SlideShare a Scribd company logo
Simulation and Analysis of
     the Data in TPS


        2012/10/24

  Cheng-Chin Chiang 江政錦

                             1
Personal Data
Present Position:
Assistant Researcher in Beam Dynamics Group, NSRRC

Education:
National Taiwan University (2004~2009), Ph.D. in Physics

Experience:
2004~2010
(1)  Member of BELLE collaboration in KEK
(2)  On call shift of BELLE sub-detector in KEK
(3)  System manger of NTU High Energy Lab.
(4)  Internal referee of Physical analysis group in BELLE collaboration
2010~2012
(5) Computer programming for TPS project

                                                                          2
Working Experience at
     KEK-BELLE



                        3
KEK Campus (Tsukuba, Japan)




                              4
KEK-BELLE                      e +e-   Collider
•  Two separate rings for e+ and e-
•  Energy in CM is 10.58GeV  Y(4S)
•  Ring length 3Km




  8.0 GeV e-         Belle
                             3.5 GeV e+




                                                         5
KEK              e +e-          Accelerator




e+/e- Linac	

             Straight Section	

              Arc Section	





                                                                             6
     e+ Generator of linac	

                Electron Source of linac
The BELLE Detector



               Extreme	 Forward	 Calorimeter
               γ,	 π0	 reconstruction
               e+-	 identification




                                      7
My Working Place at KEK




Extreme Forward Calorimeter   Electronic-Hut   BELLE control room




         Spring                  Autumn              Kitty    8
Study the CP (Charge × Parity)
             Violation
For example: B0→J/ψ K0 Decay    -- B0 Decay
(Time dependent CP violation)   -- B0 Decay




                                              9
The Challenge of CP Violation
•  In theoretical calculations:
   - We need a good model to explain the behavior of B meson
     decays from experimental measurements

             Tree diagram             Penguin diagram




•  In experiment:
   - We need to produce the maximum number of B meson decays
     for good measurements in statistics (i.e. good luminosity).
   - We need good analysis methods and tools to evaluate the
     huge amount of experimental data                            10
: B0 →ρ0ρ0
        : Continuum            657 Million BB Data Measurement
        : b→c decays
        : Other charmless               (B0→ρ0ρ0 Decay)
          B decays




Mode              Yield         Eff.(%)      Σ     BF (x10-6)       UL (x10-6)
                  +23.6+10.1                                 +0.2
ρ0ρ0          24.5−22.1−16.2   9.16 (fL=1)   1.0   0.4 ± 0.4 −0.3   <1.0 (fL=1)
                +67.4                                 +3.5
ρ0ππ       112.5−65.6 ± 52.3      2.90       1.3   5.9−3.4 ± 2.7      <12.0
 4π               +61.2+27.7
             161.2−59.4−25.1      1.98       2.5        +4.7+2.1
                                                   12.4 −4.6−1.9      <19.3
  €               +14.5+4.8                  €
 ρ0f0        −11.8−12.9−3.6       9.81       …          …              <0.3
€                                            €
 f0f0           +4.7
            −7.7−3.5 ± 3.0       10.17       …          …              <0.1
 €              +37.0                         €       +1.9
 f0ππ        6.3−34.7 ± 18.0      2.98       …     0.3−1.8 ± 0.9       <3.8
 €
                                                                                  11
 €
 €                                            €
Publications
1.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ
     decays and search for B → ρ0ρ0”, Phys. Rev. D, 78, 111102(R) (2008);
     arXiv:0808.2576.
2.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ
     decays and search for B → ρ0ρ0 at Belle”, in the Book ``Les
     Rencontres de physique de la Vallée d'Aoste”, Edited by M. Greco,
     ISBN 978-88-86409-56-8, p.365-378 (2008).
3.  C.C. Chiang et al. (Belle Collaboration), ``b → d and other charmless B
     decays at Belle”, European Physical Society Europhysics Conference
     on High Energy Physics (2009), PoS(EPS-HEP2009) 207;
     http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=84.
4.  C.C. Chiang et al. (Belle Collaboration), ``Search for B0 → K*0 anti-K*0,
     B0 → K*0 K*0 and B0 → KKππ decays”, Phys. Rev. D, 81, 071101(R)
     (2010); arXiv:1001.4595.
5.  C.C. Chiang et al. (Belle Collaboration),``Improved Measurement of the
     Electroweak Penguin Process B → Xs l+l-“, 35th International
     Conference of High Energy Physics, PoS(ICHEP2010) 231;
     http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=120.
                                                                           12
Working Experience at
       NSRRC



                        13
Optimize the TPS/BR Lattice
                    FULL
                    TPS booster b6p4d2
             20.    Linux version 8.23/08                            28/09/12 10.28.00




       10
                        x         y      DX10



(m), DX
             18.
             16.
             14.
                                                                                            (a) Baseline Design:
             12.
             10.                                                                            Qx= 14.3796, Qy= 9.3020
                                                                                            Cx= 1.0, Cy= 1.0
              8.
              6.
              4.
              2.
             0.0
                   0.0      10.        20.   30.   40.   50.   60.   70.    80.       90.
                                                                                   s (m)
                     E   / p0c = 0 .
                    Table name = TWISS

                    FULL
                    TPS booster b6p4d2
             20.    Linux version 8.23/08                             28/09/12 10.28.20
        10




                        x         y      DX10
 (m), DX




                                                                                            (b) From Magnet Group Data:
             18.
             16.
             14.
             12.
             10.
                                                                                            Qx= 14.3781, Qy= 9.3057
              8.
              6.
                                                                                            (ΔQx= -0.0015, ΔQy= +0.0037)
              4.
              2.                                                                            Cx= 0.95, Cy= 1.25
             0.0
                   0.0       10.       20.   30.   40.   50.   60.   70.     80.      90.
                                                                                   s (m)
                     E   / p0c = 0 .
                    Table name = TWISS



                    FULL
                    TPS booster b6p4d2
             20.    Linux version 8.23/08                             28/09/12 10.28.30
       10




                        x         y      DX10
(m), DX




             18.
             16.
             14.
                                                                                            (c) New Re-Matching Result:
             12.
             10.
                                                                                            Qx= 14.3799, Qy= 9.3027
              8.
              6.                                                                            (ΔQx= +0.0003, ΔQy= +0.0007)
                                                                                            Cx= 1.0, Cy= 1.0
              4.
              2.
             0.0
                   0.0      10.        20.   30.   40.   50.   60.   70.     80.      90.
                                                                                   s (m)                                   14
                     E   / p0c = 0 .
                    Table name = TWISS
Check the Dynamic Aperture (DA) for
                  TPS/BR with 10 Random Machines
                              E/E = 0%
         14
                                                                  Blue: baseline lattice (a)
              βx=14.926, βy=6.749
                                                1
                                                2

                                                                  Red: new matched lattice (c)
         12                                     3
                                                4

         10
              βx=14.904, βy=6.683               5
                                                6
                                                7
                                                8
                                                                  The multipole field errors are adopted
y (mm)




                                                9
          8                                    10
                                                1
                                                2                 in the lattice model.
          6                                     3
                                                4
                                                5
          4
                                                6
                                                7                 The size of DA is related to the injection
                                                8
          2
                                                9
                                               10
                                                                  efficiency. We do not yet consider the
          0
                                                                  close orbit distortion and orbit variations
           -30   -20   -10       0
                              x (mm)
                                         10   20    30
                                                                  due to ramping.

                             E/E = -1.5%                                              E/E = 1.5%
         14                                                       14

              βx=15.942, βy=5.928                                      βx=13.898, βy=7.643
                                                1                                                      1
                                                2                                                      2
         12                                     3                 12                                   3
                                                4                                                      4

         10
              βx=15.928, βy=5.854               5
                                                6
                                                                  10
                                                                       βx=13.872, βy=7.577             5
                                                                                                       6
                                                7                                                      7
                                                8                                                      8
y (mm)




                                                         y (mm)
                                                9                                                      9
          8                                    10                  8                                  10
                                                1                                                      1
                                                2                                                      2
          6                                     3                  6                                   3
                                                4                                                      4
                                                5                                                      5
                                                6                                                      6
          4                                     7                  4                                   7
                                                8                                                      8
                                                9                                                      9
          2                                    10                  2                                  10


          0                                                        0
           -30   -20   -10       0
                              x (mm)
                                         10   20    30              -30   -20   -10       0
                                                                                       x (mm)
                                                                                                10   20    30
                                                                                                                15
Estimate Eddy Current Effect in TPS/BR
            The beam is injected from linac                                                                    The beam energy is increased in
                to TPS/BR at 150 MeV                                                                           TPS/BR from 150 MeV to 3 GeV


                                  (DESY formula)                                                                                 (S.Y. Lee’s formula)

             0.2                                                           3                                     2
                                       K2 (S.Y. Lee)                                                                                                      x (S.Y. Lee)
            0.18                          K2 (SLS)                                                             1.5
                                                                                                                                                          y (S.Y. Lee)
                                           Energy                          2.5
            0.16                                                                                                 1                                            x (SLS)
                                                                                                                                                              y (SLS)
            0.14                                                                                               0.5
                                                                           2




                                                                                                Chromaticity
                                                                                 Energy (GeV)
            0.12
K2 (1/m3)




                                                                                                                 0

             0.1                                                           1.5                                 -0.5

            0.08                                                                                                -1

            0.06       ΔK2(at Dipole) vs. Time                             1
                                                                                                               -1.5
                                                                                                                               Chromaticity vs. Time
            0.04                                                                                                -2
                                                                           0.5
            0.02                                                                                               -2.5

              0                                                            0                                    -3
                   0    20   40   60        80     100   120   140   160                                              0   20    40   60     80    100   120      140     160
                                       Time (ms)                                                                                          Time (ms)




                                   Check DA for the worst (Eddy) case (at 23 ms)
                                                                                                                                                                               16
Check DA with 100 Random Machines
                                                                TPS/BR Original lattice model
                                     E/E = -1.5%                                                  E/E = 0%                                                       E/E = 1.5%
              14                                                              14                                                             14
                                                        dynap                                                        dynap                                                            dynap
                                                      chamber                                                      chamber                                                          chamber
              12                                                              12                                                             12


              10                                                              10                                                             10




                                                                     y (mm)
   y (mm)




                                                                                                                                    y (mm)
               8                                                               8                                                              8


               6                                                               6                                                              6


               4                                                               4                                                              4


               2                                                               2                                                              2


               0                                                               0                                                              0
                -30     -20    -10           0   10      20     30              -30   -20   -10      0       10       20      30               -30   -20   -10       0       10         20     30
                                      x (mm)                                                      x (mm)                                                          x (mm)


                                                                     w/ Eddy effect (worst case)
                                    E/E = -1.5%                                                   E/E = 0%                                                       E/E = 1.5%
         14                                                                   14                                                             14
                                                        dynap                                                         dynap                                                            dynap
                                                      chamber                                                       chamber                                                          chamber
         12                                                                   12                                                             12


         10                                                                   10                                                             10
y (mm)




                                                                                                                                    y (mm)
                                                                     y (mm)




          8                                                                    8                                                              8


          6                                                                    6                                                              6


          4                                                                    4                                                              4


          2                                                                    2                                                              2


          0                                                                    0                                                              0
           -30        -20     -10        0       10      20     30              -30   -20   -10      0        10        20     30              -30   -20   -10           0    10         20     30
                                      x (mm)                                                      x (mm)                                                          x (mm)
                                                                                                                                                                                   17
Apply Sextupole Magnets for Chromaticity
                                                                                        Correction During TPS/BR Ramping
                                                                                                                           Chromaticity = (+1.07, +1.50)
                                                                                     0                                                                                                                        2
                                                                                                                                                                                                                       K2 (Eddy current effect, DESY formula)
                                                                                    -1                              K2 EDDY vs. K2 SD                                                                         1                   K2 (SD sextupole strength)
                                                                                                                                                                                                                                  K2 (SF sextupole strength)
                                               K2 (SD Sextupole Strength) (1/m^3)




                                                                                    -2
                                                                                                                                                                                                              0

                                                                                    -3

                                                                                                                                                                                                              -1




                                                                                                                                                                                                  K2 (1/m3)
                                                                                    -4

                                                                 €                                                                                                                                            -2
                                                                                    -5


                                                                                                                                                               ’check.log’ u 1:(2.0*$2)
                                                                                                                                               fit result: a1=-28.2654, b1=-0.012603
                                                                                                                                                                                                              -3
                                                                                    -6
                                                                                         0       0.02    0.04      0.06      0.08      0.1      0.12      0.14       0.16            0.18   0.2
                                                                                                          K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3)
                                                                                                                                                                                                              -4

        K2 SD = (−28.2654) × K2 EDDY − 0.0126                                                                                                                                                                 -5
                                                                                                                                                                                                                                         K2 (SF, SD) vs. Time
                                                                                                                           Chromaticity = (+1.07, +1.50)
                                                                                     0.5
                                                                                                                                                            ’check.log’ u 1:(2.0*$3)
                                                                                                                                           fit result: a2=2.27689, b1=0.00534554                              -6
                                                                                    0.45                                                                                                                           0     20     40       60     80    100   120   140   160
                                                                                     0.4
                                                                                                 K2 EDDY vs. K2 SF                                                                                                                            Time (ms)
          K2 (SF Sextupole Strength) (1/m^3)




                                                                                                                                                                                                                              (For a ramping period)
                                                                                    0.35

€                                                                                    0.3

                                                                                    0.25

                                                                                     0.2

                                                                                    0.15

    €                                                                                0.1                                                                                                                           MAD Chromaticity (ξx , ξy ) ~ (+1, +1)
                                                                                    0.05

                                                                                         0
                                                                                             0    0.02    0.04      0.06      0.08       0.1        0.12       0.14       0.16       0.18   0.2
                                                                                                         K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3)


                                                                                                                                                                                                                                                                        18
        K2 SF = (2.2769) × K2 EDDY + 0.0053
                                                                                                                                                                                                                                     €
Check DA with 100 Random Machines
                                        w/ Eddy effect (worst case) + sext. corrections
                              E/E = -1.5%                                                E/E = 0%                                                    E/E = 1.5%
         14                                                          14                                                          14
                                               dynap                                                       dynap                                                       dynap
                                             chamber                                                     chamber                                                     chamber
         12                                                          12                                                          12


         10                                                          10                                                          10
y (mm)




                                                                                                                        y (mm)
                                                            y (mm)
          8                                                           8                                                           8


          6                                                           6                                                           6


          4                                                           4                                                           4


          2                                                           2                                                           2


          0                                                           0                                                           0
           -30    -20   -10       0     10      20     30              -30   -20   -10      0       10      20     30              -30   -20   -10       0     10        20    30
                               x (mm)                                                    x (mm)                                                       x (mm)




                 In summary, applying sextupole magnets in TPS/BR during the energy
                 ramping allows us to improve the DA.


                                                                                                                                                                    19
Establish Analysis Tools (MIA&ICA)
•    To prepare the analysis tools for TPS commissioning, we apply MIA
     (Model Independent Analysis) [1] and ICA (Independent Component
     Analysis) [2] in turn-by-turn BPM data mining.
     [1] Y. T. Yan et al., Report No. SLAC-PUB-11209 (2005).
     [2] X. Huang et al., Phys. Rev. ST Accel. Beams 8, 064001 (2005).

•    MIA or ICA are fast analyses (one-shot) for BPM beam signal, which
     are used to measure the lattice parameters such as beta, phase
     advance, dispersion, betatron and synchrotron tunes.

•    We test MIA and ICA methods with TPS/BR simulation data and TLS
     /SR experimental data.

•    For TPS/BR analysis, we have included the multipole errors, eddy
     current effects, and BPM noise in track simulation.

                                                                        20
The Principle of MIA
    •  We decompose the equal time covariance matrix of turn-by-
       turn BPM data with Singular Value Decomposition (SVD):

                                          ⎛ x1 (1)     x1 (2)      x1 (1000) ⎞
                                          ⎜                                    ⎟
                                          ⎜ x 2 (1)    x 2 (2)     x 2 (1000) ⎟
       For 60 BPMs and 1000 turns: X(t) =
                                          ⎜                                ⎟
                                          ⎜                                    ⎟
                                          ⎝ x 60 (1)   x 60 (2)    x 60 (1000)⎠

          CX = X(t)X(t)T = UΛU T (decomposed with SVD)
                               €                 ⎛ S1 ⎞   Dx     Dispersion
         Spatial    Temporal                     ⎜ ⎟
                                                 ⎜ S2 ⎟
                                                 ⎜ S3 ⎟    νx    Betatron motion
€       ∴ X = U(U X) = ( A1
                   T
                               A2   A3   A4 A5 )⎜ ⎟
                                                 ⎜ S4 ⎟
                          Dx        νx     2νx   ⎜ S5 ⎟   2νx Sextupole terms
                                                 ⎜ ⎟
                                                 ⎝  ⎠                      21
Extract Beta, Phase, Dsipersion and Tunes from the First
             Three of Largest Singular Values
For horizontal betatron motion:                                                               Dx = A1 × const.
                                                                                                        2      2
                                             ⎛ s1 ⎞                                         βx = (A2 + A3 ) × const.
                                             ⎜ ⎟
                                             ⎜ s2 ⎟                                                      ⎛ ⎞
                                                                                                         −1 A2
X = U(U T X) = ( A1         A2     A3     0)⎜ s3 ⎟
                                             ⎜ ⎟
                                                                                  ∴           φx = tan ⎜ ⎟
                                                                                                           ⎝ A3 ⎠
                                             ⎜  ⎟
                                             ⎜ ⎟
                                             ⎝ 0 ⎠                                          ν syn. = FFT(s1)
  ⎛             βx1                      βx1                   ⎞
  ⎜ aDx1             sin(ν x φ1 )             cos(ν x φ1 )    ⎟                            ν x = FFT(s2,3 )
  ⎜             M                        M                     ⎟
  ⎜             βx 2                    βx 2                   ⎟
     aDx 2            sin(ν x φ 2 )            cos(ν x φ 2 )   ⎟
= ⎜             M                        M                                   Spatial Matrix
  ⎜                                                        ⎟
  ⎜
  ⎜ aDxm
                βxm
                      sin(ν x φ m )
                                         βxm         €
                                               cos(ν x φ m )
                                                                ⎟
                                                               ⎟
                                                                             €
                                                                              (a = constant, Dx= dispersion)
  ⎝             M                       M                      ⎠
 ⎛ λ                               λ1                               λ1                  ⎞
 ⎜ 1 sin(2πν syn. • 0)                sin(2πν syn. • 1)               sin(2πν syn. • N)⎟
 ⎜   N                             N                                N                   ⎟
 ⎜ λ2
           cos(2πν x • 0)
                                    λ2
                                        cos(2πν x • 1)         
                                                                     λ2                  ⎟
                                                                         cos(2πν x • N) ⎟         Temporal Matrix
×⎜ N
 ⎜ λ
                                     N                                N
                                                                                         ⎟        (νsyn.=synchrotron tune)
                                     λ3                               λ3
 ⎜      3
            sin(2πν x • 0               sin(2πν x • 1)                  sin(2πν x • N) ⎟
 ⎜ N                                N                                N                  ⎟                          22
 ⎝                                                                                  ⎠
Ramping Effects vs. Turn Number
                    3
                                                Ramping Energy
                                                                             9 10                                   1                                     6 7 8 9 10
                                                                                                                                             Ramping RF Voltage


                             Beam Energy                            8                                                                              5
                                                              7                                                                              4
                   2.5
                                                                                                                   0.8



                                                        6                                                                              3




                                                                                                 RF Voltage (MV)
                    2
                                                                                                                                                         RF Voltage
Energy (GeV)




                                                                                                                   0.6

                   1.5                            5                                                                              2
                                            4                                                                      0.4       1
                               2 3
                    1                                                    1-10000 turn                                                                                   1-10000 turn
                                                                     10001-20000 turn                                                                               10001-20000 turn
                                                                     20001-30000 turn                                                                               20001-30000 turn


                             1
                                                                     30001-40000 turn                                                                               30001-40000 turn
                                                                     40001-50000 turn                              0.2                                              40001-50000 turn
                   0.5                                               50001-60000 turn                                                                               50001-60000 turn
                                                                     60001-70000 turn                                                                               60001-70000 turn
                                                                     70001-80000 turn                                                                               70001-80000 turn
                                                                     80001-90000 turn                                                                               80001-90000 turn
                                                                    90001-100660 turn                                                                              90001-100660 turn
                    0                                                                                               0
                         0      20000           40000       60000        80000          100000                           0           20000       40000     60000        80000           100000
                                                  Turn Number                                                                                     Turn Number
                                        Ramping Sextupole Strength K2
                    2
                                  SF sextupole strength
                    1
                             1 2 3 4 5 6 7 8 9 10                                                                            It takes about 100,660 turns
                    0                                                                                                        to accomplish a ramping cycle.
                                  Eddy current effect, DESY formula
                   -1
      K2 (1/m^3)




                   -2        Eddy Effect                                                                                         Each color represents
                                                                                                                                 specific ramping period
                   -3
                                                                         1-10000 turn
                                  SD sextupole strength              10001-20000 turn
                                                                     20001-30000 turn
                   -4

                                                                                                                                 (for every 10,000 turns).
                                                                     30001-40000 turn
                                                                     40001-50000 turn
                                                                     50001-60000 turn
                   -5                                                60001-70000 turn
                                                                     70001-80000 turn
                                                                     80001-90000 turn
                                                                    90001-100660 turn
                   -6
                         0      20000           40000       60000       80000           100000                                                                                         23
                                                 Turn Number
6-D Phase Space for a Ramping Cycle


                                       X vs. PX                                                                                        Y vs. PY                                                                                -ct vs. ΔE/E
                                                 BPM1 {X-PX} - plane                                                                               BPM1 {Y-PY} - plane                                                                 BPM1 {T-PT} - plane
               0.0006                                                                                                                                                                                             0.002
                                                                                                                                                                                  1-10000 turn                                                                    1-10000 turn
                                                                                                               0.0006                                                         10001-20000 turn                                                                10001-20000 turn
                                                                                                                                                                              20001-30000 turn                                                                20001-30000 turn
                                                                                                                                                                              30001-40000 turn                   0.0015                                       30001-40000 turn
               0.0004                                                                                                                                                         40001-50000 turn                                                                40001-50000 turn
                                                                                                               0.0004                                                         50001-60000 turn                                                                50001-60000 turn
                                                                                                                                                                              60001-70000 turn                                                                60001-70000 turn
                                                                                                                                                                              70001-80000 turn                    0.001
                                                                                                                                                                                                                                                              70001-80000 turn
                                                                                                                                                                              80001-90000 turn                                                                80001-90000 turn
               0.0002                                                                                                                                                        90001-100660 turn                                                               90001-100660 turn
                                                                                                               0.0002
                                                                                                                                                                                                                 0.0005



BPM1
       PX/P0




                                                                                                       PY/P0




                                                                                                                                                                                                          dE/E
                     0                                                                                              0                                                                                                 0



                                                                                                               -0.0002                                                                                           -0.0005



 .
               -0.0002                                                          1-10000 turn
                                                                            10001-20000 turn
                                                                            20001-30000 turn
                                                                            30001-40000 turn                                                                                                                      -0.001
                                                                            40001-50000 turn                   -0.0004
               -0.0004                                                      50001-60000 turn



 .
                                                                            60001-70000 turn                                                                                                                     -0.0015
                                                                            70001-80000 turn
                                                                            80001-90000 turn                   -0.0006
                                                                           90001-100660 turn
               -0.0006                                                                                                                                                                                            -0.002
                     -0.003   -0.002    -0.001            0            0.001        0.002      0.003                -0.004   -0.003   -0.002   -0.001       0        0.001     0.002      0.003   0.004                    0    0.02   0.04           0.06      0.08             0.1



 .
                                                      X (m)                                                                                             Y (m)                                                                              -ct (m)



 .              1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10                                                                                                                                                            1 2 3 4 5 6 7 8 9 10
 .
 .
 .                                                        Each color represents specific tracking period
                                                                    (for every 10,000 turns).
BPM60
                                                                                                                                                                                                                                                             24
Reconstruct TPS/BR Lattice Parameters
                                 with MIA
                                                                                                  Reconstructed value at BPM
                                                                                                  Model
         20                                                            30                                                   20                                                           30

         18
                   (a)                                                          (b)                                         18
                                                                                                                                     (c)                                                          (d)
                                                                       25                                                                                                                25
         16
                                                                                                  x   = 0.380               16
                                                                                                                                                                                                           y     = 0.302
         14                                                            20                                                   14                                                           20


                                                               Power                   (Model: 0.3796)                                                                                            (Model: 0.3020)




                                                                                                                                                                                 Power
(m)




                                                                                                                      (m)
         12                                                                                                                 12
                                                                       15                                                                                                                15
         10                                                                                                                 10
  x




                                                                                                                       y
          8                                                            10                                                    8                                                           10

          6                                                                                                                  6
                                                                        5                                                                                                                 5
          4                                                                                                                  4

          2                                                             0                                                    2                                                            0
               0    50   100 150 200 250 300 350 400 450 500                0         0.1   0.2    0.3   0.4    0.5              0    50   100 150 200 250 300 350 400 450 500                0     0.1    0.2     0.3   0.4    0.5

                                 s (m)                                            Horizontal Tune                                                  s (m)                                                Vertical Tune

         0.7                                                           30

                   (e)                                                          (f)
         0.6
                                                                       25                                                   The reconstructed values of βx, βy and horizontal 	

         0.5

                                                                       20
                                                                                       = 0.025                              dispersion Dx at BPMs are shown as red dots in 	

         0.4                                                                      s
                                                               Power
Dx (m)




         0.3                                                           15
                                                                                 (Model: 0.0250)
                                                                                                                            (a), (c) and (e), respectively. The gray lines are 	

         0.2
                                                                       10
                                                                                                                            model values along the TPS booster. The 	

         0.1

                                                                        5
                                                                                                                            reconstructed tunes for νx, νy and νs are shown 	

      -0.1
          0


                                                                        0
                                                                                                                            in (b), (d) and (f), respectively.
               0    50   100 150 200 250 300 350 400 450 500                0         0.1   0.2    0.3   0.4    0.5

                                 s (m)                                           Synchrotron Tune
                                                                                                                                                                                                                           25
The Principle of ICA
    •     We diagonalize the non-equal time covariance matrices of turn-by-
          turn BPM data:
                                             ⎛ x1 (1)         x1 (2)      x1 (1000) ⎞
                                             ⎜                                        ⎟
                                             ⎜ x 2 (1)        x 2 (2)     x 2 (1000) ⎟
          For 60 BPMs and 1000 turns: X(t) =
                                             ⎜                                    ⎟
                                             ⎜                                        ⎟
                                             ⎝ x 60 (1)       x 60 (2)    x 60 (1000)⎠
                                          whitening
                                                   ⎛ Λ1 0 ⎞⎛U1T ⎞
              CX (τ = 0) = X(t)X(t)T = (U1,U 2 )⎜           ⎟⎜ T ⎟,
                                                   ⎝ 0 Λ 2 ⎠⎝U 2 ⎠
                               €
              CX (τ k ≠ 0) = X(t)X(t + τ k )T , k = 1,2,3...
         The Jacobi-like joint diagonalization is applied to find out a unitary matrix
         W which is a joint diagonalizer for all the auto-covariance matrices:
€                                               s = W T (Λ−1/ 2U1T )X      (temporal)
                                                          1
         ⇒ CX (τ k ) = WDkW T ,
                                                A = (Λ−1/ 2U1T ) −1W
                                                      1                    (spatial)
            (k = 1,2,3...)                                                              26
Reconstruct TLS/SR Lattice Parameters with ICA
        •            We practice the ICA in experimental turn-by-turn data for TLS/SR.
        •            The horizontal and vertical tunes of TLS/SR model are 0.310 and 0.277, respectively;
                     the horizontal and vertical tunes from measurement are 0.302 and 0.180, respectively.

                             Horizontal singular values                                                                                          Vertical singular values
                                                                                                                                   36
                    36


                                     Mode 1: βx                                                                                                             Mode 1: βy
                                                                                                                                   34
                    34



                                     Mode 2: βx                                                                                                             Mode 2: βy
                                                                                                                                   32
                    32


                                                                                                                                                            Mode 3: βx There are horizontal betatron




                                                                                                                        log(SVy)
                                     Mode 3: βy             There are vertical betatron
         log(SV )
              x




                                                                                                                                   30
                    30
                                                                                                                                                                       couplings, the magnitude of
                                                            couplings, the magnitude of
                                     Mode 5: βy                                                                                                             Mode 4: βx coupling is about 10-3 of vertical
                    28
                                                            coupling is about 10-7 of                                              28

                                                                                                                                                                       betatron oscillation.
                                                            horizontal betaton oscillation.
                    26
                                     Mode 7: Dx                                                                                    26




                                                                                                                                   24
                    24



                                                                                                                                   22
                    22                                                                                                                  0         10        20           30         40                 50        60
                         0      10   20       30            40         50          60
                                          SVx Index                                                                                                              SVy Index


                                                   25                                                          25                                                                            1.4




                                                                                                                                                                                             1.2

                                                   20                                                          20

                                                                                                                                                                                              1




Reconstructed value at BPM                         15                                                          15




                                                                                                                                                                                    Dx (m)
                                                                                                         (m)
                                             (m)




                                                                                                                                                                                             0.8




Model value at BPM
                                                                                                          y
                                               x




                                                                                                                                                                                             0.6
                                                   10                                                          10




Model                                               5                                                           5
                                                                                                                                                                                             0.4




                                                                                                                                                                                             0.2




                                                    0                                                           0                                                                             0
                                                        0        20   40      60        80   100   120              0          20           40         60   80     100        120                  0        20   40     60     80   100   120

                                                                            s (m)                                                                 s (m)                                                               s (m)


                                                                                                                                                                                                                              27
Summary of MIA&ICA

•    We have successfully extracted lattice parameters, like beta, phase
      advance, dispersion and tunes with MIA or ICA for TPS/BR and TLS
     /SR.

•    We have included MIA&ICA analysis codes in MATLAB based system.

•    The property of MIA&ICA is fast analysis, so we can measure the
     machine status within seconds. It is suitable for TPS/BR analysis.

•    The MIA&ICA provides another information for LOCO, which would be
     helpful in machine measurement and modeling.




                                                                           28
Injection Study for TPS/SR
•    In order to reduce the radiation level, we study the tolerance of injected
      beam condition

•    Use Tracy-II for 6-D tracking. The lattice model includes the injection
     kicker strength, septum arrangement, chamber limits, multipole field
     errors (10 random machines are used), close orbit distortion and its
     correction by applying correctors, etc.

•    We generate a thousand particles as a bunch of a beam and track
     these particles for a thousand turns

•    Check the survival rate of a beam bunch and record the lost information
     of particles, including lost position, lost plane and lost turn number.
     These information are useful for radiation protection.


                                                                               29
Schematic Layout of TPS/SR Injection
                   3.6                       2.8                      3.6



        K1                            K2               K3     Bumped               K4
                  Stored beam                                 stored beam




                                0.6                           Injected beam
        0.6                                                                         0.6
                                                        0.6
  Kicker magnet


                                               0.8

                                      0.8                                     Unit:(m)
                                            Pulsed septum
                                  DC septum (AC septum)
                  K3                  K4                       K1                 K2
e-
                                                                    t1~T0
t0= 0                                                                                          t1=T0


Injection pt.                                                                             Injection pt.
                                                                                                  30
QL1	
 K1                 K2                     400        800                K3                    K4        QL1	
                                   68 mm                   54 mm
        600              600      [-34, +34]               [-20, +34]         600                   600
  700           3000	
             1100	
                1100	
                        3000	
             700
                                       Middle of R1 straight Injection point

Simplified model for chamber                                             x’

limit used in injection simulations.
                                            Septum wall
The chamber limits in long and                  3 mm

short straight sections are:                                              Bumped beam acceptance
[x = ±34 mm, y = ±5 mm]                                                                Acceptance


                                                                           Bumped stored beam
                                                                                                     x

                                Injected beam                            Stored beam




                                                       Beam stay clear = 20.0 mm


                                                 Xoffset = 23.8 mm
                                                                                                         31
Phase Space (Px/P0 vs. x)
                      Choose one of the random machines and scan injected beam position in horizontal.
                  4                                                                             4                                                                        4                                                               4



                                    Xoffset = 23.8 mm                                                             Xoffset = 24.8 mm                                                       Xoffset = 25.8 mm                                               Xoffset = 26.8 mm
 Px / P0 (x10-3)




                                                                              Px / P0 (x10-3)




                                                                                                                                                            Px / P0 (x10-3)




                                                                                                                                                                                                                            Px / P0 (x10-3)
                  3                                                                             3                                                                        3                                                               3


                  2                                                                             2                                                                        2                                                               2


                  1                                                                             1                                                                        1                                                               1


                  0                                                                             0                                                                        0                                                               0

                                                                Turn 0                                                                        Turn 0                                                          Turn 0                                                          Turn 0
              -1                                                Turn 1                      -1                                                Turn 1                    -1                                    Turn 1                    -1                                    Turn 1
                                                                Turn 2                                                                        Turn 2                                                          Turn 2                                                          Turn 2
                                                                Turn 3                                                                        Turn 3                                                          Turn 3                                                          Turn 3
              -2                                                Turn 4                      -2                                                Turn 4                    -2                                    Turn 4                    -2                                    Turn 4
                                                                Turn 5                                                                        Turn 5                                                          Turn 5                                                          Turn 5
                                                                Turn 6                                                                        Turn 6                                                          Turn 6                                                          Turn 6
                                                                Turn 7                                                                        Turn 7                                                          Turn 7                                                          Turn 7
              -3                                                Turn 8                      -3                                                Turn 8                    -3                                    Turn 8                    -3                                    Turn 8
                                                               Septum                                                                        Septum                                                          Septum                                                          Septum
                                                               Septum                                                                        Septum                                                          Septum                                                          Septum
              -4                                                                            -4                                                                          -4                                                              -4
                       -30    -20     -10     0      10   20             30                          -30    -20     -10     0      10   20             30                     -30   -20     -10   0    10   20         30                     -30   -20     -10   0    10   20         30



                                            x (mm)                                                                        x (mm)                                                              x (mm)                                                          x (mm)
                  4                                                                             4                                                                        4                                                               4



                                    Xoffset = 27.8 mm                                                             Xoffset = 28.8 mm                                                       Xoffset = 29.8 mm                                               Xoffset = 30.8 mm
 Px / P0 (x10-3)




                                                                              Px / P0 (x10-3)




                                                                                                                                                            Px / P0 (x10-3)




                                                                                                                                                                                                                            Px / P0 (x10-3)
                  3                                                                             3                                                                        3                                                               3


                  2                                                                             2                                                                        2                                                               2


                  1                                                                             1                                                                        1                                                               1


                  0                                                                             0                                                                        0                                                               0

                                                                Turn 0                                                                        Turn 0                                                          Turn 0                                                          Turn 0
              -1                                                Turn 1                      -1                                                Turn 1                    -1                                    Turn 1                    -1                                    Turn 1
                                                                Turn 2                                                                        Turn 2                                                          Turn 2                                                          Turn 2
                                                                Turn 3                                                                        Turn 3                                                          Turn 3                                                          Turn 3
              -2                                                Turn 4                      -2                                                Turn 4                    -2                                    Turn 4                    -2                                    Turn 4
                                                                Turn 5                                                                        Turn 5                                                          Turn 5                                                          Turn 5
                                                                Turn 6                                                                        Turn 6                                                          Turn 6                                                          Turn 6
                                                                Turn 7                                                                        Turn 7                                                          Turn 7                                                          Turn 7
              -3                                                Turn 8                      -3                                                Turn 8                    -3                                    Turn 8                    -3                                    Turn 8
                                                               Septum                                                                        Septum                                                          Septum                                                          Septum
                                                               Septum                                                                        Septum                                                          Septum                                                          Septum
              -4                                                                            -4                                                                          -4                                                              -4
                       -30    -20     -10     0      10   20             30                          -30    -20     -10     0      10   20             30                     -30   -20     -10   0    10   20         30                     -30   -20     -10   0    10   20         30



                                            x (mm)                                                                        x (mm)                                                              x (mm)                                                          x (mm)
             4                                                                             4                                                                             4



                                    Xoffset = 31.8 mm                                                             Xoffset = 32.8 mm                                                       Xoffset = 33.8 mm
                                                                                                                                                            Px / P0 (x10-3)
Px / P0 (x10-3)




                                                                               Px / P0 (x10 )




             3                                                                             3                                                                             3
                                                                              -3




             2                                                                             2                                                                             2


             1


             0
                                                                                           1


                                                                                           0
                                                                                                                                                                         1


                                                                                                                                                                         0
                                                                                                                                                                                                                                         Only show 9 turns
            -1
                                                            Turn 0
                                                            Turn 1
                                                            Turn 2
                                                            Turn 3
                                                                                          -1
                                                                                                                                          Turn 0
                                                                                                                                          Turn 1
                                                                                                                                          Turn 2
                                                                                                                                          Turn 3
                                                                                                                                                                        -1
                                                                                                                                                                                                              Turn 0
                                                                                                                                                                                                              Turn 1
                                                                                                                                                                                                              Turn 2
                                                                                                                                                                                                              Turn 3
                                                                                                                                                                                                              Turn 4
                                                                                                                                                                                                                                         Results
            -2                                              Turn 4                        -2                                              Turn 4                        -2
                                                            Turn 5                                                                        Turn 5                                                              Turn 5
                                                            Turn 6                                                                        Turn 6                                                              Turn 6
                                                            Turn 7                                                                        Turn 7                                                              Turn 7
            -3                                                                            -3                                                                            -3                                    Turn 8
                                                            Turn 8                                                                        Turn 8
                                                           Septum                                                                        Septum                                                              Septum
                                                           Septum                                                                        Septum                                                              Septum
            -4                                                                            -4                                                                            -4
                      -30    -20      -10     0   10      20             30                         -30    -20      -10     0   10      20             30                     -30   -20     -10   0    10   20         30



                                        x (mm)                                                                        x (mm)                                                                  x (mm)
                                                                                                                                                                                                                                                                      32
Mark 20121024
Mark 20121024
Mark 20121024
Mark 20121024
Mark 20121024
Mark 20121024

More Related Content

Similar to Mark 20121024

Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)asghar123456
 
Chib paper approval
Chib paper approvalChib paper approval
Chib paper approval
Alexander Mazurov
 
Production function economic
Production function economicProduction function economic
Production function economicMahdi Mesbahi
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshire
NZIP
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
 
CAE REPORT
CAE REPORTCAE REPORT
CAE REPORTdayahisa
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics ReportDrew Silcock
 
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesNatalia
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesNatalia
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
Christos Kallidonis
 
beban harmonis dinamika struktur
beban harmonis  dinamika strukturbeban harmonis  dinamika struktur
beban harmonis dinamika struktur
Shaleh Afif Hasibuan
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
Jagadeeswaran Rathinavel
 

Similar to Mark 20121024 (20)

Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)
 
Chib paper approval
Chib paper approvalChib paper approval
Chib paper approval
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Production function economic
Production function economicProduction function economic
Production function economic
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshire
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
CAE REPORT
CAE REPORTCAE REPORT
CAE REPORT
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics Report
 
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
8th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Wireless
WirelessWireless
Wireless
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 
beban harmonis dinamika struktur
beban harmonis  dinamika strukturbeban harmonis  dinamika struktur
beban harmonis dinamika struktur
 
PosterA0_AH_II
PosterA0_AH_IIPosterA0_AH_II
PosterA0_AH_II
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
 
calibpi0
calibpi0calibpi0
calibpi0
 
DCT
DCTDCT
DCT
 

Recently uploaded

RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdfRECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
AlessandroMartins454470
 
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
atwvhyhm
 
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
taqyed
 
Erection Methodology (KG Marg) MLCP.pptx
Erection Methodology (KG Marg) MLCP.pptxErection Methodology (KG Marg) MLCP.pptx
Erection Methodology (KG Marg) MLCP.pptx
zrahman0161
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
pxyhy
 
Leadership Ambassador club Adventist module
Leadership Ambassador club Adventist moduleLeadership Ambassador club Adventist module
Leadership Ambassador club Adventist module
kakomaeric00
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
Bruce Bennett
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
yuhofha
 
Full Sail_Morales_Michael_SMM_2024-05.pptx
Full Sail_Morales_Michael_SMM_2024-05.pptxFull Sail_Morales_Michael_SMM_2024-05.pptx
Full Sail_Morales_Michael_SMM_2024-05.pptx
mmorales2173
 
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
pxyhy
 
Brand Identity For A Sportscaster Project and Portfolio I
Brand Identity For A Sportscaster Project and Portfolio IBrand Identity For A Sportscaster Project and Portfolio I
Brand Identity For A Sportscaster Project and Portfolio I
thomasaolson2000
 
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMAMISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
DK PAGEANT
 
New Explore Careers and College Majors 2024
New Explore Careers and College Majors 2024New Explore Careers and College Majors 2024
New Explore Careers and College Majors 2024
Dr. Mary Askew
 
一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理
yuhofha
 
Personal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignmentPersonal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignment
ragingokie
 
labb123456789123456789123456789123456789
labb123456789123456789123456789123456789labb123456789123456789123456789123456789
labb123456789123456789123456789123456789
Ghh
 
lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789
Ghh
 
Personal Brand Exploration Comedy Jxnelle.
Personal Brand Exploration Comedy Jxnelle.Personal Brand Exploration Comedy Jxnelle.
Personal Brand Exploration Comedy Jxnelle.
alexthomas971
 
Digital Marketing Training In Bangalore
Digital  Marketing Training In BangaloreDigital  Marketing Training In Bangalore
Digital Marketing Training In Bangalore
nidm599
 
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdfDOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
Pushpendra Kumar
 

Recently uploaded (20)

RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdfRECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
 
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
原版制作(RMIT毕业证书)墨尔本皇家理工大学毕业证在读证明一模一样
 
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
一比一原版(U-Barcelona毕业证)巴塞罗那大学毕业证成绩单如何办理
 
Erection Methodology (KG Marg) MLCP.pptx
Erection Methodology (KG Marg) MLCP.pptxErection Methodology (KG Marg) MLCP.pptx
Erection Methodology (KG Marg) MLCP.pptx
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
 
Leadership Ambassador club Adventist module
Leadership Ambassador club Adventist moduleLeadership Ambassador club Adventist module
Leadership Ambassador club Adventist module
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
 
Full Sail_Morales_Michael_SMM_2024-05.pptx
Full Sail_Morales_Michael_SMM_2024-05.pptxFull Sail_Morales_Michael_SMM_2024-05.pptx
Full Sail_Morales_Michael_SMM_2024-05.pptx
 
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
 
Brand Identity For A Sportscaster Project and Portfolio I
Brand Identity For A Sportscaster Project and Portfolio IBrand Identity For A Sportscaster Project and Portfolio I
Brand Identity For A Sportscaster Project and Portfolio I
 
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMAMISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
MISS TEEN GONDA 2024 - WINNER ABHA VISHWAKARMA
 
New Explore Careers and College Majors 2024
New Explore Careers and College Majors 2024New Explore Careers and College Majors 2024
New Explore Careers and College Majors 2024
 
一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理
 
Personal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignmentPersonal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignment
 
labb123456789123456789123456789123456789
labb123456789123456789123456789123456789labb123456789123456789123456789123456789
labb123456789123456789123456789123456789
 
lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789
 
Personal Brand Exploration Comedy Jxnelle.
Personal Brand Exploration Comedy Jxnelle.Personal Brand Exploration Comedy Jxnelle.
Personal Brand Exploration Comedy Jxnelle.
 
Digital Marketing Training In Bangalore
Digital  Marketing Training In BangaloreDigital  Marketing Training In Bangalore
Digital Marketing Training In Bangalore
 
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdfDOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
 

Mark 20121024

  • 1. Simulation and Analysis of the Data in TPS 2012/10/24 Cheng-Chin Chiang 江政錦 1
  • 2. Personal Data Present Position: Assistant Researcher in Beam Dynamics Group, NSRRC Education: National Taiwan University (2004~2009), Ph.D. in Physics Experience: 2004~2010 (1)  Member of BELLE collaboration in KEK (2)  On call shift of BELLE sub-detector in KEK (3)  System manger of NTU High Energy Lab. (4)  Internal referee of Physical analysis group in BELLE collaboration 2010~2012 (5) Computer programming for TPS project 2
  • 3. Working Experience at KEK-BELLE 3
  • 5. KEK-BELLE e +e- Collider •  Two separate rings for e+ and e- •  Energy in CM is 10.58GeV  Y(4S) •  Ring length 3Km 8.0 GeV e- Belle 3.5 GeV e+ 5
  • 6. KEK e +e- Accelerator e+/e- Linac Straight Section Arc Section 6 e+ Generator of linac Electron Source of linac
  • 7. The BELLE Detector Extreme Forward Calorimeter γ, π0 reconstruction e+- identification 7
  • 8. My Working Place at KEK Extreme Forward Calorimeter Electronic-Hut BELLE control room Spring Autumn Kitty 8
  • 9. Study the CP (Charge × Parity) Violation For example: B0→J/ψ K0 Decay -- B0 Decay (Time dependent CP violation) -- B0 Decay 9
  • 10. The Challenge of CP Violation •  In theoretical calculations: - We need a good model to explain the behavior of B meson decays from experimental measurements Tree diagram Penguin diagram •  In experiment: - We need to produce the maximum number of B meson decays for good measurements in statistics (i.e. good luminosity). - We need good analysis methods and tools to evaluate the huge amount of experimental data 10
  • 11. : B0 →ρ0ρ0 : Continuum 657 Million BB Data Measurement : b→c decays : Other charmless (B0→ρ0ρ0 Decay) B decays Mode Yield Eff.(%) Σ BF (x10-6) UL (x10-6) +23.6+10.1 +0.2 ρ0ρ0 24.5−22.1−16.2 9.16 (fL=1) 1.0 0.4 ± 0.4 −0.3 <1.0 (fL=1) +67.4 +3.5 ρ0ππ 112.5−65.6 ± 52.3 2.90 1.3 5.9−3.4 ± 2.7 <12.0 4π +61.2+27.7 161.2−59.4−25.1 1.98 2.5 +4.7+2.1 12.4 −4.6−1.9 <19.3 € +14.5+4.8 € ρ0f0 −11.8−12.9−3.6 9.81 … … <0.3 € € f0f0 +4.7 −7.7−3.5 ± 3.0 10.17 … … <0.1 € +37.0 € +1.9 f0ππ 6.3−34.7 ± 18.0 2.98 … 0.3−1.8 ± 0.9 <3.8 € 11 € € €
  • 12. Publications 1.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ decays and search for B → ρ0ρ0”, Phys. Rev. D, 78, 111102(R) (2008); arXiv:0808.2576. 2.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ decays and search for B → ρ0ρ0 at Belle”, in the Book ``Les Rencontres de physique de la Vallée d'Aoste”, Edited by M. Greco, ISBN 978-88-86409-56-8, p.365-378 (2008). 3.  C.C. Chiang et al. (Belle Collaboration), ``b → d and other charmless B decays at Belle”, European Physical Society Europhysics Conference on High Energy Physics (2009), PoS(EPS-HEP2009) 207; http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=84. 4.  C.C. Chiang et al. (Belle Collaboration), ``Search for B0 → K*0 anti-K*0, B0 → K*0 K*0 and B0 → KKππ decays”, Phys. Rev. D, 81, 071101(R) (2010); arXiv:1001.4595. 5.  C.C. Chiang et al. (Belle Collaboration),``Improved Measurement of the Electroweak Penguin Process B → Xs l+l-“, 35th International Conference of High Energy Physics, PoS(ICHEP2010) 231; http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=120. 12
  • 14. Optimize the TPS/BR Lattice FULL TPS booster b6p4d2 20. Linux version 8.23/08 28/09/12 10.28.00 10 x y DX10 (m), DX 18. 16. 14. (a) Baseline Design: 12. 10. Qx= 14.3796, Qy= 9.3020 Cx= 1.0, Cy= 1.0 8. 6. 4. 2. 0.0 0.0 10. 20. 30. 40. 50. 60. 70. 80. 90. s (m) E / p0c = 0 . Table name = TWISS FULL TPS booster b6p4d2 20. Linux version 8.23/08 28/09/12 10.28.20 10 x y DX10 (m), DX (b) From Magnet Group Data: 18. 16. 14. 12. 10. Qx= 14.3781, Qy= 9.3057 8. 6. (ΔQx= -0.0015, ΔQy= +0.0037) 4. 2. Cx= 0.95, Cy= 1.25 0.0 0.0 10. 20. 30. 40. 50. 60. 70. 80. 90. s (m) E / p0c = 0 . Table name = TWISS FULL TPS booster b6p4d2 20. Linux version 8.23/08 28/09/12 10.28.30 10 x y DX10 (m), DX 18. 16. 14. (c) New Re-Matching Result: 12. 10. Qx= 14.3799, Qy= 9.3027 8. 6. (ΔQx= +0.0003, ΔQy= +0.0007) Cx= 1.0, Cy= 1.0 4. 2. 0.0 0.0 10. 20. 30. 40. 50. 60. 70. 80. 90. s (m) 14 E / p0c = 0 . Table name = TWISS
  • 15. Check the Dynamic Aperture (DA) for TPS/BR with 10 Random Machines E/E = 0% 14 Blue: baseline lattice (a) βx=14.926, βy=6.749 1 2 Red: new matched lattice (c) 12 3 4 10 βx=14.904, βy=6.683 5 6 7 8 The multipole field errors are adopted y (mm) 9 8 10 1 2 in the lattice model. 6 3 4 5 4 6 7 The size of DA is related to the injection 8 2 9 10 efficiency. We do not yet consider the 0 close orbit distortion and orbit variations -30 -20 -10 0 x (mm) 10 20 30 due to ramping. E/E = -1.5% E/E = 1.5% 14 14 βx=15.942, βy=5.928 βx=13.898, βy=7.643 1 1 2 2 12 3 12 3 4 4 10 βx=15.928, βy=5.854 5 6 10 βx=13.872, βy=7.577 5 6 7 7 8 8 y (mm) y (mm) 9 9 8 10 8 10 1 1 2 2 6 3 6 3 4 4 5 5 6 6 4 7 4 7 8 8 9 9 2 10 2 10 0 0 -30 -20 -10 0 x (mm) 10 20 30 -30 -20 -10 0 x (mm) 10 20 30 15
  • 16. Estimate Eddy Current Effect in TPS/BR The beam is injected from linac The beam energy is increased in to TPS/BR at 150 MeV TPS/BR from 150 MeV to 3 GeV (DESY formula) (S.Y. Lee’s formula) 0.2 3 2 K2 (S.Y. Lee) x (S.Y. Lee) 0.18 K2 (SLS) 1.5 y (S.Y. Lee) Energy 2.5 0.16 1 x (SLS) y (SLS) 0.14 0.5 2 Chromaticity Energy (GeV) 0.12 K2 (1/m3) 0 0.1 1.5 -0.5 0.08 -1 0.06 ΔK2(at Dipole) vs. Time 1 -1.5 Chromaticity vs. Time 0.04 -2 0.5 0.02 -2.5 0 0 -3 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 Time (ms) Time (ms) Check DA for the worst (Eddy) case (at 23 ms) 16
  • 17. Check DA with 100 Random Machines TPS/BR Original lattice model E/E = -1.5% E/E = 0% E/E = 1.5% 14 14 14 dynap dynap dynap chamber chamber chamber 12 12 12 10 10 10 y (mm) y (mm) y (mm) 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) w/ Eddy effect (worst case) E/E = -1.5% E/E = 0% E/E = 1.5% 14 14 14 dynap dynap dynap chamber chamber chamber 12 12 12 10 10 10 y (mm) y (mm) y (mm) 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) 17
  • 18. Apply Sextupole Magnets for Chromaticity Correction During TPS/BR Ramping Chromaticity = (+1.07, +1.50) 0 2 K2 (Eddy current effect, DESY formula) -1 K2 EDDY vs. K2 SD 1 K2 (SD sextupole strength) K2 (SF sextupole strength) K2 (SD Sextupole Strength) (1/m^3) -2 0 -3 -1 K2 (1/m3) -4 € -2 -5 ’check.log’ u 1:(2.0*$2) fit result: a1=-28.2654, b1=-0.012603 -3 -6 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3) -4 K2 SD = (−28.2654) × K2 EDDY − 0.0126 -5 K2 (SF, SD) vs. Time Chromaticity = (+1.07, +1.50) 0.5 ’check.log’ u 1:(2.0*$3) fit result: a2=2.27689, b1=0.00534554 -6 0.45 0 20 40 60 80 100 120 140 160 0.4 K2 EDDY vs. K2 SF Time (ms) K2 (SF Sextupole Strength) (1/m^3) (For a ramping period) 0.35 € 0.3 0.25 0.2 0.15 € 0.1 MAD Chromaticity (ξx , ξy ) ~ (+1, +1) 0.05 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3) 18 K2 SF = (2.2769) × K2 EDDY + 0.0053 €
  • 19. Check DA with 100 Random Machines w/ Eddy effect (worst case) + sext. corrections E/E = -1.5% E/E = 0% E/E = 1.5% 14 14 14 dynap dynap dynap chamber chamber chamber 12 12 12 10 10 10 y (mm) y (mm) y (mm) 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) In summary, applying sextupole magnets in TPS/BR during the energy ramping allows us to improve the DA. 19
  • 20. Establish Analysis Tools (MIA&ICA) •  To prepare the analysis tools for TPS commissioning, we apply MIA (Model Independent Analysis) [1] and ICA (Independent Component Analysis) [2] in turn-by-turn BPM data mining. [1] Y. T. Yan et al., Report No. SLAC-PUB-11209 (2005). [2] X. Huang et al., Phys. Rev. ST Accel. Beams 8, 064001 (2005). •  MIA or ICA are fast analyses (one-shot) for BPM beam signal, which are used to measure the lattice parameters such as beta, phase advance, dispersion, betatron and synchrotron tunes. •  We test MIA and ICA methods with TPS/BR simulation data and TLS /SR experimental data. •  For TPS/BR analysis, we have included the multipole errors, eddy current effects, and BPM noise in track simulation. 20
  • 21. The Principle of MIA •  We decompose the equal time covariance matrix of turn-by- turn BPM data with Singular Value Decomposition (SVD): ⎛ x1 (1) x1 (2)  x1 (1000) ⎞ ⎜ ⎟ ⎜ x 2 (1) x 2 (2)  x 2 (1000) ⎟ For 60 BPMs and 1000 turns: X(t) = ⎜     ⎟ ⎜ ⎟ ⎝ x 60 (1) x 60 (2)  x 60 (1000)⎠ CX = X(t)X(t)T = UΛU T (decomposed with SVD) € ⎛ S1 ⎞ Dx Dispersion Spatial Temporal ⎜ ⎟ ⎜ S2 ⎟ ⎜ S3 ⎟ νx Betatron motion € ∴ X = U(U X) = ( A1 T A2 A3 A4 A5 )⎜ ⎟ ⎜ S4 ⎟ Dx νx 2νx ⎜ S5 ⎟ 2νx Sextupole terms ⎜ ⎟ ⎝  ⎠ 21
  • 22. Extract Beta, Phase, Dsipersion and Tunes from the First Three of Largest Singular Values For horizontal betatron motion: Dx = A1 × const. 2 2 ⎛ s1 ⎞ βx = (A2 + A3 ) × const. ⎜ ⎟ ⎜ s2 ⎟ ⎛ ⎞ −1 A2 X = U(U T X) = ( A1 A2 A3  0)⎜ s3 ⎟ ⎜ ⎟ ∴ φx = tan ⎜ ⎟ ⎝ A3 ⎠ ⎜  ⎟ ⎜ ⎟ ⎝ 0 ⎠ ν syn. = FFT(s1) ⎛ βx1 βx1 ⎞ ⎜ aDx1 sin(ν x φ1 ) cos(ν x φ1 ) ⎟ ν x = FFT(s2,3 ) ⎜ M M ⎟ ⎜ βx 2 βx 2 ⎟ aDx 2 sin(ν x φ 2 ) cos(ν x φ 2 ) ⎟ = ⎜ M M Spatial Matrix ⎜    ⎟ ⎜ ⎜ aDxm βxm sin(ν x φ m ) βxm € cos(ν x φ m ) ⎟ ⎟ € (a = constant, Dx= dispersion) ⎝ M M ⎠ ⎛ λ λ1 λ1 ⎞ ⎜ 1 sin(2πν syn. • 0) sin(2πν syn. • 1)  sin(2πν syn. • N)⎟ ⎜ N N N ⎟ ⎜ λ2 cos(2πν x • 0) λ2 cos(2πν x • 1)  λ2 ⎟ cos(2πν x • N) ⎟ Temporal Matrix ×⎜ N ⎜ λ N N ⎟ (νsyn.=synchrotron tune) λ3 λ3 ⎜ 3 sin(2πν x • 0 sin(2πν x • 1)  sin(2πν x • N) ⎟ ⎜ N N N ⎟ 22 ⎝     ⎠
  • 23. Ramping Effects vs. Turn Number 3 Ramping Energy 9 10 1 6 7 8 9 10 Ramping RF Voltage Beam Energy 8 5 7 4 2.5 0.8 6 3 RF Voltage (MV) 2 RF Voltage Energy (GeV) 0.6 1.5 5 2 4 0.4 1 2 3 1 1-10000 turn 1-10000 turn 10001-20000 turn 10001-20000 turn 20001-30000 turn 20001-30000 turn 1 30001-40000 turn 30001-40000 turn 40001-50000 turn 0.2 40001-50000 turn 0.5 50001-60000 turn 50001-60000 turn 60001-70000 turn 60001-70000 turn 70001-80000 turn 70001-80000 turn 80001-90000 turn 80001-90000 turn 90001-100660 turn 90001-100660 turn 0 0 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 Turn Number Turn Number Ramping Sextupole Strength K2 2 SF sextupole strength 1 1 2 3 4 5 6 7 8 9 10 It takes about 100,660 turns 0 to accomplish a ramping cycle. Eddy current effect, DESY formula -1 K2 (1/m^3) -2 Eddy Effect Each color represents specific ramping period -3 1-10000 turn SD sextupole strength 10001-20000 turn 20001-30000 turn -4 (for every 10,000 turns). 30001-40000 turn 40001-50000 turn 50001-60000 turn -5 60001-70000 turn 70001-80000 turn 80001-90000 turn 90001-100660 turn -6 0 20000 40000 60000 80000 100000 23 Turn Number
  • 24. 6-D Phase Space for a Ramping Cycle X vs. PX Y vs. PY -ct vs. ΔE/E BPM1 {X-PX} - plane BPM1 {Y-PY} - plane BPM1 {T-PT} - plane 0.0006 0.002 1-10000 turn 1-10000 turn 0.0006 10001-20000 turn 10001-20000 turn 20001-30000 turn 20001-30000 turn 30001-40000 turn 0.0015 30001-40000 turn 0.0004 40001-50000 turn 40001-50000 turn 0.0004 50001-60000 turn 50001-60000 turn 60001-70000 turn 60001-70000 turn 70001-80000 turn 0.001 70001-80000 turn 80001-90000 turn 80001-90000 turn 0.0002 90001-100660 turn 90001-100660 turn 0.0002 0.0005 BPM1 PX/P0 PY/P0 dE/E 0 0 0 -0.0002 -0.0005 . -0.0002 1-10000 turn 10001-20000 turn 20001-30000 turn 30001-40000 turn -0.001 40001-50000 turn -0.0004 -0.0004 50001-60000 turn . 60001-70000 turn -0.0015 70001-80000 turn 80001-90000 turn -0.0006 90001-100660 turn -0.0006 -0.002 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0 0.02 0.04 0.06 0.08 0.1 . X (m) Y (m) -ct (m) . 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 . . . Each color represents specific tracking period (for every 10,000 turns). BPM60 24
  • 25. Reconstruct TPS/BR Lattice Parameters with MIA Reconstructed value at BPM Model 20 30 20 30 18 (a) (b) 18 (c) (d) 25 25 16 x = 0.380 16 y = 0.302 14 20 14 20 Power (Model: 0.3796) (Model: 0.3020) Power (m) (m) 12 12 15 15 10 10 x y 8 10 8 10 6 6 5 5 4 4 2 0 2 0 0 50 100 150 200 250 300 350 400 450 500 0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200 250 300 350 400 450 500 0 0.1 0.2 0.3 0.4 0.5 s (m) Horizontal Tune s (m) Vertical Tune 0.7 30 (e) (f) 0.6 25 The reconstructed values of βx, βy and horizontal 0.5 20 = 0.025 dispersion Dx at BPMs are shown as red dots in 0.4 s Power Dx (m) 0.3 15 (Model: 0.0250) (a), (c) and (e), respectively. The gray lines are 0.2 10 model values along the TPS booster. The 0.1 5 reconstructed tunes for νx, νy and νs are shown -0.1 0 0 in (b), (d) and (f), respectively. 0 50 100 150 200 250 300 350 400 450 500 0 0.1 0.2 0.3 0.4 0.5 s (m) Synchrotron Tune 25
  • 26. The Principle of ICA •  We diagonalize the non-equal time covariance matrices of turn-by- turn BPM data: ⎛ x1 (1) x1 (2)  x1 (1000) ⎞ ⎜ ⎟ ⎜ x 2 (1) x 2 (2)  x 2 (1000) ⎟ For 60 BPMs and 1000 turns: X(t) = ⎜     ⎟ ⎜ ⎟ ⎝ x 60 (1) x 60 (2)  x 60 (1000)⎠ whitening ⎛ Λ1 0 ⎞⎛U1T ⎞ CX (τ = 0) = X(t)X(t)T = (U1,U 2 )⎜ ⎟⎜ T ⎟, ⎝ 0 Λ 2 ⎠⎝U 2 ⎠ € CX (τ k ≠ 0) = X(t)X(t + τ k )T , k = 1,2,3... The Jacobi-like joint diagonalization is applied to find out a unitary matrix W which is a joint diagonalizer for all the auto-covariance matrices: € s = W T (Λ−1/ 2U1T )X (temporal) 1 ⇒ CX (τ k ) = WDkW T , A = (Λ−1/ 2U1T ) −1W 1 (spatial) (k = 1,2,3...) 26
  • 27. Reconstruct TLS/SR Lattice Parameters with ICA •  We practice the ICA in experimental turn-by-turn data for TLS/SR. •  The horizontal and vertical tunes of TLS/SR model are 0.310 and 0.277, respectively; the horizontal and vertical tunes from measurement are 0.302 and 0.180, respectively. Horizontal singular values Vertical singular values 36 36 Mode 1: βx Mode 1: βy 34 34 Mode 2: βx Mode 2: βy 32 32 Mode 3: βx There are horizontal betatron log(SVy) Mode 3: βy There are vertical betatron log(SV ) x 30 30 couplings, the magnitude of couplings, the magnitude of Mode 5: βy Mode 4: βx coupling is about 10-3 of vertical 28 coupling is about 10-7 of 28 betatron oscillation. horizontal betaton oscillation. 26 Mode 7: Dx 26 24 24 22 22 0 10 20 30 40 50 60 0 10 20 30 40 50 60 SVx Index SVy Index 25 25 1.4 1.2 20 20 1 Reconstructed value at BPM 15 15 Dx (m) (m) (m) 0.8 Model value at BPM y x 0.6 10 10 Model 5 5 0.4 0.2 0 0 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 s (m) s (m) s (m) 27
  • 28. Summary of MIA&ICA •  We have successfully extracted lattice parameters, like beta, phase advance, dispersion and tunes with MIA or ICA for TPS/BR and TLS /SR. •  We have included MIA&ICA analysis codes in MATLAB based system. •  The property of MIA&ICA is fast analysis, so we can measure the machine status within seconds. It is suitable for TPS/BR analysis. •  The MIA&ICA provides another information for LOCO, which would be helpful in machine measurement and modeling. 28
  • 29. Injection Study for TPS/SR •  In order to reduce the radiation level, we study the tolerance of injected beam condition •  Use Tracy-II for 6-D tracking. The lattice model includes the injection kicker strength, septum arrangement, chamber limits, multipole field errors (10 random machines are used), close orbit distortion and its correction by applying correctors, etc. •  We generate a thousand particles as a bunch of a beam and track these particles for a thousand turns •  Check the survival rate of a beam bunch and record the lost information of particles, including lost position, lost plane and lost turn number. These information are useful for radiation protection. 29
  • 30. Schematic Layout of TPS/SR Injection 3.6 2.8 3.6 K1 K2 K3 Bumped K4 Stored beam stored beam 0.6 Injected beam 0.6 0.6 0.6 Kicker magnet 0.8 0.8 Unit:(m) Pulsed septum DC septum (AC septum) K3 K4 K1 K2 e- t1~T0 t0= 0 t1=T0 Injection pt. Injection pt. 30
  • 31. QL1 K1 K2 400 800 K3 K4 QL1 68 mm 54 mm 600 600 [-34, +34] [-20, +34] 600 600 700 3000 1100 1100 3000 700 Middle of R1 straight Injection point Simplified model for chamber x’ limit used in injection simulations. Septum wall The chamber limits in long and 3 mm short straight sections are: Bumped beam acceptance [x = ±34 mm, y = ±5 mm] Acceptance Bumped stored beam x Injected beam Stored beam Beam stay clear = 20.0 mm Xoffset = 23.8 mm 31
  • 32. Phase Space (Px/P0 vs. x) Choose one of the random machines and scan injected beam position in horizontal. 4 4 4 4 Xoffset = 23.8 mm Xoffset = 24.8 mm Xoffset = 25.8 mm Xoffset = 26.8 mm Px / P0 (x10-3) Px / P0 (x10-3) Px / P0 (x10-3) Px / P0 (x10-3) 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 Turn 0 Turn 0 Turn 0 Turn 0 -1 Turn 1 -1 Turn 1 -1 Turn 1 -1 Turn 1 Turn 2 Turn 2 Turn 2 Turn 2 Turn 3 Turn 3 Turn 3 Turn 3 -2 Turn 4 -2 Turn 4 -2 Turn 4 -2 Turn 4 Turn 5 Turn 5 Turn 5 Turn 5 Turn 6 Turn 6 Turn 6 Turn 6 Turn 7 Turn 7 Turn 7 Turn 7 -3 Turn 8 -3 Turn 8 -3 Turn 8 -3 Turn 8 Septum Septum Septum Septum Septum Septum Septum Septum -4 -4 -4 -4 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) x (mm) 4 4 4 4 Xoffset = 27.8 mm Xoffset = 28.8 mm Xoffset = 29.8 mm Xoffset = 30.8 mm Px / P0 (x10-3) Px / P0 (x10-3) Px / P0 (x10-3) Px / P0 (x10-3) 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 Turn 0 Turn 0 Turn 0 Turn 0 -1 Turn 1 -1 Turn 1 -1 Turn 1 -1 Turn 1 Turn 2 Turn 2 Turn 2 Turn 2 Turn 3 Turn 3 Turn 3 Turn 3 -2 Turn 4 -2 Turn 4 -2 Turn 4 -2 Turn 4 Turn 5 Turn 5 Turn 5 Turn 5 Turn 6 Turn 6 Turn 6 Turn 6 Turn 7 Turn 7 Turn 7 Turn 7 -3 Turn 8 -3 Turn 8 -3 Turn 8 -3 Turn 8 Septum Septum Septum Septum Septum Septum Septum Septum -4 -4 -4 -4 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) x (mm) 4 4 4 Xoffset = 31.8 mm Xoffset = 32.8 mm Xoffset = 33.8 mm Px / P0 (x10-3) Px / P0 (x10-3) Px / P0 (x10 ) 3 3 3 -3 2 2 2 1 0 1 0 1 0 Only show 9 turns -1 Turn 0 Turn 1 Turn 2 Turn 3 -1 Turn 0 Turn 1 Turn 2 Turn 3 -1 Turn 0 Turn 1 Turn 2 Turn 3 Turn 4 Results -2 Turn 4 -2 Turn 4 -2 Turn 5 Turn 5 Turn 5 Turn 6 Turn 6 Turn 6 Turn 7 Turn 7 Turn 7 -3 -3 -3 Turn 8 Turn 8 Turn 8 Septum Septum Septum Septum Septum Septum -4 -4 -4 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 x (mm) x (mm) x (mm) 32