws
Liquid Phase (liquid water):
• Does not behave like an ideal gas
• Can apply the first and second laws
Solid Phase (ice):
• Does not behave like an ideal gas
• Can apply the first and second laws
Review of Water Phases
αpddTcdq v +=
T
dq
ds rev
≥
vvvv TRρp =
Thermodynamics M. D. Eastin
Heterogeneous Systems (multiple phases):
Liquid Water and Vapor:
• Equilibrium state
• Saturation
• Vaporization / Condensation
• Does not behave like an ideal gas
• Can apply the first and second laws
Review of Water Phases
pw, Tw
pv, Tv
wv pp =
wv TT =
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solid
Equilibrium States for Water
(function of temperature and pressure)
Thermodynamics M. D. Eastin
Equilibrium Phase Changes:
Vapor → Liquid Water (Condensation):
• Equilibrium state (saturation)
• Does not behave like an ideal gas
• Isobaric
• Isothermal
• Volume changes
Review of Water Phases
wv pp = wv TT =
C
V
P
(mb)
Vapor
Solid
Tt =
0ºC
Liquid
Liquid
and
Vapor
Solid
and
Vapor
Tc =
374ºC
T1
6.11
221,000
T
B AC
A B C
Thermodynamics M. D. Eastin
Equilibrium Phase Changes:
• Heat absorbed (or given away)
during an isobaric and isothermal
phase change
• From the forming or breaking of
molecular bonds that hold water
molecules together in its different
phases
• Latent heats are weak function of
temperature
Review of Latent Heats
constantdQL ==
C
V
P
(mb)
Vapor
Solid
Tt =
0ºC
Liquid
Tc =
374ºC
T1
6.11
221,000
T
L
L
L
Values for lv, lf, and ls are given
in Table A.3 of the Appendix
Thermodynamics M. D. Eastin
Water vapor pressure:
• We will now use (e) to represent the
pressure of water in its vapor phase
(called the vapor pressure)
• Allows one to easily distinguish between
pressure of dry air (p) and the pressure
of water vapor (e)
Temperature subscripts:
• We will drop all subscripts to water and
dry air temperatures since we will assume
the heterogeneous system is always in
equilibrium
Changes to Notation
vvvv TRρp =
iwv TTTT ===
TRρe vv=
Ideal Gas Law for Water Vapor
Thermodynamics M. D. Eastin
Water vapor pressure at Saturation:
• Since the equilibrium (saturation) states are very important, we need to
distinguish regular vapor pressure from the equilibrium vapor pressures
e = vapor pressure (regular)
esw = saturation vapor pressure with respect to liquid water
esi = saturation vapor pressure with respect to ice
Changes to Notation
Thermodynamics M. D. Eastin
Who are these people?
Clausius-Clapeyron Equation
Benoit Paul Emile Clapeyron
1799-1864
French
Engineer / Physicist
Expanded on Carnot’s work
Rudolf Clausius
1822-1888
German
Mathematician / Physicist
“Discovered” the Second Law
Introduced the concept of entropy
Thermodynamics M. D. Eastin
Basic Idea:
• Provides the mathematical relationship
(i.e., the equation) that describes any
equilibrium state of water as a function
of temperature and pressure.
• Accounts for phase changes at each
equilibrium state (each temperature)
Clausius-Clapeyron Equation
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solid
V
P
(mb)
Vapor
Liquid
Liquid
and
Vapor
T
esw
Sections of the P-V and P-T diagrams for
which the Clausius-Clapeyron equation
is derived in the following slides
Thermodynamics M. D. Eastin
Mathematical Derivation:
Assumption: Our system consists of liquid water in equilibrium with
water vapor (at saturation)
• We will return to the Carnot Cycle…
Clausius-Clapeyron Equation
Temperature
T2 T1
esw1
esw2
Saturationvaporpressure
A, D
B, C
Volume
T2
T1esw1
esw2
Saturationvaporpressure
A D
B C
Isothermal process
Adiabatic process
Thermodynamics M. D. Eastin
Mathematical Derivation:
• Recall for the Carnot Cycle:
• If we re-arrange and substitute:
Clausius-Clapeyron Equation
21NET QQW +=
1
21
1
21
T
TT
Q
QQ −
=
+
where: Q1 > 0 and Q2 < 0
21
NET
1
1
T-T
W
T
Q
=
Volume
T2
T1esw1
esw2
Saturationvaporpressure
A D
B C
Isothermal process
Adiabatic process
WNET
Q1
Q2
Thermodynamics M. D. Eastin
Volume
T2
T1esw1
esw2
Saturationvaporpressure A D
B C
Isothermal process
Adiabatic process
WNET
Q1
Q2
Mathematical Derivation:
Recall:
• During phase changes, Q = L
• Since we are specifically working
with vaporization in this example,
• Also, let:
Clausius-Clapeyron Equation
21
NET
1
1
T-T
W
T
Q
=
v1 LQ =
TT1 =
dTTT 21 =−
Thermodynamics M. D. Eastin
Mathematical Derivation:
Recall:
• The net work is equivalent to the
area enclosed by the cycle:
• The change in pressure is:
• The change in volume of our system at
each temperature (T1 and T2) is:
where: αv = specific volume of vapor
αw = specific volume of liquid
dm = total mass converted from
vapor to liquid
Clausius-Clapeyron Equation
( )dmααdV wv −=
sw2sw1sw eede −=
21
NET
1
1
T-T
W
T
Q
=
dpdVWNET ×=
Volume
T2
T1esw1
esw2
Saturationvaporpressure A D
B C
Isothermal process
Adiabatic process
WNET
Q1
Q2
Thermodynamics M. D. Eastin
Mathematical Derivation:
• We then make all the substitutions into our Carnot Cycle equation:
• We can re-arrange and use the
definition of specific latent heat of
vaporization (lv = Lv /dm) to obtain:
Clausius-Clapeyron Equation
for the equilibrium vapor pressure
with respect to liquid water
Clausius-Clapeyron Equation
21
NET
1
1
T-T
W
T
Q
=
( )
dT
dedmαα
T
L swwvv −
=
( )wv
vsw
ααTdT
de
−
=
l
Temperature
T2 T1
esw1
esw2
Saturationvaporpressure
A, D
B, C
Thermodynamics M. D. Eastin
General Form:
• Relates the equilibrium pressure
between two phases to the temperature
of the heterogeneous system
where: T = Temperature of the system
l = Latent heat for given phase change
dps= Change in system pressure at
saturation
dT = Change in system temperature
Δα = Change in specific volumes
between
the two phases
Clausius-Clapeyron Equation
αTΔdT
dps l
=
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solid
Equilibrium States for Water
(function of temperature and pressure)
Thermodynamics M. D. Eastin
Application: Saturation vapor pressure for a given temperature
Starting with:
Assume: [valid in the atmosphere]
and using: [Ideal gas law for the water vapor]
We get:
If we integrate this from some reference point (e.g. the triple point: es0, T0) to some
arbitrary point (esw, T) along the curve assuming lv is constant:
Clausius-Clapeyron Equation
wv αα >>
TRαe vvsw =
2
v
v
sw
sw
T
dT
Re
de l
=
( )wv
vsw
ααTdT
de
−
=
l
∫∫ =
T
T 2
v
v
e
e
sw
sw
0
sw
s0 T
dT
Re
de l
Thermodynamics M. D. Eastin
Application: Saturation vapor pressure for a given temperature
After integration we obtain:
After some algebra and substitution for es0 = 6.11 mb and T0 = 273.15 K we get:
Clausius-Clapeyron Equation
∫∫ =
T
T 2
v
v
e
e
sw
sw
0
sw
s0 T
dT
Re
de l






−=
T
1
T
1
Re
e
ln
0v
v
s0
sw l












−=
T(K)
1
273.15
1
R
exp11.6(mb)e
v
v
sw
l
Thermodynamics M. D. Eastin
Application: Saturation vapor pressure for a given temperature
A more accurate form of the above equation can be obtained when we do not
assume lv is constant (recall lv is a function of temperature). See your book for
the derivation of this more accurate form:
Clausius-Clapeyron Equation












−=
T(K)
1
273.15
1
R
exp11.6(mb)e
v
v
sw
l
[ ]





−−= )(ln09.5
)(
6808
49.53exp11.6(mb)esw KT
KT
Thermodynamics M. D. Eastin
Application: Saturation vapor pressure for a given temperature
 What is the saturation vapor pressure with respect to water at 25ºC?
T = 298.15 K
esw = 32 mb
 What is the saturation vapor pressure with respect to water at 100ºC?
T = 373.15 K Boiling point
esw = 1005 mb
Clausius-Clapeyron Equation
[ ]





−−= )(ln09.5
)(
6808
49.53exp11.6(mb)esw KT
KT
Thermodynamics M. D. Eastin
Application: Boiling Point of Water
 At typical atmospheric conditions near the boiling point:
T = 100ºC = 373 K
lv = 2.26 ×106
J kg-1
αv = 1.673 m3
kg-1
αw = 0.00104 m3
kg-1
 This equation describes the change in boiling point temperature (T) as a function
of atmospheric pressure when the saturated with respect to water (esw)
Clausius-Clapeyron Equation
( )wv
vsw
ααTdT
de
−
=
l
1sw
Kmb36.21
dT
de −
=
Thermodynamics M. D. Eastin
Application: Boiling Point of Water
 What would the boiling point temperature be on the top of Mount Mitchell
if the air pressure was 750mb?
• From the previous slide
we know the boiling point
at ~1005 mb is 100ºC
• Let this be our reference point:
Tref = 100ºC = 373.15 K
esw-ref = 1005 mb
• Let esw and T represent the
values on Mt. Mitchell:
esw = 750 mb
T = 366.11 K
T = 93ºC (boiling point temperature on Mt. Mitchell)
Clausius-Clapeyron Equation
1
ref
refswsw
Kmb36.21
TT
ee −−
=
−
−
ref
refsw
T
e
T +
−
=
−
36.21
esw
1sw
Kmb36.21
dT
de −
=
Thermodynamics M. D. Eastin
Equilibrium with respect to Ice:
• We will know examine the equilibrium
vapor pressure for a heterogeneous
system containing vapor and ice
Clausius-Clapeyron Equation
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solid
C
V
P
(mb)
Vapor
Solid
Liquid
T
6.11 T
AB
esi
Thermodynamics M. D. Eastin
Equilibrium with respect to Ice:
• Return to our “general form” of the
Clausius-Clapeyron equation
• Make the appropriate substitution for
the two phases (vapor and ice)
Clausius-Clapeyron Equation
for the equilibrium vapor
pressure with respect to ice
Clausius-Clapeyron Equation
Sublim
ation
Fusion
Vaporization
T
C
T (ºC)
p (mb)
3741000
6.11
1013
221000
Liquid
Vapor
Solidα∆
=
TdT
des l
( )iv
ssi
ααTdT
de
−
=
l
Thermodynamics M. D. Eastin
Application: Saturation vapor pressure of ice for a given temperature
Following the same logic as before, we can derive the following equation for
saturation with respect to ice
A more accurate form of the above equation can be obtained when we do not
assume ls is constant (recall ls is a function of temperature). See your book for
the derivation of this more accurate form:
Clausius-Clapeyron Equation












−=
T(K)
1
273.15
1
R
exp11.6(mb)e
v
s
si
l
[ ]





−−= )(ln555.0
)(
6293
16.26exp11.6(mb)esi KT
KT
Thermodynamics M. D. Eastin
Application: Melting Point of Water
• Return to the “general form” of the Clausius-Clapeyron equation and make the
appropriate substitutions for our two phases (liquid water and ice)
 At typical atmospheric conditions near the melting point:
T = 0ºC = 273 K
lf = 0.334 ×106
J kg-1
αw = 1.00013 × 10-3
m3
kg-1
αi = 1.0907 × 10-3
m3
kg-1
 This equation describes the change in melting point temperature (T) as a function
of pressure when liquid water is saturated with respect to ice (pwi)
Clausius-Clapeyron Equation
( )iw
fwi
ααTdT
dp
−
=
l
1wi
Kmb135,038
dT
dp −
−=
Thermodynamics M. D. Eastin
Summary:
• Review of Water Phases
• Review of Latent Heats
• Changes to our Notation
• Clausius-Clapeyron Equation
• Basic Idea
• Derivation
• Applications
• Equilibrium with respect to Ice
• Applications
Clausius-Clapeyron Equation
Thermodynamics M. D. Eastin
References
Petty, G. W., 2008: A First Course in Atmospheric Thermodynamics, Sundog Publishing, 336 pp.
Tsonis, A. A., 2007: An Introduction to Atmospheric Thermodynamics, Cambridge Press, 197 pp.
Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey, Academic Press, New York, 467
pp.

More Related Content

What's hot

Adiabatic compresion and expansion of gases
Adiabatic compresion and expansion of gasesAdiabatic compresion and expansion of gases
Adiabatic compresion and expansion of gasesGohar Rehman Sani
 
Clausius - Clapeyron Equation
Clausius - Clapeyron EquationClausius - Clapeyron Equation
Clausius - Clapeyron EquationMarx Endico
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamicsVeeramanikandanM1
 
Vapour liquid equilibrium 1
Vapour  liquid  equilibrium 1Vapour  liquid  equilibrium 1
Vapour liquid equilibrium 1Rabia Ashraf
 
Engineering Thermodynamics -Basic Concepts 2
Engineering Thermodynamics -Basic Concepts 2 Engineering Thermodynamics -Basic Concepts 2
Engineering Thermodynamics -Basic Concepts 2 Mani Vannan M
 
Advanced thermodynamics
Advanced thermodynamicsAdvanced thermodynamics
Advanced thermodynamicsOrtal Levi
 
Bab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering ApproachBab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering ApproachIbnu Hasan
 
Ideal gases
Ideal gasesIdeal gases
Ideal gasesSiyavula
 
Heat transfer by conduction
Heat transfer by conductionHeat transfer by conduction
Heat transfer by conductionbalkppt
 
Numerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductionNumerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductiontmuliya
 
Basic concepts of thermodynamics
Basic concepts of thermodynamicsBasic concepts of thermodynamics
Basic concepts of thermodynamicsanwesakar
 
Colligative properties
Colligative propertiesColligative properties
Colligative propertiesdirksr
 
2nd law of thermodynamic
2nd law of thermodynamic2nd law of thermodynamic
2nd law of thermodynamicManthan Kanani
 

What's hot (20)

Adiabatic compresion and expansion of gases
Adiabatic compresion and expansion of gasesAdiabatic compresion and expansion of gases
Adiabatic compresion and expansion of gases
 
Thermodynamic lecture
Thermodynamic lectureThermodynamic lecture
Thermodynamic lecture
 
Clausius - Clapeyron Equation
Clausius - Clapeyron EquationClausius - Clapeyron Equation
Clausius - Clapeyron Equation
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
 
Vapour liquid equilibrium 1
Vapour  liquid  equilibrium 1Vapour  liquid  equilibrium 1
Vapour liquid equilibrium 1
 
Engineering Thermodynamics -Basic Concepts 2
Engineering Thermodynamics -Basic Concepts 2 Engineering Thermodynamics -Basic Concepts 2
Engineering Thermodynamics -Basic Concepts 2
 
Advanced thermodynamics
Advanced thermodynamicsAdvanced thermodynamics
Advanced thermodynamics
 
Bab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering ApproachBab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering Approach
 
Thermodynamics, part 3.ppt
Thermodynamics, part 3.pptThermodynamics, part 3.ppt
Thermodynamics, part 3.ppt
 
Ideal gases
Ideal gasesIdeal gases
Ideal gases
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase Equilibrium
 
Introduction to thermodynamics
Introduction to thermodynamics Introduction to thermodynamics
Introduction to thermodynamics
 
Heat transfer by conduction
Heat transfer by conductionHeat transfer by conduction
Heat transfer by conduction
 
Introduction and Basic Modes of Heat Transfer
Introduction and Basic Modes of Heat TransferIntroduction and Basic Modes of Heat Transfer
Introduction and Basic Modes of Heat Transfer
 
Numerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductionNumerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conduction
 
Basic concepts of thermodynamics
Basic concepts of thermodynamicsBasic concepts of thermodynamics
Basic concepts of thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Colligative properties
Colligative propertiesColligative properties
Colligative properties
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
2nd law of thermodynamic
2nd law of thermodynamic2nd law of thermodynamic
2nd law of thermodynamic
 

Viewers also liked

clausius clapeyron equation
clausius clapeyron equationclausius clapeyron equation
clausius clapeyron equationElfa Ma'rifah
 
Simplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsSimplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsStephen
 
Deducción Clausius-Clapeyron
Deducción Clausius-ClapeyronDeducción Clausius-Clapeyron
Deducción Clausius-Clapeyroncecymedinagcia
 
Máquina frigorífica por absorción
Máquina frigorífica por absorciónMáquina frigorífica por absorción
Máquina frigorífica por absorciónMiguel Sanchez
 
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Triplenlace Química
 
Fisicoquimica presion de vapor
Fisicoquimica presion de vaporFisicoquimica presion de vapor
Fisicoquimica presion de vaporJean M Sanchez
 
10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamics10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamicssimonandisa
 
Practicas quimica organica_farmacia
Practicas quimica organica_farmaciaPracticas quimica organica_farmacia
Practicas quimica organica_farmaciaGetsemaní Sinaí
 

Viewers also liked (16)

clausius clapeyron equation
clausius clapeyron equationclausius clapeyron equation
clausius clapeyron equation
 
Simplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron EquationsSimplest Formula Clausius-Clapeyron Equations
Simplest Formula Clausius-Clapeyron Equations
 
Deducción Clausius-Clapeyron
Deducción Clausius-ClapeyronDeducción Clausius-Clapeyron
Deducción Clausius-Clapeyron
 
Ch.12
Ch.12Ch.12
Ch.12
 
Máquina frigorífica por absorción
Máquina frigorífica por absorciónMáquina frigorífica por absorción
Máquina frigorífica por absorción
 
maquinas-termicas
 maquinas-termicas maquinas-termicas
maquinas-termicas
 
History of thermodynamics
History of thermodynamicsHistory of thermodynamics
History of thermodynamics
 
Clapeyron
ClapeyronClapeyron
Clapeyron
 
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...Reacción química   5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
Reacción química 5.Equilibrios físicos - Ejercicio 01 Deducción de la ecuac...
 
Fisicoquimica presion de vapor
Fisicoquimica presion de vaporFisicoquimica presion de vapor
Fisicoquimica presion de vapor
 
Maquinas Termicas
Maquinas TermicasMaquinas Termicas
Maquinas Termicas
 
Máquinas térmicas
Máquinas térmicasMáquinas térmicas
Máquinas térmicas
 
Entropy
EntropyEntropy
Entropy
 
10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamics10.3 - Second law of thermodynamics
10.3 - Second law of thermodynamics
 
Physical chemistry
Physical chemistryPhysical chemistry
Physical chemistry
 
Practicas quimica organica_farmacia
Practicas quimica organica_farmaciaPracticas quimica organica_farmacia
Practicas quimica organica_farmacia
 

Similar to Metr3210 clausius-clapeyron

Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Aaba Tambe
 
Heat and thermodynamics
Heat and thermodynamics Heat and thermodynamics
Heat and thermodynamics rabeya rabu
 
lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdfAtmacaDevrim
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdfAnyumizaInnocent
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquidNoaman Ahmed
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10Malaysia
 
Thermo 5th chap01p085
Thermo 5th chap01p085Thermo 5th chap01p085
Thermo 5th chap01p085Luma Marques
 
Thermo 5th chap01_p085
Thermo 5th chap01_p085Thermo 5th chap01_p085
Thermo 5th chap01_p085João Pires
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacitiesAlbania Energy Association
 
Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Larry Howard
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)Yuri Melliza
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsshahzad5098115
 
GAS LAWS.pptx
GAS LAWS.pptxGAS LAWS.pptx
GAS LAWS.pptxRoyoMel
 
Metallurgical Thermodynamics.ppt2222222222
Metallurgical Thermodynamics.ppt2222222222Metallurgical Thermodynamics.ppt2222222222
Metallurgical Thermodynamics.ppt2222222222Venkatasathwik
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamicsramesh11220
 

Similar to Metr3210 clausius-clapeyron (20)

Thermodynamic, part 7
Thermodynamic, part 7Thermodynamic, part 7
Thermodynamic, part 7
 
Thermodynamic, part 1
Thermodynamic, part 1Thermodynamic, part 1
Thermodynamic, part 1
 
Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1
 
Heat and thermodynamics
Heat and thermodynamics Heat and thermodynamics
Heat and thermodynamics
 
lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdf
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdf
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10
 
Thermo 5th chap01p085
Thermo 5th chap01p085Thermo 5th chap01p085
Thermo 5th chap01p085
 
Thermo 5th chap01_p085
Thermo 5th chap01_p085Thermo 5th chap01_p085
Thermo 5th chap01_p085
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacities
 
Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for students
 
Temp-meas-sem.pdf
Temp-meas-sem.pdfTemp-meas-sem.pdf
Temp-meas-sem.pdf
 
Concepts of entropy
Concepts of entropyConcepts of entropy
Concepts of entropy
 
GAS LAWS.pptx
GAS LAWS.pptxGAS LAWS.pptx
GAS LAWS.pptx
 
slides
slidesslides
slides
 
Metallurgical Thermodynamics.ppt2222222222
Metallurgical Thermodynamics.ppt2222222222Metallurgical Thermodynamics.ppt2222222222
Metallurgical Thermodynamics.ppt2222222222
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
 

Recently uploaded

Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...Call girls in Ahmedabad High profile
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 

Metr3210 clausius-clapeyron

  • 1. Thermodynamics M. D. Eastin Clausius-Clapeyron Equation Cloud drops first form when the vaporization equilibrium point is reached (i.e., the air parcel becomes saturated) Here we develop an equation that describes how the vaporization/condensation equilibrium point changes as a function of pressure and temperature Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solid
  • 2. Thermodynamics M. D. Eastin Outline:  Review of Water Phases  Review of Latent Heats  Changes to our Notation  Clausius-Clapeyron Equation  Basic Idea  Derivation  Applications  Equilibrium with respect to Ice  Applications Clausius-Clapeyron Equation
  • 3. Thermodynamics M. D. Eastin Homogeneous Systems (single phase): Gas Phase (water vapor): • Behaves like an ideal gas • Can apply the first and second laws Liquid Phase (liquid water): • Does not behave like an ideal gas • Can apply the first and second laws Solid Phase (ice): • Does not behave like an ideal gas • Can apply the first and second laws Review of Water Phases αpddTcdq v += T dq ds rev ≥ vvvv TRρp =
  • 4. Thermodynamics M. D. Eastin Heterogeneous Systems (multiple phases): Liquid Water and Vapor: • Equilibrium state • Saturation • Vaporization / Condensation • Does not behave like an ideal gas • Can apply the first and second laws Review of Water Phases pw, Tw pv, Tv wv pp = wv TT = Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solid Equilibrium States for Water (function of temperature and pressure)
  • 5. Thermodynamics M. D. Eastin Equilibrium Phase Changes: Vapor → Liquid Water (Condensation): • Equilibrium state (saturation) • Does not behave like an ideal gas • Isobaric • Isothermal • Volume changes Review of Water Phases wv pp = wv TT = C V P (mb) Vapor Solid Tt = 0ºC Liquid Liquid and Vapor Solid and Vapor Tc = 374ºC T1 6.11 221,000 T B AC A B C
  • 6. Thermodynamics M. D. Eastin Equilibrium Phase Changes: • Heat absorbed (or given away) during an isobaric and isothermal phase change • From the forming or breaking of molecular bonds that hold water molecules together in its different phases • Latent heats are weak function of temperature Review of Latent Heats constantdQL == C V P (mb) Vapor Solid Tt = 0ºC Liquid Tc = 374ºC T1 6.11 221,000 T L L L Values for lv, lf, and ls are given in Table A.3 of the Appendix
  • 7. Thermodynamics M. D. Eastin Water vapor pressure: • We will now use (e) to represent the pressure of water in its vapor phase (called the vapor pressure) • Allows one to easily distinguish between pressure of dry air (p) and the pressure of water vapor (e) Temperature subscripts: • We will drop all subscripts to water and dry air temperatures since we will assume the heterogeneous system is always in equilibrium Changes to Notation vvvv TRρp = iwv TTTT === TRρe vv= Ideal Gas Law for Water Vapor
  • 8. Thermodynamics M. D. Eastin Water vapor pressure at Saturation: • Since the equilibrium (saturation) states are very important, we need to distinguish regular vapor pressure from the equilibrium vapor pressures e = vapor pressure (regular) esw = saturation vapor pressure with respect to liquid water esi = saturation vapor pressure with respect to ice Changes to Notation
  • 9. Thermodynamics M. D. Eastin Who are these people? Clausius-Clapeyron Equation Benoit Paul Emile Clapeyron 1799-1864 French Engineer / Physicist Expanded on Carnot’s work Rudolf Clausius 1822-1888 German Mathematician / Physicist “Discovered” the Second Law Introduced the concept of entropy
  • 10. Thermodynamics M. D. Eastin Basic Idea: • Provides the mathematical relationship (i.e., the equation) that describes any equilibrium state of water as a function of temperature and pressure. • Accounts for phase changes at each equilibrium state (each temperature) Clausius-Clapeyron Equation Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solid V P (mb) Vapor Liquid Liquid and Vapor T esw Sections of the P-V and P-T diagrams for which the Clausius-Clapeyron equation is derived in the following slides
  • 11. Thermodynamics M. D. Eastin Mathematical Derivation: Assumption: Our system consists of liquid water in equilibrium with water vapor (at saturation) • We will return to the Carnot Cycle… Clausius-Clapeyron Equation Temperature T2 T1 esw1 esw2 Saturationvaporpressure A, D B, C Volume T2 T1esw1 esw2 Saturationvaporpressure A D B C Isothermal process Adiabatic process
  • 12. Thermodynamics M. D. Eastin Mathematical Derivation: • Recall for the Carnot Cycle: • If we re-arrange and substitute: Clausius-Clapeyron Equation 21NET QQW += 1 21 1 21 T TT Q QQ − = + where: Q1 > 0 and Q2 < 0 21 NET 1 1 T-T W T Q = Volume T2 T1esw1 esw2 Saturationvaporpressure A D B C Isothermal process Adiabatic process WNET Q1 Q2
  • 13. Thermodynamics M. D. Eastin Volume T2 T1esw1 esw2 Saturationvaporpressure A D B C Isothermal process Adiabatic process WNET Q1 Q2 Mathematical Derivation: Recall: • During phase changes, Q = L • Since we are specifically working with vaporization in this example, • Also, let: Clausius-Clapeyron Equation 21 NET 1 1 T-T W T Q = v1 LQ = TT1 = dTTT 21 =−
  • 14. Thermodynamics M. D. Eastin Mathematical Derivation: Recall: • The net work is equivalent to the area enclosed by the cycle: • The change in pressure is: • The change in volume of our system at each temperature (T1 and T2) is: where: αv = specific volume of vapor αw = specific volume of liquid dm = total mass converted from vapor to liquid Clausius-Clapeyron Equation ( )dmααdV wv −= sw2sw1sw eede −= 21 NET 1 1 T-T W T Q = dpdVWNET ×= Volume T2 T1esw1 esw2 Saturationvaporpressure A D B C Isothermal process Adiabatic process WNET Q1 Q2
  • 15. Thermodynamics M. D. Eastin Mathematical Derivation: • We then make all the substitutions into our Carnot Cycle equation: • We can re-arrange and use the definition of specific latent heat of vaporization (lv = Lv /dm) to obtain: Clausius-Clapeyron Equation for the equilibrium vapor pressure with respect to liquid water Clausius-Clapeyron Equation 21 NET 1 1 T-T W T Q = ( ) dT dedmαα T L swwvv − = ( )wv vsw ααTdT de − = l Temperature T2 T1 esw1 esw2 Saturationvaporpressure A, D B, C
  • 16. Thermodynamics M. D. Eastin General Form: • Relates the equilibrium pressure between two phases to the temperature of the heterogeneous system where: T = Temperature of the system l = Latent heat for given phase change dps= Change in system pressure at saturation dT = Change in system temperature Δα = Change in specific volumes between the two phases Clausius-Clapeyron Equation αTΔdT dps l = Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solid Equilibrium States for Water (function of temperature and pressure)
  • 17. Thermodynamics M. D. Eastin Application: Saturation vapor pressure for a given temperature Starting with: Assume: [valid in the atmosphere] and using: [Ideal gas law for the water vapor] We get: If we integrate this from some reference point (e.g. the triple point: es0, T0) to some arbitrary point (esw, T) along the curve assuming lv is constant: Clausius-Clapeyron Equation wv αα >> TRαe vvsw = 2 v v sw sw T dT Re de l = ( )wv vsw ααTdT de − = l ∫∫ = T T 2 v v e e sw sw 0 sw s0 T dT Re de l
  • 18. Thermodynamics M. D. Eastin Application: Saturation vapor pressure for a given temperature After integration we obtain: After some algebra and substitution for es0 = 6.11 mb and T0 = 273.15 K we get: Clausius-Clapeyron Equation ∫∫ = T T 2 v v e e sw sw 0 sw s0 T dT Re de l       −= T 1 T 1 Re e ln 0v v s0 sw l             −= T(K) 1 273.15 1 R exp11.6(mb)e v v sw l
  • 19. Thermodynamics M. D. Eastin Application: Saturation vapor pressure for a given temperature A more accurate form of the above equation can be obtained when we do not assume lv is constant (recall lv is a function of temperature). See your book for the derivation of this more accurate form: Clausius-Clapeyron Equation             −= T(K) 1 273.15 1 R exp11.6(mb)e v v sw l [ ]      −−= )(ln09.5 )( 6808 49.53exp11.6(mb)esw KT KT
  • 20. Thermodynamics M. D. Eastin Application: Saturation vapor pressure for a given temperature  What is the saturation vapor pressure with respect to water at 25ºC? T = 298.15 K esw = 32 mb  What is the saturation vapor pressure with respect to water at 100ºC? T = 373.15 K Boiling point esw = 1005 mb Clausius-Clapeyron Equation [ ]      −−= )(ln09.5 )( 6808 49.53exp11.6(mb)esw KT KT
  • 21. Thermodynamics M. D. Eastin Application: Boiling Point of Water  At typical atmospheric conditions near the boiling point: T = 100ºC = 373 K lv = 2.26 ×106 J kg-1 αv = 1.673 m3 kg-1 αw = 0.00104 m3 kg-1  This equation describes the change in boiling point temperature (T) as a function of atmospheric pressure when the saturated with respect to water (esw) Clausius-Clapeyron Equation ( )wv vsw ααTdT de − = l 1sw Kmb36.21 dT de − =
  • 22. Thermodynamics M. D. Eastin Application: Boiling Point of Water  What would the boiling point temperature be on the top of Mount Mitchell if the air pressure was 750mb? • From the previous slide we know the boiling point at ~1005 mb is 100ºC • Let this be our reference point: Tref = 100ºC = 373.15 K esw-ref = 1005 mb • Let esw and T represent the values on Mt. Mitchell: esw = 750 mb T = 366.11 K T = 93ºC (boiling point temperature on Mt. Mitchell) Clausius-Clapeyron Equation 1 ref refswsw Kmb36.21 TT ee −− = − − ref refsw T e T + − = − 36.21 esw 1sw Kmb36.21 dT de − =
  • 23. Thermodynamics M. D. Eastin Equilibrium with respect to Ice: • We will know examine the equilibrium vapor pressure for a heterogeneous system containing vapor and ice Clausius-Clapeyron Equation Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solid C V P (mb) Vapor Solid Liquid T 6.11 T AB esi
  • 24. Thermodynamics M. D. Eastin Equilibrium with respect to Ice: • Return to our “general form” of the Clausius-Clapeyron equation • Make the appropriate substitution for the two phases (vapor and ice) Clausius-Clapeyron Equation for the equilibrium vapor pressure with respect to ice Clausius-Clapeyron Equation Sublim ation Fusion Vaporization T C T (ºC) p (mb) 3741000 6.11 1013 221000 Liquid Vapor Solidα∆ = TdT des l ( )iv ssi ααTdT de − = l
  • 25. Thermodynamics M. D. Eastin Application: Saturation vapor pressure of ice for a given temperature Following the same logic as before, we can derive the following equation for saturation with respect to ice A more accurate form of the above equation can be obtained when we do not assume ls is constant (recall ls is a function of temperature). See your book for the derivation of this more accurate form: Clausius-Clapeyron Equation             −= T(K) 1 273.15 1 R exp11.6(mb)e v s si l [ ]      −−= )(ln555.0 )( 6293 16.26exp11.6(mb)esi KT KT
  • 26. Thermodynamics M. D. Eastin Application: Melting Point of Water • Return to the “general form” of the Clausius-Clapeyron equation and make the appropriate substitutions for our two phases (liquid water and ice)  At typical atmospheric conditions near the melting point: T = 0ºC = 273 K lf = 0.334 ×106 J kg-1 αw = 1.00013 × 10-3 m3 kg-1 αi = 1.0907 × 10-3 m3 kg-1  This equation describes the change in melting point temperature (T) as a function of pressure when liquid water is saturated with respect to ice (pwi) Clausius-Clapeyron Equation ( )iw fwi ααTdT dp − = l 1wi Kmb135,038 dT dp − −=
  • 27. Thermodynamics M. D. Eastin Summary: • Review of Water Phases • Review of Latent Heats • Changes to our Notation • Clausius-Clapeyron Equation • Basic Idea • Derivation • Applications • Equilibrium with respect to Ice • Applications Clausius-Clapeyron Equation
  • 28. Thermodynamics M. D. Eastin References Petty, G. W., 2008: A First Course in Atmospheric Thermodynamics, Sundog Publishing, 336 pp. Tsonis, A. A., 2007: An Introduction to Atmospheric Thermodynamics, Cambridge Press, 197 pp. Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey, Academic Press, New York, 467 pp.