More Related Content
PPTX
ã¡ãã¶ããïŒ äº¬å€§æªèžã€ãã³ã PDF
PDF
PDF
PDF
PDF
PDF
PDF
Viewers also liked
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Similar to maruyama m
PDF
PDF
PDF
PDF
芳å
çšãªã¢ã«ã¿ã€ã ç»åèªèã·ã¹ãã ã®æ§ç¯ | Development of the real-time image recognition system ... PDF
PDF
PPTX
PDF
Yuki Oyama - Master Project - Design method for spatial domain with urban edg... PDF
éå±€åè©äŸ¡æ§é ã«åºã¥ã芳å
ã¹ãããæšèŠã·ã¹ãã ã®æ§ç¯ãšé·æå®èšŒå®éš PPTX
ãŠããã¿ã¹ãªã·ã¹ãã ã®äœãæ¹@TechLION Vol.7 PDF
20170513 Fukuda lab. Introduction, TokyoTech. PDF
PDF
PPTX
深局匷ååŠç¿ã«ããèªåé転è»äž¡ã®çµè·¯æ¢çŽ¢ã«é¢ããç ç©¶ PDF
ã€ãã°ãã£ã¬ã³ãžå°å³äœæã®ããã®å¹çã®ããããŒã¿åéçµè·¯ãèãã PDF
ãªãŒãã³ããŒã¿èгå
ã¢ããªéçºã顿ãšããçºå±çå€åŠå¹ŽPBL PDF
倧山éå·± - æŽ»åæ¬²æ±ãèæ
®ãã颿£-é£ç¶ã¢ãã«ã«ããå°æ»åšçºçã¡ã«ããºã ã®åæ PPTX
10. artisocã¬ã·ããã㯠a staræ¢çŽ¢ã¢ã«ãŽãªãºã ã䜿ã£ãŠãæççµè·¯ãèªåçã«æ¢çŽ¢ããã PDF
Gpsåæ
管çã·ã¹ãã ã®ãææ¡ 2012 august PPTX
ODPTããŒã¿ã§çµè·¯çµè·¯æ€çŽ¢ããããããã More from harmonylab
PDF
Collaborative Document Simplification Using Multi-Agent Systems PDF
Can Large Language Models perform Relation-based Argument Mining? PDF
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving PDF
Efficient anomaly detection in tabular cybersecurity data using large languag... PDF
APT-LLM Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threat... PDF
CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Us... PDF
Mixture-of-Personas Language Models for Population Simulation PDF
QuASAR: A Question-Driven Structure-Aware Approach for Table-to-Text Generation PDF
Large Language Model based Multi-Agents: A Survey of Progress and Challenges PDF
Mixture-of-Personas Language Models for Population Simulation PDF
TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Pass... PDF
Data Scaling Laws for End-to-End Autonomous Driving PDF
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Lea... PDF
Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? PDF
Encoding and Controlling Global Semantics for Long-form Video Question Answering PDF
AECR: Automatic attack technique intelligence extraction based on fine-tuned ... PDF
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models throu... PDF
Towards Scalable Human-aligned Benchmark for Text-guided Image Editing PDF
Multiple Object Tracking as ID Prediction PDF
ãåæ¥è«æãLLMãçšããMulti-Agent-Debateã«ãããåè«ã®å¹æã«é¢ããç ç©¶ maruyama m
- 1.
- 2.
- 3.
ç®ç
⢠芳å
çµè·¯äœææ¯æŽã·ã¹ãã ã®éçºã«é¢ããåºç€ç ç©¶
â 察話ç芳å
çµè·¯äœææ³ã®ææ¡
â ã·ã¹ãã ã®èšèšã»å®è£
ã»è©äŸ¡
芳å
çµè·¯äœææ¯æŽã·ã¹ãã ã®ãã¬ãŒã ã¯ãŒã¯ãæç€º
å®éã®ã·ã¹ãã éçºã«è²¢ç®
æ6æãã2æéã§
ããã«è¿èŸºã®èгå
ãããïŒ
åºåŒµïŒæ
è¡ã«ãããŠã»ã»ã»
ã»æéå¶çŽã®ãã芳å
ééæé芳å
- 4.
- 5.
èŠæ±ä»æ§
â¢æ©èœçèŠæ±ä»æ§
â芳å
çµè·¯äœææ©èœ
â¢èгå
ã¹ãããæ€çŽ¢
â¢èšªååžæèŠ³å
ã¹ãããéåã® éžææ¯æŽ
â¢èšªååžæèŠ³å
ã¹ãããéåã® å·¡åçµè·¯èšç®
âå
¥åºåç®¡çæ©èœ
â¢å°å³
âããŒã¿ç®¡çæ©èœ
â¢èгå
ã¹ãããããŒã¿
â¢çµè·¯ããŒã¿
â¢å±¥æŽããŒã¿
â¢éæ©èœçèŠæ±ä»æ§
âèšç®æéã¯10ç§ä»¥å
âç»é¢é·ç§»åæ°ã¯0
ã¢ããªã±ãŒã·ã§ã³
ã€ã³ã¿ãŒãã§ãŒã¹
ããŒã¿ããŒã¹ - 6.
ã·ã¹ãã æ§æ
ãµãŒã ïŒPostgreSQLïŒ
WebãµãŒãïŒApache)
ç»é¢çæ ã¢ãžã¥ãŒã« ïœïœïœ Google Maps API
芳å
çµè·¯äœæ ã¢ãžã¥ãŒã«(C++)
ã³ã¢ ã¢ãžã¥ãŒã«
(PHP)
ããŒã¿ããŒã¹
ã¢ããªã±ãŒã·ã§ã³
ã€ã³ã¿ãŒãã§ãŒã¹
åºçºå°/å°çå° åºçºæå»/å°çæå» 蚪ååžæèŠ³å
ã¹ãããéå
ãšã³ã¬ã€ãœãŠ
æå¹é§
30å
15å
25å
ãå§ã芳å
ã¹ããã
芳å
çµè·¯
ã¹ã±ãžã¥ãŒã«
15åå¢å
10åæžå°
å
¥å
â»åºåçµæãåºã«ïŒ 蚪ååžæèŠ³å
ã¹ãããéåã倿Ž
åºå
ããã©äžŠæš - 7.
id äœçœ®ïŒç·¯åºŠïŒçµåºŠïŒ
ããã©ã«ãã®æ»åšæé
è©äŸ¡å€ åå
å®äŒæ¥
éåºïŒéåºæå»
説æ
åç
è²»çš
äœæ
e-mail
ã«ããŽãªïŒèªç¶ïŒæŽå²ãªã©ïŒ
ããŒã¿ããŒã¹ïŒèгå
ã¹ãããããŒã¿
â»17ã€ã®å±æ§ãæ¡çš
ã¢ãã«ããŒã³ 4/29~11/3ïŒç¬¬ïŒææãé€ãïŒ 7:00~18:00 ïŒå
¬éæå» 10:00~16:00ïŒ ç¡æ åæµ·éæå¹åžååºå18西8 åæµ·éå€§åŠæ§å
e-mail:ãªã
ã¯ã©ãŒã¯å士èªèº« ã®çºæ³ãšæå°ã«ãã ææ²»10幎ã«å»ºèšã ããæš¡ç¯å®¶çæ¿ã§ ãïŒæå44幎ã«åœ ã®éèŠæåè²¡ã«æ å®ãããŠããŸãïŒ
ã«ããŽãªïŒæŽå²
衚瀺äŸ
屿§
ããŒã¿äŸ - 8.
ããŒã¿ããŒã¹ïŒçµè·¯ããŒã¿
屿§
ããŒã¿ä¿å圢åŒ
spot1
spot2
è·é¢
çµè·¯
ããŒã¿ä¿åæ¹æ³
Dijkstraæ³ã«ãã
æççµè·¯ãšãã®è·é¢ãèšç®
緯床ïŒçµåºŠãã
éè·¯ã®çŽç·è·é¢ãèšç®
â»èšç®ã³ã¹ããåæž
LINESTRING(141.3467 43.0709,141.3471 43.0710, 141.3481 43.0709)
æççµè·¯ããªããžã§ã¯ããšããŠä¿å
- 9.
察話çãªèгå
çµè·¯äœææ³
1. ã«åºã¥ãæé©åãè¡ãïŒãåŸã
2. ã®å Žå(å·¡åæéïŒééæé)
3. ããk ç®æåé€ããå
šãŠã® åæ
4. å
š ã«é¢ã㊠ãèšç®ãïŒ ããŠãŒã¶ãžæç€º
5. ãã ãéžæãããã° åŸïŒãž,
éžæãããªããã°çµäº
U opt P
C T opt (P ) ï³
U U'
U' opt P'
U'
| ( ) ( ' ) | opt opt C P ïC P
U'ï®U
蚪ååžæèŠ³å
ã¹ãããéå
ééæé
ã®æçå·¡åçµè·¯
ã®å·¡åæé
opt P
opt P ( ) opt C P
U
U
T
- 10.
察話çãªèгå
çµè·¯äœææ³
1. ã«åºã¥ãæé©åãè¡ãïŒãåŸã
2. ã®å Žå(å·¡åæéïŒééæé)
3. ããk ç®æè¿œå ããŠã§ããå
šãŠã® ãåæ
4. å
š ã«é¢ã㊠ãèšç®ãïŒ ããŠãŒã¶ãžæç€º
5. ãã ãéžæãããã° åŸïŒãž,
éžæãããªããã°çµäº
U opt P
C T opt (P ) ï£
U U'
U' opt P'
U'
| ( ) ( ' ) | opt opt C P ïC P
U'ï®U
蚪ååžæèŠ³å
ã¹ãããéå
ééæé
ã®æçå·¡åçµè·¯
ã®å·¡åæé
opt P
opt P ( ) opt C P
U
U
T
- 11.
- 12.
å®éšã·ã¹ãã ã®èšå®
芳å
ã¹ããã
éåD
å®éã«å倧ãã£ã³ãã¹ã
調æ»ã35ç®æãæ¡çš
ã¯ã©ãŒã¯åãããã©äžŠæšãã€ãã§ãŠäžŠæšãªã©
æ ç¹éå S å倧ãã£ã³ãã¹ãžã®åºå
¥ãå£
14ç®æãæ¡çš
ç§»åé床[m/s] v æ©è¡é床0.8
å倧ãã£ã³ãã¹ã®èšå®
ãŠãŒã¶ã®èšå®
- 13.
0
50
100
150
1 2 3 4 5 6 7 8 9 10 11
蚪ååžæèŠ³å
ã¹ãããæ°|U|
èšç®æé[s]
æçå·¡åè·¯èšç®
èšç®å®éšã«ããã·ã¹ãã ã®æ§èœè©äŸ¡
å®é𿹿³ æçå·¡åçµè·¯èšç®ã«èŠããèšç®æé
èšç®æ©ç°å¢
CPU Clock Pentium4 1800MHz
Main Memory 256MB
- 14.
æçå·¡åçµè·¯èšç®ã«èŠããèšç®æé
0
50
100
150
1 2 3 4 5 6 7 8 9 10 11
蚪ååžæèŠ³å
ã¹ãããæ°|U|
èšç®æé[s]
æçå·¡åè·¯èšç®
2æéã§
蚪åå¯èœãªèгå
ã¹ãããæ°9ç®æ
èšç®å®éšã«ããã·ã¹ãã ã®æ§èœè©äŸ¡
å®é𿹿³
èšç®æ©ç°å¢
CPU Clock Pentium4 1800MHz
Main Memory 256MB
èŠæ±ä»æ§ã§ã®èšç®æéå¶çŽ10[s]
- 15.
0
50
100
150
200
250
1 2 3 4 5 6 7 8 9 10 11
蚪ååžæèŠ³å
ã¹ãããæ°|U|
èšç®æé[s]
æçå·¡åè·¯èšç®
åé€èšç®
远å èšç®
èšç®å®éšã«ããã·ã¹ãã ã®æ§èœè©äŸ¡
å®é𿹿³ 远å åé€ã®ãšãã®èšç®æé
Uã«è¿œå åé€ããŠU ' ãæ±ãã| U'|ïœ|U | ï±1
èšç®æ©ç°å¢
CPU Clock Pentium4 1800MHz
Main Memory 256MB
èšç®æéå¶çŽ10[s]
2æé
- 16.
ãŠãŒã¶ã«ããã·ã¹ãã è©äŸ¡
ã³ã³ã»ãã
ééæéã§ã®èгå
ã¯ä»åŸéèŠãåºãŠãããšèããããããïŒããã察象ãšãã芳å
çµè·¯äœææ¯æŽã·ã¹ãã ã¯é
åçã§ããïŒ
å
¥åæã®æäœæ§
æäœæ¹æ³ãæäœæé ãæç€ºçã«ããå¿
èŠãããïŒçŸåšã¯ç®ç å°ãå
šãŠãŠãŒã¶ãéžæããå¿
èŠããããïŒåºæºãšãªã芳å
çµ è·¯ãåºã«ä¿®æ£ãè¡ããªãã芳å
çµè·¯ãäœæããæ¹ããŠãŒã¶ã« 芪åã§ããïŒ
åºåçµæã® åããããã
å°å³äžã«çµè·¯ã衚瀺ããïŒã©ã®èгå
ã¹ããããã©ã®ãããªã¹ ã±ãžã¥ãŒã«ã§åšãããèŠèŠçã«ã¿ãããšãã§ããããããã ãããïŒ
ïŒåã®ãŠãŒã¶ïŒåŠçïŒåãšèгå
æ¥çã«é¢ã瀟äŒäººïŒåïŒã«ããè©äŸ¡
ã·ã¹ãã ã®å©äŸ¿æ§ã調æ»
å®éšç®ç
å®éšèšå® - 17.
- 18.
ãŸãšã
â¢å¯Ÿè©±çãªèгå
çµè·¯äœæãè¡ãããã«ã¢ãã«åãè¡ãïŒ å¯Ÿè©±ç芳å
çµè·¯äœææé ãææ¡ãã
â¢èгå
çµè·¯äœææ¯æŽã·ã¹ãã ãéçºããããã®ãã¬ãŒã ã¯ãŒã¯ã ææ¡ãã
â¢ä»åŸã¯ïŒããã«å€ãã®èгå
å°ãžã®é©çšã«åããã¥ãŒãªã¹ãã£ãã¯ã çšã芳å
çµè·¯äœæã®èšç®æéãæ¹åããäºå®ã§ãã
äžžå±± å å¥, å±±æ¬ é
人, 倧å
æ±:Trip Plannning Systemã®èšèšã«é¢ããç ç©¶, 芳å
æ
å ±åŠäŒç¬¬ïŒåå
šåœå€§äŒ, åœé€š, (2006) äžžå±± å å¥, å±±æ¬ é
人, 倧å
æ±:芳å
çµè·¯äœææ¯æŽã·ã¹ãã ã®ææ¡ãšå倧ãã£ã³ãã¹ãžã®é©çšã«é¢ããåºç€ç ç©¶, 第22åãã¡ãžã£ã·ã¹ãã ã·ã³ããžãŠã è¬æŒè«ææŠèŠé, æå¹, pp. 90 (2006) äžžå±± å å¥, å±±æ¬ é
人, 倧å
æ±:ãŠãŒã¶ã®æéå¶çŽãšå奜ãèæ
®ãã 芳å
æ
å ±æäŸã·ã¹ãã æ§ç¯,芳å
æ
å ±åŠäŒç¬¬ïŒåå
šåœå€§äŒ, æ°æœ, (2007) äžžå±± å å¥, å±±æ¬ é
人, 倧å
æ±:芳å
çµè·¯äœææ¯æŽã«ããã代æ¿èгå
çµè·¯ã®ææ¡ææ³, , FIT2007 第6åæ
å ±ç§åŠæè¡ãã©ãŒã©ã è¬æŒè«æé, æç¥, A-002(2007)
æ¥çžŸ