SlideShare a Scribd company logo
CIS 419/519
Introduction to
Machine Learning
1
Robot Image Credit: Viktoriya Sukhanova © 123RF.com
What is Machine Learning?
“Learning is any process by which a system improves
performance from experience.”
- Herbert Simon
Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that
• improve their performance P
• at some task T
• with experience E.
A well-defined learning task is given by <P, T, E>.
3
Traditional Programming
Machine Learning
Computer
Data
Program
Output
Computer
Data
Output
Program
Slide credit: Pedro Domingos
4
When Do We Use Machine Learning?
ML is used when:
• Human expertise does not exist (navigating on Mars)
• Humans can’t explain their expertise (speech recognition)
• Models must be customized (personalized medicine)
• Models are based on huge amounts of data (genomics)
Learning isn’t always useful:
• There is no need to “learn” to calculate payroll
Based on slide by E. Alpaydin
5
A classic example of a task that requires machine learning:
It is very hard to say what makes a 2
6
Slide credit: Geoffrey Hinton
7
Slide credit: Geoffrey Hinton
Some more examples of tasks that are best
solved by using a learning algorithm
• Recognizing patterns:
– Facial identities or facial expressions
– Handwritten or spoken words
– Medical images
• Generating patterns:
– Generating images or motion sequences
• Recognizing anomalies:
– Unusual credit card transactions
– Unusual patterns of sensor readings in a nuclear power plant
• Prediction:
– Future stock prices or currency exchange rates
8
Slide credit: Pedro Domingos
Sample Applications
• Web search
• Computational biology
• Finance
• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks
• Debugging software
• [Your favorite area]
Samuel’s Checkers-Player
“Machine Learning: Field of study that gives
computers the ability to learn without being
explicitly programmed.” -Arthur Samuel (1959)
9
Defining the Learning Task
Improve on task T,with respect to
performance metric P
, based on experience E
T: Playing checkers
P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself
T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words
T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged error
E: A sequence of images and steering commands recorded while
observing a human driver.
T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given labels
Slide credit: Ray Mooney
10
State of the Art Applications of
Machine Learning
11
Autonomous Cars
• Nevada made it legal for
autonomous cars to drive on
roads in June 2011
• As of 2013, four states (Nevada,
Florida, California, and
Michigan) have legalized
autonomous cars
Penn’s Autonomous Car 
(Ben Franklin Racing Team) 12
Autonomous Car Sensors
13
Autonomous Car Technology
Laser Terrain Mapping
Stanley
Learning from Human Drivers
Sebastian
Adaptive Vision
Path
Planning
Images and movies taken from Sebastian Thrun’s multimedia w1e4bsite.
Deep Learning in the Headlines
15
pixels
edges
object parts
(combination
of edges)
object models
Deep Belief Net on Face Images
Based on materials
by Andrew Ng
16
Learning of Object Parts
17
Slide credit: Andrew Ng
Training on Multiple Objects
18
Slide credit: Andrew Ng
Trained on 4 classes (cars, faces,
motorbikes, airplanes).
Second layer: Shared-features
and object-specific features.
Third layer: More specific
features.
Scene Labeling via Deep Learning
[Farabet et al. ICML 2012, PAMI 2013] 19
Input images
Samples from
feedforward
Inference
(control)
Samples from
Full posterior
inference
Inference from Deep Learned Models
Generating posterior samples from faces by “filling in” experiments
(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.
Slide credit: Andrew Ng
20
Machine Learning in
Automatic Speech Recognition
A Typical Speech Recognition System
ML used to predict of phone states from the sound spectrogram
Deep learning has state-of-the-art results
# Hidden Layers 1 2 4 8 10 12
Word Error Rate % 16.0 12.8 11.4 10.9 11.0 11.1
Baseline GMM performance = 15.4%
[Zeiler et al. “On rectified linear units for speech
recognition” ICASSP 2013]
21
Impact of Deep Learning in Speech Technology
Slide credit: Li Deng, MS Research
22
Types of Learning
23
Types of Learning
• Supervised (inductive) learning
– Given: training data + desired outputs (labels)
• Unsupervised learning
– Given: training data (without desired outputs)
• Semi-supervised learning
– Given: training data + a few desired outputs
• Reinforcement learning
– Rewards from sequence of actions
Based on slide by Pedro Domingos
24
Supervised Learning: Regression
• Given (x1, y1), (x2, y2), ..., (xn, yn)
• Learn a function f (x) to predict y given x
– y is real-valued == regression
9
8
7
6
5
4
3
2
1
0
1970 1980 1990 2000 2010 2020
September
Arctic
Sea
Ice
Extent
(1,000,000
sq
km)
Year
Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)
26
Supervised Learning: Classification
• Given (x1, y1), (x2, y2), ..., (xn, yn)
• Learn a function f (x) to predict y given x
– y is categorical == classification
Breast Cancer (Malignant / Benign)
1(Malignant)
0(Benign)
Tumor Size
Based on example by Andrew Ng
27
Supervised Learning: Classification
• Given (x1, y1), (x2, y2), ..., (xn, yn)
• Learn a function f (x) to predict y given x
– y is categorical == classification
Breast Cancer (Malignant / Benign)
1(Malignant)
0(Benign)
Tumor Size
Tumor Size 28
Based on example by Andrew Ng
Supervised Learning: Classification
• Given (x1, y1), (x2, y2), ..., (xn, yn)
• Learn a function f (x) to predict y given x
– y is categorical == classification
Breast Cancer (Malignant / Benign)
1(Malignant)
0(Benign)
Tumor Size
Predict Benign Predict Malignant
Tumor Size 29
Based on example by Andrew Ng
Supervised Learning
Tumor Size
Age
- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape
…
• x can be multi-dimensional
– Each dimension corresponds to an attribute
Based on example by Andrew Ng
30
Unsupervised Learning
• Given x1, x2, ..., xn (without labels)
• Output hidden structure behind the x’s
– E.g., clustering
31
[Source: Daphne Koller]
Genes
Individuals
Unsupervised Learning
Genomics application: group individuals by genetic similarity
32
Organize computing clusters Social network analysis
Image credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison)
Astronomical data analysis
Market segmentation
Slide credit: Andrew Ng
Unsupervised Learning
33
Unsupervised Learning
• Independent component analysis – separate a
combined signal into its original sources
34
Image credit: statsoft.com Audio from http://www.ism.ac.jp/~shiro/research/blindsep.html
Unsupervised Learning
• Independent component analysis – separate a
combined signal into its original sources
35
Image credit: statsoft.com Audio from http://www.ism.ac.jp/~shiro/research/blindsep.html
Reinforcement Learning
• Given a sequence of states and actions with
(delayed) rewards, output a policy
– Policy is a mapping from states  actions that
tells you what to do in a given state
• Examples:
– Credit assignment problem
– Game playing
– Robot in a maze
– Balance a pole on your hand
36
The Agent-Environment Interface
Agent and environment interact at discrete time steps
Agent observes state at step t: st S
: t  0, 1, 2, K
produces action at step t : at  A(st )
gets resulting reward :
and resulting next state :
rt1 
st1
. . . st at
rt +1 st +1
at +1
rt +2 st +2
at +2
rt +3 st +3
. . .
at +3
Slide credit: Sutton & Barto
37
Reinforcement Learning
https://www.youtube.com/watch?v=4cgWya-wjgY 38
Inverse Reinforcement Learning
• Learn policy from user demonstrations
Stanford Autonomous Helicopter
http://heli.stanford.edu/
https://www.youtube.com/watch?v=VCdxqn0fcnE
39
40
Framing a Learning Problem
Designing a Learning System
• Choose the training experience
• Choose exactly what is to be learned
– i.e. the target function
• Choose how to represent the target function
• Choose a learning algorithm to infer the target
function from the experience
Environment/
Experience
Learner
Knowledge
Performance
Element
Based on slide by Ray Mooney
Training data
Testing data
41
Training vs. Test Distribution
• We generally assume that the training and
test examples are independently drawn from
the same overall distribution of data
– We call this “i.i.d” which stands for “independent
and identically distributed”
• If examples are not independent, requires
collective classification
• If test distribution is different, requires
transfer learning
Slide credit: Ray Mooney
42
ML in a Nutshell
• Tens of thousands of machine learning
algorithms
– Hundreds new every year
• Every ML algorithm has three components:
– Representation
– Optimization
– Evaluation
Slide credit: Pedro Domingos
43
44
Slide credit: Ray Mooney
Various Function Representations
• Numerical functions
– Linear regression
– Neural networks
– Support vector machines
• Symbolic functions
– Decision trees
– Rules in propositional logic
– Rules in first-order predicate logic
• Instance-based functions
– Nearest-neighbor
– Case-based
• Probabilistic Graphical Models
– Naïve Bayes
– Bayesian networks
– Hidden-Markov Models (HMMs)
– Probabilistic Context Free Grammars (PCFGs)
– Markov networks
45
Slide credit: Ray Mooney
Various Search/Optimization
Algorithms
• Gradient descent
– Perceptron
– Backpropagation
• Dynamic Programming
– HMM Learning
– PCFG Learning
• Divide and Conquer
– Decision tree induction
– Rule learning
• Evolutionary Computation
– Genetic Algorithms (GAs)
– Genetic Programming (GP)
– Neuro-evolution
47
Slide credit: Pedro Domingos
Evaluation
• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• etc.
ML in Practice
• Understand domain, prior knowledge, and goals
• Data integration, selection, cleaning, pre-processing, etc.
• Learn models
• Interpret results
• Consolidate and deploy discovered knowledge
Loop
48
Based on a slide by Pedro Domingos
49
Lessons Learned about Learning
• Learning can be viewed as using direct or indirect
experience to approximate a chosen target function.
• Function approximation can be viewed as a search
through a space of hypotheses (representations of
functions) for one that best fits a set of training data.
• Different learning methods assume different
hypothesis spaces (representation languages) and/or
employ different search techniques.
Slide credit: Ray Mooney
A Brief History of
Machine Learning
50
51
Slide credit: Ray Mooney
History of Machine Learning
• 1950s
– Samuel’s checker player
– Selfridge’s Pandemonium
• 1960s:
– Neural networks: Perceptron
– Pattern recognition
– Learning in the limit theory
– Minsky and Papert prove limitations of Perceptron
• 1970s:
– Symbolic concept induction
– Winston’s arch learner
– Expert systems and the knowledge acquisition bottleneck
– Quinlan’s ID3
– Michalski’s AQ and soybean diagnosis
– Scientific discovery with BACON
– Mathematical discovery with AM
52
Slide credit: Ray Mooney
History of Machine Learning (cont.)
• 1980s:
– Advanced decision tree and rule learning
– Explanation-based Learning (EBL)
– Learning and planning and problem solving
– Utility problem
– Analogy
– Cognitive architectures
– Resurgence of neural networks (connectionism, backpropagation)
– Valiant’s PAC Learning Theory
– Focus on experimental methodology
• 1990s
– Data mining
– Adaptive software agents and web applications
– Text learning
– Reinforcement learning (RL)
– Inductive Logic Programming (ILP)
– Ensembles: Bagging, Boosting, and Stacking
– Bayes Net learning
53
Based on slide by Ray Mooney
History of Machine Learning (cont.)
• 2000s
– Support vector machines & kernel methods
– Graphical models
– Statistical relational learning
– Transfer learning
– Sequence labeling
– Collective classification and structured outputs
– Computer Systems Applications (Compilers, Debugging, Graphics, Security)
– E-mail management
– Personalized assistants that learn
– Learning in robotics and vision
• 2010s
– Deep learning systems
– Learning for big data
– Bayesian methods
– Multi-task & lifelong learning
– Applications to vision, speech, social networks, learning to read, etc.
– ???
What We’ll Cover in this Course
• Supervised learning
– Decision tree induction
– Linear regression
– Logistic regression
– Support vector machines
& kernel methods
– Model ensembles
– Bayesian learning
– Neural networks & deep
learning
– Learning theory
• Unsupervised learning
– Clustering
– Dimensionality reduction
• Reinforcement learning
– Temporal difference
learning
– Q learning
• Evaluation
• Applications
Our focus will be on applying machine learning to real applications
54

More Related Content

What's hot

An introduction to Machine Learning
An introduction to Machine LearningAn introduction to Machine Learning
An introduction to Machine Learningbutest
 
Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)
Hayim Makabee
 
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Universitat Politècnica de Catalunya
 
Machine learning Lecture 1
Machine learning Lecture 1Machine learning Lecture 1
Machine learning Lecture 1
Srinivasan R
 
activelearning.ppt
activelearning.pptactivelearning.ppt
activelearning.pptbutest
 
ML Basics
ML BasicsML Basics
ML Basics
SrujanaMerugu1
 
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Simplilearn
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Vivek Garg
 
Intro to Machine Learning & AI
Intro to Machine Learning & AIIntro to Machine Learning & AI
Intro to Machine Learning & AI
Mostafa Elsheikh
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Machine Learning in 10 Minutes | What is Machine Learning? | Edureka
Machine Learning in 10 Minutes | What is Machine Learning? | EdurekaMachine Learning in 10 Minutes | What is Machine Learning? | Edureka
Machine Learning in 10 Minutes | What is Machine Learning? | Edureka
Edureka!
 
Machine learning
Machine learningMachine learning
Machine learning
Navdeep Asteya
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Rahul Kumar
 
Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
PyData
 
Machine learning algorithms
Machine learning algorithmsMachine learning algorithms
Machine learning algorithms
Shalitha Suranga
 
Computer vision
Computer vision Computer vision
Computer vision
Dmitry Ryabokon
 
Machine learning overview
Machine learning overviewMachine learning overview
Machine learning overview
prih_yah
 
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Simplilearn
 
Classification Based Machine Learning Algorithms
Classification Based Machine Learning AlgorithmsClassification Based Machine Learning Algorithms
Classification Based Machine Learning Algorithms
Md. Main Uddin Rony
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
 

What's hot (20)

An introduction to Machine Learning
An introduction to Machine LearningAn introduction to Machine Learning
An introduction to Machine Learning
 
Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)
 
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
 
Machine learning Lecture 1
Machine learning Lecture 1Machine learning Lecture 1
Machine learning Lecture 1
 
activelearning.ppt
activelearning.pptactivelearning.ppt
activelearning.ppt
 
ML Basics
ML BasicsML Basics
ML Basics
 
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Intro to Machine Learning & AI
Intro to Machine Learning & AIIntro to Machine Learning & AI
Intro to Machine Learning & AI
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
 
Machine Learning in 10 Minutes | What is Machine Learning? | Edureka
Machine Learning in 10 Minutes | What is Machine Learning? | EdurekaMachine Learning in 10 Minutes | What is Machine Learning? | Edureka
Machine Learning in 10 Minutes | What is Machine Learning? | Edureka
 
Machine learning
Machine learningMachine learning
Machine learning
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
 
Machine learning algorithms
Machine learning algorithmsMachine learning algorithms
Machine learning algorithms
 
Computer vision
Computer vision Computer vision
Computer vision
 
Machine learning overview
Machine learning overviewMachine learning overview
Machine learning overview
 
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
 
Classification Based Machine Learning Algorithms
Classification Based Machine Learning AlgorithmsClassification Based Machine Learning Algorithms
Classification Based Machine Learning Algorithms
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 

Similar to Machine learning

Machine Learning GDSC DCE Darbhanga.pptx
Machine Learning GDSC DCE Darbhanga.pptxMachine Learning GDSC DCE Darbhanga.pptx
Machine Learning GDSC DCE Darbhanga.pptx
DCETechnicalClub
 
INTRO TO ML.pptx
INTRO TO ML.pptxINTRO TO ML.pptx
INTRO TO ML.pptx
GDSCACEM
 
01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk
JesusTekonbo
 
ppt on introduction to Machine learning tools
ppt on introduction to Machine learning toolsppt on introduction to Machine learning tools
ppt on introduction to Machine learning tools
RaviKiranVarma4
 
01_introduction_ML.pdf
01_introduction_ML.pdf01_introduction_ML.pdf
01_introduction_ML.pdf
giridharsripathi
 
L 8 introduction to machine learning final kirti.pptx
L 8 introduction to machine learning final kirti.pptxL 8 introduction to machine learning final kirti.pptx
L 8 introduction to machine learning final kirti.pptx
Kirti Verma
 
1_Introduction.pptx
1_Introduction.pptx1_Introduction.pptx
1_Introduction.pptx
ranapoonam1
 
Launching into machine learning
Launching into machine learningLaunching into machine learning
Launching into machine learning
Dr.R. Gunavathi Ramasamy
 
Introduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdfIntroduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdf
SisayNegash4
 
27332020002_PC-CS601_Robotics_Debjit Doira.pdf
27332020002_PC-CS601_Robotics_Debjit Doira.pdf27332020002_PC-CS601_Robotics_Debjit Doira.pdf
27332020002_PC-CS601_Robotics_Debjit Doira.pdf
Adharchandsaha
 
Machine learning[1]
Machine learning[1]Machine learning[1]
Machine learning[1]
sugaeshwari
 
know Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdfknow Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdf
hemangppatel
 
ML
MLML
Fundementals of Machine Learning and Deep Learning
Fundementals of Machine Learning and Deep Learning Fundementals of Machine Learning and Deep Learning
Fundementals of Machine Learning and Deep Learning
ParrotAI
 
Machine_Learning.pptx
Machine_Learning.pptxMachine_Learning.pptx
Machine_Learning.pptx
shubhamatak136
 
Machine Learning in Finance
Machine Learning in FinanceMachine Learning in Finance
Machine Learning in Finance
Hamed Vaheb
 
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptxRahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
RahulKirtoniya
 
Machine Learning ebook.pdf
Machine Learning ebook.pdfMachine Learning ebook.pdf
Machine Learning ebook.pdf
HODIT12
 
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 11_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
MostafaHazemMostafaa
 
Machine Learning an Research Overview
Machine Learning an Research OverviewMachine Learning an Research Overview
Machine Learning an Research Overview
Kathirvel Ayyaswamy
 

Similar to Machine learning (20)

Machine Learning GDSC DCE Darbhanga.pptx
Machine Learning GDSC DCE Darbhanga.pptxMachine Learning GDSC DCE Darbhanga.pptx
Machine Learning GDSC DCE Darbhanga.pptx
 
INTRO TO ML.pptx
INTRO TO ML.pptxINTRO TO ML.pptx
INTRO TO ML.pptx
 
01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk01_introduction.pdfbnmelllleitrthnjjjkkk
01_introduction.pdfbnmelllleitrthnjjjkkk
 
ppt on introduction to Machine learning tools
ppt on introduction to Machine learning toolsppt on introduction to Machine learning tools
ppt on introduction to Machine learning tools
 
01_introduction_ML.pdf
01_introduction_ML.pdf01_introduction_ML.pdf
01_introduction_ML.pdf
 
L 8 introduction to machine learning final kirti.pptx
L 8 introduction to machine learning final kirti.pptxL 8 introduction to machine learning final kirti.pptx
L 8 introduction to machine learning final kirti.pptx
 
1_Introduction.pptx
1_Introduction.pptx1_Introduction.pptx
1_Introduction.pptx
 
Launching into machine learning
Launching into machine learningLaunching into machine learning
Launching into machine learning
 
Introduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdfIntroduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdf
 
27332020002_PC-CS601_Robotics_Debjit Doira.pdf
27332020002_PC-CS601_Robotics_Debjit Doira.pdf27332020002_PC-CS601_Robotics_Debjit Doira.pdf
27332020002_PC-CS601_Robotics_Debjit Doira.pdf
 
Machine learning[1]
Machine learning[1]Machine learning[1]
Machine learning[1]
 
know Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdfknow Machine Learning Basic Concepts.pdf
know Machine Learning Basic Concepts.pdf
 
ML
MLML
ML
 
Fundementals of Machine Learning and Deep Learning
Fundementals of Machine Learning and Deep Learning Fundementals of Machine Learning and Deep Learning
Fundementals of Machine Learning and Deep Learning
 
Machine_Learning.pptx
Machine_Learning.pptxMachine_Learning.pptx
Machine_Learning.pptx
 
Machine Learning in Finance
Machine Learning in FinanceMachine Learning in Finance
Machine Learning in Finance
 
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptxRahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
 
Machine Learning ebook.pdf
Machine Learning ebook.pdfMachine Learning ebook.pdf
Machine Learning ebook.pdf
 
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 11_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
 
Machine Learning an Research Overview
Machine Learning an Research OverviewMachine Learning an Research Overview
Machine Learning an Research Overview
 

Recently uploaded

From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 

Recently uploaded (20)

From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 

Machine learning

  • 1. CIS 419/519 Introduction to Machine Learning 1 Robot Image Credit: Viktoriya Sukhanova © 123RF.com
  • 2. What is Machine Learning? “Learning is any process by which a system improves performance from experience.” - Herbert Simon Definition by Tom Mitchell (1998): Machine Learning is the study of algorithms that • improve their performance P • at some task T • with experience E. A well-defined learning task is given by <P, T, E>. 3
  • 4. When Do We Use Machine Learning? ML is used when: • Human expertise does not exist (navigating on Mars) • Humans can’t explain their expertise (speech recognition) • Models must be customized (personalized medicine) • Models are based on huge amounts of data (genomics) Learning isn’t always useful: • There is no need to “learn” to calculate payroll Based on slide by E. Alpaydin 5
  • 5. A classic example of a task that requires machine learning: It is very hard to say what makes a 2 6 Slide credit: Geoffrey Hinton
  • 6. 7 Slide credit: Geoffrey Hinton Some more examples of tasks that are best solved by using a learning algorithm • Recognizing patterns: – Facial identities or facial expressions – Handwritten or spoken words – Medical images • Generating patterns: – Generating images or motion sequences • Recognizing anomalies: – Unusual credit card transactions – Unusual patterns of sensor readings in a nuclear power plant • Prediction: – Future stock prices or currency exchange rates
  • 7. 8 Slide credit: Pedro Domingos Sample Applications • Web search • Computational biology • Finance • E-commerce • Space exploration • Robotics • Information extraction • Social networks • Debugging software • [Your favorite area]
  • 8. Samuel’s Checkers-Player “Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.” -Arthur Samuel (1959) 9
  • 9. Defining the Learning Task Improve on task T,with respect to performance metric P , based on experience E T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded while observing a human driver. T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels Slide credit: Ray Mooney 10
  • 10. State of the Art Applications of Machine Learning 11
  • 11. Autonomous Cars • Nevada made it legal for autonomous cars to drive on roads in June 2011 • As of 2013, four states (Nevada, Florida, California, and Michigan) have legalized autonomous cars Penn’s Autonomous Car  (Ben Franklin Racing Team) 12
  • 13. Autonomous Car Technology Laser Terrain Mapping Stanley Learning from Human Drivers Sebastian Adaptive Vision Path Planning Images and movies taken from Sebastian Thrun’s multimedia w1e4bsite.
  • 14. Deep Learning in the Headlines 15
  • 15. pixels edges object parts (combination of edges) object models Deep Belief Net on Face Images Based on materials by Andrew Ng 16
  • 16. Learning of Object Parts 17 Slide credit: Andrew Ng
  • 17. Training on Multiple Objects 18 Slide credit: Andrew Ng Trained on 4 classes (cars, faces, motorbikes, airplanes). Second layer: Shared-features and object-specific features. Third layer: More specific features.
  • 18. Scene Labeling via Deep Learning [Farabet et al. ICML 2012, PAMI 2013] 19
  • 19. Input images Samples from feedforward Inference (control) Samples from Full posterior inference Inference from Deep Learned Models Generating posterior samples from faces by “filling in” experiments (cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference. Slide credit: Andrew Ng 20
  • 20. Machine Learning in Automatic Speech Recognition A Typical Speech Recognition System ML used to predict of phone states from the sound spectrogram Deep learning has state-of-the-art results # Hidden Layers 1 2 4 8 10 12 Word Error Rate % 16.0 12.8 11.4 10.9 11.0 11.1 Baseline GMM performance = 15.4% [Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013] 21
  • 21. Impact of Deep Learning in Speech Technology Slide credit: Li Deng, MS Research 22
  • 23. Types of Learning • Supervised (inductive) learning – Given: training data + desired outputs (labels) • Unsupervised learning – Given: training data (without desired outputs) • Semi-supervised learning – Given: training data + a few desired outputs • Reinforcement learning – Rewards from sequence of actions Based on slide by Pedro Domingos 24
  • 24. Supervised Learning: Regression • Given (x1, y1), (x2, y2), ..., (xn, yn) • Learn a function f (x) to predict y given x – y is real-valued == regression 9 8 7 6 5 4 3 2 1 0 1970 1980 1990 2000 2010 2020 September Arctic Sea Ice Extent (1,000,000 sq km) Year Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013) 26
  • 25. Supervised Learning: Classification • Given (x1, y1), (x2, y2), ..., (xn, yn) • Learn a function f (x) to predict y given x – y is categorical == classification Breast Cancer (Malignant / Benign) 1(Malignant) 0(Benign) Tumor Size Based on example by Andrew Ng 27
  • 26. Supervised Learning: Classification • Given (x1, y1), (x2, y2), ..., (xn, yn) • Learn a function f (x) to predict y given x – y is categorical == classification Breast Cancer (Malignant / Benign) 1(Malignant) 0(Benign) Tumor Size Tumor Size 28 Based on example by Andrew Ng
  • 27. Supervised Learning: Classification • Given (x1, y1), (x2, y2), ..., (xn, yn) • Learn a function f (x) to predict y given x – y is categorical == classification Breast Cancer (Malignant / Benign) 1(Malignant) 0(Benign) Tumor Size Predict Benign Predict Malignant Tumor Size 29 Based on example by Andrew Ng
  • 28. Supervised Learning Tumor Size Age - Clump Thickness - Uniformity of Cell Size - Uniformity of Cell Shape … • x can be multi-dimensional – Each dimension corresponds to an attribute Based on example by Andrew Ng 30
  • 29. Unsupervised Learning • Given x1, x2, ..., xn (without labels) • Output hidden structure behind the x’s – E.g., clustering 31
  • 30. [Source: Daphne Koller] Genes Individuals Unsupervised Learning Genomics application: group individuals by genetic similarity 32
  • 31. Organize computing clusters Social network analysis Image credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison) Astronomical data analysis Market segmentation Slide credit: Andrew Ng Unsupervised Learning 33
  • 32. Unsupervised Learning • Independent component analysis – separate a combined signal into its original sources 34 Image credit: statsoft.com Audio from http://www.ism.ac.jp/~shiro/research/blindsep.html
  • 33. Unsupervised Learning • Independent component analysis – separate a combined signal into its original sources 35 Image credit: statsoft.com Audio from http://www.ism.ac.jp/~shiro/research/blindsep.html
  • 34. Reinforcement Learning • Given a sequence of states and actions with (delayed) rewards, output a policy – Policy is a mapping from states  actions that tells you what to do in a given state • Examples: – Credit assignment problem – Game playing – Robot in a maze – Balance a pole on your hand 36
  • 35. The Agent-Environment Interface Agent and environment interact at discrete time steps Agent observes state at step t: st S : t  0, 1, 2, K produces action at step t : at  A(st ) gets resulting reward : and resulting next state : rt1  st1 . . . st at rt +1 st +1 at +1 rt +2 st +2 at +2 rt +3 st +3 . . . at +3 Slide credit: Sutton & Barto 37
  • 37. Inverse Reinforcement Learning • Learn policy from user demonstrations Stanford Autonomous Helicopter http://heli.stanford.edu/ https://www.youtube.com/watch?v=VCdxqn0fcnE 39
  • 39. Designing a Learning System • Choose the training experience • Choose exactly what is to be learned – i.e. the target function • Choose how to represent the target function • Choose a learning algorithm to infer the target function from the experience Environment/ Experience Learner Knowledge Performance Element Based on slide by Ray Mooney Training data Testing data 41
  • 40. Training vs. Test Distribution • We generally assume that the training and test examples are independently drawn from the same overall distribution of data – We call this “i.i.d” which stands for “independent and identically distributed” • If examples are not independent, requires collective classification • If test distribution is different, requires transfer learning Slide credit: Ray Mooney 42
  • 41. ML in a Nutshell • Tens of thousands of machine learning algorithms – Hundreds new every year • Every ML algorithm has three components: – Representation – Optimization – Evaluation Slide credit: Pedro Domingos 43
  • 42. 44 Slide credit: Ray Mooney Various Function Representations • Numerical functions – Linear regression – Neural networks – Support vector machines • Symbolic functions – Decision trees – Rules in propositional logic – Rules in first-order predicate logic • Instance-based functions – Nearest-neighbor – Case-based • Probabilistic Graphical Models – Naïve Bayes – Bayesian networks – Hidden-Markov Models (HMMs) – Probabilistic Context Free Grammars (PCFGs) – Markov networks
  • 43. 45 Slide credit: Ray Mooney Various Search/Optimization Algorithms • Gradient descent – Perceptron – Backpropagation • Dynamic Programming – HMM Learning – PCFG Learning • Divide and Conquer – Decision tree induction – Rule learning • Evolutionary Computation – Genetic Algorithms (GAs) – Genetic Programming (GP) – Neuro-evolution
  • 44. 47 Slide credit: Pedro Domingos Evaluation • Accuracy • Precision and recall • Squared error • Likelihood • Posterior probability • Cost / Utility • Margin • Entropy • K-L divergence • etc.
  • 45. ML in Practice • Understand domain, prior knowledge, and goals • Data integration, selection, cleaning, pre-processing, etc. • Learn models • Interpret results • Consolidate and deploy discovered knowledge Loop 48 Based on a slide by Pedro Domingos
  • 46. 49 Lessons Learned about Learning • Learning can be viewed as using direct or indirect experience to approximate a chosen target function. • Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data. • Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques. Slide credit: Ray Mooney
  • 47. A Brief History of Machine Learning 50
  • 48. 51 Slide credit: Ray Mooney History of Machine Learning • 1950s – Samuel’s checker player – Selfridge’s Pandemonium • 1960s: – Neural networks: Perceptron – Pattern recognition – Learning in the limit theory – Minsky and Papert prove limitations of Perceptron • 1970s: – Symbolic concept induction – Winston’s arch learner – Expert systems and the knowledge acquisition bottleneck – Quinlan’s ID3 – Michalski’s AQ and soybean diagnosis – Scientific discovery with BACON – Mathematical discovery with AM
  • 49. 52 Slide credit: Ray Mooney History of Machine Learning (cont.) • 1980s: – Advanced decision tree and rule learning – Explanation-based Learning (EBL) – Learning and planning and problem solving – Utility problem – Analogy – Cognitive architectures – Resurgence of neural networks (connectionism, backpropagation) – Valiant’s PAC Learning Theory – Focus on experimental methodology • 1990s – Data mining – Adaptive software agents and web applications – Text learning – Reinforcement learning (RL) – Inductive Logic Programming (ILP) – Ensembles: Bagging, Boosting, and Stacking – Bayes Net learning
  • 50. 53 Based on slide by Ray Mooney History of Machine Learning (cont.) • 2000s – Support vector machines & kernel methods – Graphical models – Statistical relational learning – Transfer learning – Sequence labeling – Collective classification and structured outputs – Computer Systems Applications (Compilers, Debugging, Graphics, Security) – E-mail management – Personalized assistants that learn – Learning in robotics and vision • 2010s – Deep learning systems – Learning for big data – Bayesian methods – Multi-task & lifelong learning – Applications to vision, speech, social networks, learning to read, etc. – ???
  • 51. What We’ll Cover in this Course • Supervised learning – Decision tree induction – Linear regression – Logistic regression – Support vector machines & kernel methods – Model ensembles – Bayesian learning – Neural networks & deep learning – Learning theory • Unsupervised learning – Clustering – Dimensionality reduction • Reinforcement learning – Temporal difference learning – Q learning • Evaluation • Applications Our focus will be on applying machine learning to real applications 54