
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
These slides provide an overview of the most popular approaches up to date to solve the task of object detection with deep neural networks. It reviews both the two stages approaches such as RCNN, Fast RCNN and Faster RCNN, and onestage approaches such as YOLO and SSD. It also contains pointers to relevant datasets (Pascal, COCO, ILSRVC, OpenImages) and the definition of the Average Precision (AP) metric.
Full program:
https://www.talent.upc.edu/ing/estudis/formacio/curs/310400/postgraduatecourseartificialintelligencedeeplearning/
Be the first to like this
Be the first to comment