Marco Delmastro 1
Université de Genève, 8/5/2024
(12 years with the Higgs boson, and the next 12 years)
Living with a pre-teen Higgs boson
Marco Delmastro
A tale in 12 chapters
Twelve years with the Higgs boson
Calvin and Hobbes characters
copyright by Bill Watterson and
Universal Press Syndicate
Marco Delmastro Twelve years with the Higgs boson 2
Peter Higgs (29 May 1929 – 8 April 2024)
Marco Delmastro Twelve years with the Higgs boson 3
Why the
Higgs boson?
1.
A fundamental question
Marco Delmastro Twelve years with the Higgs boson 4
How do
elementary
particles
get mass?
This is not a QFT lecture…
Marco Delmastro Twelve years with the Higgs boson 5
All microscopic phenomena seems to be well described by a remarkably simple theory
(that we continue to call “model” only for historical reasons...)
<latexit sha1_base64="t7jABaN4vfTdPKJHm4B2gXRZMQ0=">AAACvnicdVFba9swGJXdXTrv0mx73ItYGLQsGF9ycRiDbHvJwwYdW9pCbIysKK4W+YIklwahPznYw/7NFNcPW9p9IDico+873yWrGRXS835b9sG9+w8eHj5yHj95+uyo9/zFmagajskCV6ziFxkShNGSLCSVjFzUnKAiY+Q823za6edXhAtald/ltiZJgfKSrilG0lBp71dcIHmJEVOfdapiSa4lL9S3L1rD99C5U8xRkxOtjx0Vt/5LnmeJ8txxGIS+N/DccDoOI9+AaBQGk0jHtaCpoloPugzFyUp/SJE+gW//YzKneS6MyZ5HFA2nwdSUnoy8sb8DwWg8Gk31XA9MwUFrRU/SXt9zvTbgbeB3oA+6OE17P+NVhZuClBIzJMTS92qZKMQlxYxoJ24EqRHeoJwsDSxRQUSi2tY0fGOYFVxX3LxSwpb9O0OhQohtkZmfu1HFvrYj79KWjVxHiaJl3UhS4hujdcOgrODulnBFOcGSbQ1AmFPTK8SXiCMszcUdswR/f+Tb4Cxw/bE7/Drszz526zgEr8BrcAx8MAEzMAenYAGw9c5C1g9rY8/stV3Y1c1X2+pyXoJ/wr7+A/i81Qs=</latexit>
LSM = Lgauge( i, Aa) + LHiggs(H, Aa, i)
massless particles interact by
exchanges of forces carried by
massless gauge bosons. QFT
describes free fields, interactions
generated by gauge symmetries
(thus renormalizable)
mass terms cannot be directly
added without breaking theory
gauge invariance
(i.e. mass is not a fundamental
property, rather an emerging
phenomenon)
Theory would not make sense
without a Higgs field (or something
similar) responsible for spontaneous
symmetry breaking and mass
generation…
Marco Delmastro Twelve years with the Higgs boson 6
An idea
from 1964
2.
What’s hot in in physics in 1964?
Marco Delmastro Twelve years with the Higgs boson 7
Quark model
What’s hot in in physics in 1964?
Marco Delmastro Twelve years with the Higgs boson 8
Observation of CP-violation
The Brout-Englert-Higgs mechanism is also proposed…
Marco Delmastro Twelve years with the Higgs boson 9
14 citations in the
first 5 years
18 citations in the
first 5 years
11 citations in the
first 5 years
23 citations in the
first 5 years
… and
barely
noticed!
It would take 10 more years to become “mainstream”…
Marco Delmastro Twelve years with the Higgs boson 10
1967
Photon remains massless
Electroweak Symmetry Breaking
incorporated into
Standard Model
1967
1971-72
Standard Model is renormalizable
Marco Delmastro Twelve years with the Higgs boson 11
A closer look to
the SM Lagrangian
3.
Marco Delmastro Twelve years with the Higgs boson 12
Marco Delmastro Twelve years with the Higgs boson 13
“This equation neatly sums up our current understanding of fundamental particles and forces”
understanding
=
knowledge?
understanding
=
hypothesis?
Gauge sector
Marco Delmastro Twelve years with the Higgs boson 14
This part is very well known (one could even say since the
discovery of Maxwell equations in 1880), elegant and very
well experimentally verified!
understanding = knowledge
Electro-weak symmetry breaking
Marco Delmastro Twelve years with the Higgs boson 15
Still a gauge interaction (nothing new, one might be
tempted to say…), only this time between bosons and a
scalar field!
Nothing like this directly observed before 2012 (but tested
before by precision electroweak interactions)
Experimentally observed in 2012 with Higgs boson
discovery…
…this term
could not exist
without a v.e.v.
Fermion masses via
Yukawa interaction
Marco Delmastro Twelve years with the Higgs boson 16
Before 2012 this term was almost a conjecture… and even
after the discovery in 2012, it remains an “anomalous” term
(it’s not a gauge interaction, and no interaction with this
structure has ever been observed in nature)
understanding = hypothesis
Is the Higgs boson
responsible for the
EW symmetry
breaking also
responsible for the
masses of
fermions?
Is the Higgs boson
responsible for the
masses of all
fermions?
Higgs potential
Marco Delmastro Twelve years with the Higgs boson 17
It defines all characteristics of Higgs field and defines Higgs self-
interaction properties. Nothing like this has ever been observed in
nature
Is the shape of
the Higgs
potential that
postulated by
the Standard
Model?
<latexit sha1_base64="BBVZUPbRYadmWj7o4wIXeYEGuaw=">AAACKnicbVDLSgMxFM34rPU16tJNsAgtYpkpRd0IVTcuK9gHdKYlk8lMQzMPkoxQhn6PG3/FTRdKceuHmGlnoa0HAifn3HuTe5yYUSENY6atrW9sbm0Xdoq7e/sHh/rRcVtECcekhSMW8a6DBGE0JC1JJSPdmBMUOIx0nNFD5ndeCBc0Cp/lOCZ2gPyQehQjqaSBftcuW80hrcBbeAmtIOnXYHbvWy7yfcIzDi+gxdREF8Hyslfp1wZ6yagac8BVYuakBHI0B/rUciOcBCSUmCEheqYRSztFXFLMyKRoJYLECI+QT3qKhiggwk7nq07guVJc6EVcnVDCufq7I0WBEOPAUZUBkkOx7GXif14vkd6NndIwTiQJ8eIhL2FQRjDLDbqUEyzZWBGEOVV/hXiIOMJSpVtUIZjLK6+Sdq1qXlXrT/VS4z6PowBOwRkoAxNcgwZ4BE3QAhi8gnfwAT61N22qzbSvRemalvecgD/Qvn8Av9ukfw==</latexit>
V ( ) = µ2 †
+ ( †
)2
A couple of things about the Higgs potential…
Marco Delmastro Twelve years with the Higgs boson 18
<latexit sha1_base64="BBVZUPbRYadmWj7o4wIXeYEGuaw=">AAACKnicbVDLSgMxFM34rPU16tJNsAgtYpkpRd0IVTcuK9gHdKYlk8lMQzMPkoxQhn6PG3/FTRdKceuHmGlnoa0HAifn3HuTe5yYUSENY6atrW9sbm0Xdoq7e/sHh/rRcVtECcekhSMW8a6DBGE0JC1JJSPdmBMUOIx0nNFD5ndeCBc0Cp/lOCZ2gPyQehQjqaSBftcuW80hrcBbeAmtIOnXYHbvWy7yfcIzDi+gxdREF8Hyslfp1wZ6yagac8BVYuakBHI0B/rUciOcBCSUmCEheqYRSztFXFLMyKRoJYLECI+QT3qKhiggwk7nq07guVJc6EVcnVDCufq7I0WBEOPAUZUBkkOx7GXif14vkd6NndIwTiQJ8eIhL2FQRjDLDbqUEyzZWBGEOVV/hXiIOMJSpVtUIZjLK6+Sdq1qXlXrT/VS4z6PowBOwRkoAxNcgwZ4BE3QAhi8gnfwAT61N22qzbSvRemalvecgD/Qvn8Av9ukfw==</latexit>
V ( ) = µ2 †
+ ( †
)2
<latexit sha1_base64="80N4xcst4+16Xy1xtBczLyHshr8=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CiBYWQRvLCOZDkjPsbfaSJbt7x+6eEI78ChsLRWz9OXb+GzfJFZr4YODx3gwz84KYM21c99vJra1vbG7ltws7u3v7B8XDo5aOEkVok0Q8Up0Aa8qZpE3DDKedWFEsAk7bwfhm5refqNIskvdmElNf4KFkISPYWOmhJ5LHCrpCbr9YcsvuHGiVeBkpQYZGv/jVG0QkEVQawrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtlVhQ7afzg6fozCoDFEbKljRorv6eSLHQeiIC2ymwGellbyb+53UTE176KZNxYqgki0VhwpGJ0Ox7NGCKEsMnlmCimL0VkRFWmBibUcGG4C2/vEpalbJXK1fvqqX6dRZHHk7gFM7Bgwuowy00oAkEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx8oAY9X</latexit>
µ2
< 0
<latexit sha1_base64="6PqXgsjNoBhoamJZl5E4cuWvJV4=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdSdOOygn3AdCiZTKYNzSRDkhHK0M9w40IRt36NO//GtJ2Fth4IHM45l9x7wpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpaZIrRNJJeqF2JNORO0bZjhtJcqipOQ0244vpv53SeqNJPi0UxSGiR4KFjMCDZW8vvcRiOMbpA7qNbcujsHWiVeQWpQoDWofvUjSbKECkM41tr33NQEOVaGEU6nlX6maYrJGA+pb6nACdVBPl95is6sEqFYKvuEQXP190SOE60nSWiTCTYjvezNxP88PzPxdZAzkWaGCrL4KM44MhLN7kcRU5QYPrEEE8XsroiMsMLE2JYqtgRv+eRV0rmoe5f1xkOj1rwt6ijDCZzCOXhwBU24hxa0gYCEZ3iFN8c4L86787GIlpxi5hj+wPn8Aec2kFw=</latexit>
> 0
The potential is symmetric under
rotations in Φ space
It has a minimum
which is not at
<Φ>=0 known as
the vacuum
expectation value
(vev) v that defines
the electroweak scale
<latexit sha1_base64="31IS0dPFHrmngnacU6nYltdgeZc=">AAACLHicbVBNSysxFM2oz4/6nq/q0k2wCG9VZqT0uRFEF7pUsK3QKSWT3qnBJDMmd8QS5ge5eX/lgbhQxK2/w7QW8etA4OSce29yT5JLYTEMH4KZ2bkf8wuLS5Xln79WfldX19o2KwyHFs9kZs4SZkEKDS0UKOEsN8BUIqGTXByM/c4VGCsyfYqjHHqKDbVIBWfopX71INYF3aVxahh3sSpKF9tLgy6WfsaAleWbqfqd0g3H9+1Gk8YI12iUO4R22a/Wwno4Af1KoimpkSmO+9XbeJDxQoFGLpm13SjMseeYQcEllJW4sJAzfsGG0PVUMwW25ybLlnTLKwOaZsYfjXSivu9wTFk7UomvVAzP7WdvLH7ndQtMd3pO6LxA0Pz1obSQFDM6To4OhAGOcuQJ40b4v1J+znw06POt+BCizyt/Je3tetSsN04atb39aRyLZINskj8kIn/JHjkix6RFOLkh/8k9eQj+BXfBY/D0WjoTTHvWyQcEzy83e6gx</latexit>
⌫ =
µ
p =
mW
g
= 246GeV
The mass of the
Higgs boson is not
predicted by the
theory!
<latexit sha1_base64="w9Fmr3Xsu0VA/q0jNv8I5c43Vqw=">AAACOXicbVDLSgMxFM34rPVVdekmWAQXUmZKUTdC0U2XFewDZoYhk6ZtaJIZk4xQhvktN/6FO8GNC0Xc+gOmL9TWA4GTc+7NvTlhzKjStv1sLS2vrK6t5zbym1vbO7uFvf2mihKJSQNHLJLtECnCqCANTTUj7VgSxENGWuHgeuS37olUNBK3ehgTn6OeoF2KkTZSUKin3vgRV/ZCP3VK9hin9jzJeFCDl9BTd1Kn5czjyc/NY2ZeB2XQE0kWFIqzHrhIZgOKYIp6UHjyOhFOOBEaM6SU69ix9lMkNcWMZHkvUSRGeIB6xDVUIE6Un46XzuCxUTqwG0lzhIZj9XdHirhSQx6aSo50X817I/E/z01098JPqYgTTQSeDOomDOoIjmKEHSoJ1mxoCMKSml0h7iOJsDZh500IzvyXF0mzXHLOSpWbSrF6NY0jBw7BETgBDjgHVVADddAAGDyAF/AG3q1H69X6sD4npUvWtOcA/IH19Q0ZsakN</latexit>
mH =
p
2µ =
p
2 ⌫
Marco Delmastro Twelve years with the Higgs boson 19
A textbook
discovery
4.
The Large Hadron Collider
Marco Delmastro Twelve years with the Higgs boson 20
Higgs boson production at the LHC
Marco Delmastro Twelve years with the Higgs boson 21
[TeV]
s
6 7 8 9 10 11 12 13 14 15
H+X)
[pb]
→
(pp
σ
2
−
10
1
−
10
1
10
2
10 M(H)= 125 GeV
LHC
HIGGS
XS
WG
2016
H (N3LO QCD + NLO EW)
→
pp
qqH (NNLO QCD + NLO EW)
→
pp
WH (NNLO QCD + NLO EW)
→
pp
ZH (NNLO QCD + NLO EW)
→
pp
ttH (NLO QCD + NLO EW)
→
pp
bbH (NNLO QCD in 5FS, NLO QCD in 4FS)
→
pp
tH (NLO QCD, t-ch + s-ch)
→
pp
Probing Higgs Couplings at the LHC
The Higgs boson at the LHC.
Higgs boson production
g
g
H
t
q
H
q
q
q
V
H
V
q
q̄
V
g
g
Main production
channel
2 forward jets, little
hadronic activity in
between
Tag W and Z
leptonic and
hadronic decays
Tag 2
Higgs boson decays
+
Total
Uncert
-1
1
LHC
HIGGS
XS
WG
2011
b
b
τ
τ gg
WW
5 main decay channels at
Decay branching fractions
Total
Uncert
-1
10
1
LHC
HIGGS
XS
WG
2013
b
b
τ
τ gg
WW
ZZ • H→bb: 58 %
5 key decay chan
Tag
Main production
channel: gluon-
gluon fusion
2 forward jets,
little central
hadronic activity
Tag W and Z
decays
6.9M
3.8 pb
520k
2.3 pb
320k
0.5 pb
70k
49 pb
4 main production modes
#H
σ[pb] @ 13TeV
# Higgs produced in 140 fb-1
in one experiment
Vector Boson Fusion
2 well-separated forward
jets
VH
tag W and Z
boson decays
ttH
tag 2 top quarks
gluon-gluon fusion:
main production mode at
LHC
gs at the LHC
4
HC.
q
H
q H
V
q
q̄
V
g
g
H
t
t̄
e
n
Tag W and Z
leptonic and Tag 2 top quarks
Tag 2 top quarks
Tag W and Z
2.3 pb
320k
0.5 pb
70k
σ [pb]
#Higgs produced during
Run-2
The Higgs boson is an unstable particle
Marco Delmastro Twelve years with the Higgs boson 22
[GeV]
H
M
80 100 120 140 160 180 200
Higgs
BR
+
Total
Uncert
-4
10
-3
10
-2
10
-1
10
1
LHC
HIGGS
XS
WG
2013
b
b
τ
τ
µ
µ
c
c
gg
γ
γ γ
Z
WW
ZZ
Higgs BR @ mH = 125 GeV
Almost exactly 12 years ago…
Marco Delmastro Twelve years with the Higgs boson 23
End of 2011… … June 2012…
Marco Delmastro Twelve years with the Higgs boson 24
Marco Delmastro Twelve years with the Higgs boson 25
5 σ!
Marco Delmastro Twelve years with the Higgs boson 26
Fabiola Gianotti revealing the
combined significance of the ATLAS
Higgs searches on on July 4 2012
Higgs boson discovery channels
Marco Delmastro Twelve years with the Higgs boson 27
ATLAS: PLB 716 (2012) 1-29
CMS: PLB 716 (2012) 30
W
Marco Delmastro Twelve years with the Higgs boson 28
12 years of
Higgs measurements
5.
A long way since the discovery…
Marco Delmastro Twelve years with the Higgs boson 29
100 110 120 130 140 150 160
Events
/
2
GeV
500
1000
1500
2000
2500
3000
3500
γ
γ
Æ
H
Data
Sig+Bkg Fit
Bkg (4th order polynomial)
-1
Ldt=4.8fb
∫
=7 TeV,
s
-1
Ldt=5.9fb
∫
=8 TeV,
s
ATLAS
=126.5 GeV)
H
(m
[GeV]
γ
γ
m
100 110 120 130 140 150 160
Events
-
Bkg
-200
-100
0
100
200
[GeV]
4l
m
100 150 200 250
Events/5
GeV
0
5
10
15
20
25
-1
Ldt = 4.8 fb
∫
= 7 TeV:
s
-1
Ldt = 5.8 fb
∫
= 8 TeV:
s
4l
Æ
(*)
ZZ
Æ
H
Data
(*)
Background ZZ
t
Background Z+jets, t
=125 GeV)
H
Signal (m
Syst.Unc.
ATLAS
Phys
Lett
B
716
(1)
1-29
2012
2012
PDG 2012
A long way since the discovery…
Marco Delmastro Twelve years with the Higgs boson 30
[GeV]
γ
γ
m
500
1000
1500
2000
2500
Sum
of
Weights
/
GeV
Data
Background
Signal + Background
ATLAS
-1
= 13 TeV, 139 fb
s
= 125.09 GeV
H
m
All categories
ln(1+S/B) weighted sum
S = Inclusive
110 120 130 140 150 160
[GeV]
γ
γ
m
50
−
0
50
100
Cont.
Bkg.
−
Data
JHEP 07 (2023) 088
80 90 100 110 120 130 140 150 160 170
[GeV]
4l
m
0
20
40
60
80
100
120
140
160
180
Events/2.5
GeV
Data
Higgs (125 GeV)
Z(Z*)
tXX, VVV
t
Z+jets, t
Uncertainty
ATLAS
4l
Æ
ZZ*
Æ
H
-1
= 13 TeV, 139 fb
s
Eur. Phys. J. C 80 (2020) 942
YESTERDAY
A long way since the discovery…
Marco Delmastro Twelve years with the Higgs boson 31
PDG 2022
12 years with the Higgs boson, and the next 12+ years…
Marco Delmastro Twelve years with the Higgs boson 32
Higgs
discovery
Run 2
~140 fb-1
@ 13TeV
Run 3
~150-300 fb-1
@ 13.6TeV
expected
TODAY
COVID
Schedules are meant to be adjusted…
HL-LHC
~3000 fb-1
@ 14TeV
expected
Marco Delmastro Twelve years with the Higgs boson 33
How well
do we know
the “basic”
Higgs properties?
6.
Marco Delmastro Twelve years with the Higgs boson 34
Higgs boson mass and width
<latexit sha1_base64="GjAZA3sF3xFCnzOLFd0uDoAcIeU=">AAACUnicbVJbS8MwFM7mbc5b1UdfgkPYUEc7hvoiDH3xcYK7wNqNNM26sPRCkgqj9DcK4os/xBcf1LTbQDsPBD6+75zz5ZzEDhkVUtffC8W19Y3NrdJ2eWd3b/9AOzzqiiDimHRwwALet5EgjPqkI6lkpB9ygjybkZ49vU/13jPhggb+k5yFxPKQ69MxxUgqaqTRbtVsT2gN3sLYzNoNuGtbsVHXs7jQ8yC5NL1o2EhgWjc0HeS6hKcYnkOTKWcHwWpeqw0bI62ybAFXwdKvAhbRHmmvphPgyCO+xAwJMTD0UFox4pJiRpKyGQkSIjxFLhko6COPCCvOZkjgmWIcOA64Or6EGfu7IkaeEDPPVpkekhOR11LyP20QyfGNFVM/jCTx8dxoHDEoA5juFzqUEyzZTAGEOVV3hXiCOMJSvUJZLcHIj7wKuo26cVVvPjYrrbvFOkrgBJyCKjDANWiBB9AGHYDBC/gAX+C78Fb4LKpfMk8tFhY1x+BPFHd/AOCQriM=</latexit>
V ( ) = µ2 †
+ ( †
)2
<latexit sha1_base64="1fWNXo0BKyAl0MhO6RXZ6twxrvU=">AAACUHicbVFNSwMxEJ2t3/Wr6tFLsAiKUnZrUS+C6KXHCrYK3XXJptk2mM0uSVYoYX+iF2/+Di8eFE1rFb8Gknm8N8NMXqKMM6Vd99EpTU3PzM7NL5QXl5ZXVitr6x2V5pLQNkl5Kq8jrChngrY105xeZ5LiJOL0Kro9H+lXd1QqlopLPcxokOC+YDEjWFsqrPQ7O35rwHbRCeqELtpDfiwxMV5h6gUy/nhAV/ajwHj77r5bmCRs3tSLAtl7VM3tqB5Gvsgtc/C9v1F8qc2bRlipujV3HOgv8CagCpNohZUHv5eSPKFCE46V6npupgODpWaE06Ls54pmmNziPu1aKHBCVWDG+xZo2zI9FKfSHqHRmP3eYXCi1DCJbGWC9UD91kbkf1o31/FxYJjIck0F+RgU5xzpFI3cRT0mKdF8aAEmktldERlg64i2f1C2Jni/n/wXdOo177DWuGhUT88mdszDJmzBDnhwBKfQhBa0gcA9PMELvDoPzrPzVnI+Sj8zbMCPKJXfAW7NsAI=</latexit>
V ( ) = V0 +
1
2
m2
HH2
+ ⌫H3
+
1
4
H4
<latexit sha1_base64="w9Fmr3Xsu0VA/q0jNv8I5c43Vqw=">AAACOXicbVDLSgMxFM34rPVVdekmWAQXUmZKUTdC0U2XFewDZoYhk6ZtaJIZk4xQhvktN/6FO8GNC0Xc+gOmL9TWA4GTc+7NvTlhzKjStv1sLS2vrK6t5zbym1vbO7uFvf2mihKJSQNHLJLtECnCqCANTTUj7VgSxENGWuHgeuS37olUNBK3ehgTn6OeoF2KkTZSUKin3vgRV/ZCP3VK9hin9jzJeFCDl9BTd1Kn5czjyc/NY2ZeB2XQE0kWFIqzHrhIZgOKYIp6UHjyOhFOOBEaM6SU69ix9lMkNcWMZHkvUSRGeIB6xDVUIE6Un46XzuCxUTqwG0lzhIZj9XdHirhSQx6aSo50X817I/E/z01098JPqYgTTQSeDOomDOoIjmKEHSoJ1mxoCMKSml0h7iOJsDZh500IzvyXF0mzXHLOSpWbSrF6NY0jBw7BETgBDjgHVVADddAAGDyAF/AG3q1H69X6sD4npUvWtOcA/IH19Q0ZsakN</latexit>
mH =
p
2µ =
p
2 ⌫
<latexit sha1_base64="z1bzfuT2pOSba8piZGnLZAmf4Ns=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrsiaiMEbSwjmAdklzA7mU2GzMyu8xDCsq2Nv2JjoYitf2Dn3zhJttDEAxcO59w7c++JUkaV9rxvp7S0vLK6Vl6vbGxube+4u3stlRiJSRMnLJGdCCnCqCBNTTUjnVQSxCNG2tHoeuK3H4hUNBF3epySkKOBoDHFSFup58JAGHgJg1ginAXc5Fmg7qXOAmbf6KM877lVr+ZNAReJX5AqKNDouV9BP8GGE6ExQ0p1fS/VYYakppiRvBIYRVKER2hAupYKxIkKs+klOTyySh/GibQlNJyqvycyxJUa88h2cqSHat6biP95XaPjizCjIjWaCDz7KDYM6gROYoF9KgnWbGwJwpLaXSEeIhuKtuFVbAj+/MmLpHVS889qp7en1fpVEUcZHIBDcAx8cA7q4AY0QBNg8AiewSt4c56cF+fd+Zi1lpxiZh/8gfP5AzLpmrE=</latexit>
⌫ =
µ
p
How well do we know the Higgs mass?
• mH Not predicted by theory
• All Higgs coupling properties depend on mH
• Excellent measurements by ATLAS and CMS
ü Precision depends on energy (photons, electrons) and momentum (muons) calibration
Marco Delmastro Twelve years with the Higgs boson 35
110 MeV
(0.09%)
<latexit sha1_base64="afTg4ohr3jY2DSaxuYm93cEIb/Y=">AAACJnicbVDLSsNAFJ34rPUVdelmsAgupCSlqJtC0U2XFewDmhAm00k7dCaJMxOhhHyNG3/FjYuKiDs/xWnagrYeGDice+5jjh8zKpVlfRlr6xubW9uFneLu3v7BoXl03JZRIjBp4YhFousjSRgNSUtRxUg3FgRxn5GOP7qb1jtPREgahQ9qHBOXo0FIA4qR0pJn1lInH9ITA99N7bKV49JaJlnKvQasQUc+CpVWMujwJMs8s7QwwFWymFYCczQ9c+L0I5xwEirMkJQ924qVmyKhKGYkKzqJJDHCIzQgPU1DxIl00/zCDJ5rpQ+DSOgXKpirvztSxKUcc187OVJDuVybiv/VeokKbtyUhnGiSIhni4KEQRXBaWawTwXBio01QVhQfSvEQyQQVjrZog7BXv7yKmlXyvZVuXpfLdVv53EUwCk4AxfABtegDhqgCVoAg2fwCibg3Xgx3owP43NmXTPmPSfgD4zvH2hxoX4=</latexit>
mH =
p
2µ
ATLAS
Run 1:
p
s = 7-8 TeV, 25 fb°1
, Run 2:
p
s = 13 TeV, 140 fb°1
Total Stat. Syst. Combination
Total Stat. Syst.
Run 1 H ! ∞∞
Run 2 H ! ∞∞
Run 1+2 H ! ∞∞
Run 1 H ! 4`
Run 2 H ! 4`
Run 1+2 H ! 4`
Run 1 Combined
Run 2 Combined
Run 1+2 Combined
Phys.
Rev.
Lett.
131
(2023)
251802
Higgs width: a problem difficult to tackle directly!
Marco Delmastro Twelve years with the Higgs boson 36
Total Higgs natural width in SM is small!
ü Too small to be accessed experimentally at
LHC from resonance line-shape in analysis
where peak can be reconstructed…
Direct measurement severely limited by
detector resolution! One (old) example:
ΓH < 2.4 (3.1) GeV obs. (exp.)
dominated by
<latexit sha1_base64="KkmEo32xE7fu1RPKHaswFM2hYGE=">AAACAXicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7EtRj0IO5CBHNA7JrmJ1MkiEzu8tMrxiW9eKvePGgiFf/wpt/4+Rx0MSChqKqm+4uPxJcg21/W5mFxaXllexqbm19Y3Mrv71T12GsKKvRUISq6RPNBA9YDTgI1owUI9IXrOEPLkZ+454pzcPgFoYR8yTpBbzLKQEjtfN77iWRkrSTSnqXuMAeQMnk5ipN2/mCXbTHwPPEmZICmqLazn+5nZDGkgVABdG65dgReAlRwKlgac6NNYsIHZAeaxkaEMm0l4w/SPGhUTq4GypTAeCx+nsiIVLrofRNpyTQ17PeSPzPa8XQPfMSHkQxsIBOFnVjgSHEozhwhytGQQwNIVRxcyumfaIIBRNazoTgzL48T+rHReekWLouFcrn0ziyaB8doCPkoFNURhVURTVE0SN6Rq/ozXqyXqx362PSmrGmM7voD6zPH0Xrl3A=</latexit>
SM
H
ΓH = 4.07 MeV
SM
from Run 1
Hà𝛄𝛄
peak
Eur.
Phys.
J.
C
74
(2˚014)
3076
g
g
H
Z
Z
gg ! H ! ZZ:
g
g
H
Z
Z
gg ! H ! ZZ:
g
g
H
Z
Z
gg ! H ! ZZ:
g
g
H
Z
Z
gg ! H ! ZZ:
500 1000
(GeV)
ν
2l2
m
7
−
10
6
−
10
5
−
10
4
−
10
3
−
10
2
−
10
1
−
10
1
10
2
10
3
10
4
10
(fb/GeV)
ν
2l2
/
dm
σ
d
)
2
SM H signal (|H|
)
2
SM contin. (|C|
)
2
SM total (|H+C|
2
+|C|
2
|H|
CMSSimulation 13 TeV
)
µ
(l=e,
ν
2l2
→
gg
The Higgs boson as propagator: width from off-shell Higgs
Marco Delmastro Twelve years with the Higgs boson 37
• Interference impacts both total cross section and m(VV) line-shape
• Assuming on-shell and off-shell couplings are equal:
ggF as an
example
<latexit sha1_base64="35EB4L7x+gWe4D86BPECU3LMt90=">AAACR3icbVBNa9swGJbTbc2yL6877iIWBrss2CN0vQxCe9gug5Q2HxBnQVZeNyKSbKTXY8H43/XS6277C7vs0FJ6rJKYdkv2gtDD88ErPXEmhcUg+OXVdh48fLRbf9x48vTZ8xf+y72+TXPDocdTmZphzCxIoaGHAiUMMwNMxRIG8fxoqQ++g7Ei1ae4yGCs2JkWieAMHTXxv0WJYbyIVD4pIoQfaFSRJsl7OwMpy7LcUPSdQD/RKvqZKcXK6r73nnx1ronfDFrBaug2CCvQJNV0J/7PaJryXIFGLpm1ozDIcFwwg4JLKBtRbiFjfM7OYOSgZgrsuFj1UNK3jpnSJDXuaKQr9u9EwZS1CxU7p2I4s5vakvyfNsoxORgXQmc5gubrRUkuKaZ0WSqdCgMc5cIBxo1wb6V8xlw76KpvuBLCzS9vg/6HVrjfah+3m53Dqo46eU3ekHckJB9Jh3whXdIjnJyT3+SSXHkX3h/v2rtZW2telXlF/pmadwuRDrXX</latexit>
µo↵-shell
µon-shell
=
SM
on-shell
vv!H!4` /
g2
gluong2
V
H
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
o↵-shell
vv!H!4` / g2
gluong2
V
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
<latexit sha1_base64="(null)">(null)</latexit>
vv = gg
<latexit sha1_base64="lk/UoFiZxdJulev7N5joDqhkknw=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+gDWWznaZLN5uwuymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YiGkg84o8ZKrfGY3JIw7JXKbsWdg6wSLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCp8VuqjGhbERD7FgqaYTaz+bnTsm5VfpkECtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qBjd+xmWSGpRssWiQCmJiMvud9LlCZsTEEsoUt7cSNqSKMmMTKtoQvOWXV0mzWvEuK9XHq3LtLo+jAKdwBhfgwTXU4AHq0AAGI3iGV3hzEufFeXc+Fq1rTj5zAn/gfP4AcaWO+w==</latexit>
vv = WW, ZZ, Z ,
<latexit sha1_base64="SvYte+ooWphPJ1xqZFFjf5IxBcw=">AAACC3icbVDLTgIxFO3gC/E16tJNAzFxQcgMmujGhOjGJSbCEGBCOqUDDW1n0nZIyIS9G3/FjQuNcesPuPNvLAwLBU9y25Nz7k17TxAzqrTjfFu5tfWNza38dmFnd2//wD48aqookZg0cMQi2QqQIowK0tBUM9KKJUE8YMQLRrcz3xsTqWgkHvQkJj5HA0FDipE2Us8ujsfwGnpeGbbbproDxDkqw+zOzp5dcirOHHCVuAtSAgvUe/ZXtx/hhBOhMUNKdVwn1n6KpKaYkWmhmygSIzxCA9IxVCBOlJ/Od5nCU6P0YRhJU0LDufp7IkVcqQkPTCdHeqiWvZn4n9dJdHjlp1TEiSYCZw+FCYM6grNgYJ9KgjWbGIKwpOavEA+RRFib+AomBHd55VXSrFbc80r1/qJUu1nEkQcnoAjOgAsuQQ3cgTpoAAwewTN4BW/Wk/VivVsfWWvOWswcgz+wPn8AAZeZKQ==</latexit>
g
g
Z
Z
gg ! ZZ:
arXiv:2202.06923
<latexit sha1_base64="OziqKQ84H1WPJGVHom+THq/cc3A=">AAACFXicbZDLSgMxFIYz9VbrbdSlm2ARKmqZKUVdFl3YZQV7gc60ZNJMDU0yQ5IRytCXcOOruHGhiFvBnW9jello6w+BL/85h+T8Qcyo0o7zbWWWlldW17LruY3Nre0de3evoaJEYlLHEYtkK0CKMCpIXVPNSCuWBPGAkWYwuB7Xmw9EKhqJOz2Mic9RX9CQYqSN1bVPvVAinLqjtMA7JXgGebfaKR0bPIHeDeIcje9Td9S1807RmQgugjuDPJip1rW/vF6EE06Exgwp1XadWPspkppiRkY5L1EkRniA+qRtUCBOlJ9OthrBI+P0YBhJc4SGE/f3RIq4UkMemE6O9L2ar43N/2rtRIeXfkpFnGgi8PShMGFQR3AcEexRSbBmQwMIS2r+CvE9MjFpE2TOhODOr7wIjVLRPS+Wb8v5ytUsjiw4AIegAFxwASqgCmqgDjB4BM/gFbxZT9aL9W59TFsz1mxmH/yR9fkD0HucGQ==</latexit>
1
(m2 m2
H)2 + 2
Hm2
H
0 5 10 15
(MeV)
H
Γ
0
2
4
6
8
10
12
14
lnL
∆
-2
+4l off-shell + 4l on-shell
ν
2l2
off-shell + 4l on-shell
ν
2l2
4l off-shell + 4l on-shell
Observed
Expected
CMS (13 TeV)
-1
140 fb
≤
68% CL
95% CL
Measurements of the Higgs width from off-shell production
Marco Delmastro Twelve years with the Higgs boson 38
Measurements in 4l and 2l2𝝼 final states and for different production modes
arXiv:2202.06923
arXiv:2202.06923v1
140 fb-1
on-shell 4l
78 fb-1
off-shell 4l
138 fb-1
off-shell 2l2v
~3 σ evidence for
off-shell H production
CMS
ΓH=3.2 +2.5 MeV
-1.7
4l
0 0.5 1 1.5 2 2.5 3 3.5 4
SM
H
Γ
/
H
Γ
0
2
4
6
8
10
12
14
16
18
20
)
λ
-2ln(
0.5
−
0.6
+
Obs-Stat. only: 1.1
0.6
−
0.7
+
Obs-Sys: 1.1
0.9
−
0.8
+
Exp-Stat. only: 1.0
0.9
−
0.9
+
Exp-Sys: 1.0
Obs-Stat. only
Obs-Sys
Exp-Stat. only
Exp-Sys
ATLAS
On + Off-shell combined
-1
13 TeV, 139 fb
σ
1
σ
2
ATLAS
ΓH=4.5 +3.3 MeV
-2.5
Phys.
Lett.
B
846
(2023)
138223
How well will we know the Higgs width?
Marco Delmastro Twelve years with the Higgs boson 39
• Combined ATLAS + CMS width sensitivity with 3000 fb-1, based on the off-shell measurement
üΓH = 4.1± 0.8 MeV
• More conservative assumptions on theoretical uncertainties than Run 2 results
– i.e. signal and background k-factors
1 2 3 4 5 6 7
(MeV)
H
Γ
0
5
10
15
q
=0)
ai
w/ YR18 syst. uncert. (f
=0)
ai
w/ Run 2 syst. uncert. (f
=0)
ai
w/ Stat. uncert. only (f
(13 TeV)
-1
3000 fb
CMS Projection
68% CL
95% CL
arXiv:1902.00134
“YR18” systematics: uncertainties
reduced wrt Run 2 according to
the improvements expected to be
reached at the end of HL-LHC
e.g. theory uncertainties generally
halved. See
https://twiki.cern.ch/twiki/bin/view
/LHCPhysics/HLHELHCCommon
Systematics
Studies of the Higgs CP properties
Marco Delmastro Twelve years with the Higgs boson 40
Spin is property of the particle, CP of the coupling…
coupling to EW vector bosons
H
q
q
q
q
V
V
HVV
V
V
H
q
q
HVV
H
V
V
HVV
g
g
t̄
H
t
Htt
coupling to fermions
H𝜏𝜏
coupling to gluons
Hgg
H
)
P
f(J
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
m
+
2
gg production
h2
+
2
production
q
q
h3
+
2
(gg acceptance)
decay-only discriminants
h
+
2
b
+
2
h6
+
2
h7
+
2
h
-
2
h9
-
2
h10
-
2
m
+
2
h2
+
2
h3
+
2
h
+
2
b
+
2
h6
+
2
h7
+
2
h
-
2
h9
-
2
h10
-
2
m
+
2
h2
+
2
h3
+
2
h
+
2
b
+
2
h6
+
2
h7
+
2
h
-
2
h9
-
2
h10
-
2
σ
1
±
Best fit
Excluded at 95% CL
Expected at 95% CL
Expected at 68% CL
CMS (7 TeV)
-1
(8 TeV) + 5.1 fb
-1
19.7 fb
ZZ
→
H
SM Higgs spin and CP properties
Marco Delmastro Twelve years with the Higgs boson 41
• SM Higgs has spin 0 and positive (even) parity
(JCP = 0++)
• At the end of Run 1 we knew Higgs had spin 0…
ü Spin 1 and 2 hypotheses excluded at > 99.9% CL
using Hà𝛄𝛄, HàZZ* and HàWW*
*|
θ
|cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Events
/
0.1
0
50
100
150
200
250
Expected
+
= 2
P
J
Data
+
= 2
P
J
Bkg. syst. uncertainty
ATLAS
-1
L dt = 20.7 fb
∫
= 8 TeV
s
γ
γ
→
H
=0%)
q
q
(f
γγ polar angle θ* with respect to Z-axis in Collins-Soper frame
Phys.
Lett.
B
726
(2013)
120
Phys.
Rev.
D
92
(2015)
012004
Example:
J=2 model
exclusions
with
HàZZ
*|
θ
|cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Events
/
0.1
0
50
100
150
200
250
Expected
+
= 0
P
J
Data
+
= 0
P
J
Bkg. syst. uncertainty
ATLAS
-1
L dt = 20.7 fb
∫
= 8 TeV
s
γ
γ
→
H
Example:
Hà𝛄𝛄 spin
analysis
1.5
− 1
− 0.5
− 0 0.5 1 1.5 2
)
α
cos(
t
κ
2
−
1.5
−
1
−
0.5
−
0
0.5
1
1.5
2
)
α
sin(
t
κ
ATLAS
-1
= 13 TeV, 139 fb
s
Best fit SM
σ
1
σ
2
σ
3
1
− 0.5
− 0 0.5 1 1.5
t
κ
1.5
−
1
−
0.5
−
0
0.5
1
1.5
t
κ
∼
68% CL
95% CL
Best fit
SM expected
CMS (13 TeV)
-1
138 fb
Multilepton
→
H
/ZZ
γ
γ
→
H
/ZZ
γ
γ
Multilepton/
→
H
CP properties of Higgs-top coupling with ttH
Marco Delmastro Twelve years with the Higgs boson 42
Effective Lagrangian forYukawa coupling to top quarks parameterized by
CP-Even and CP-odd components
Two examples:
JHEP
07
(2023)
092
g
g
t̄
H
t
Htt
Phys.
Rev.
Lett.
125
(2020)
061802
ATLAS ttH
Hà𝛄𝛄
pure CP-odd
coupling
excluded at 3.9σ
CMS ttH
HàML
+ Hà𝛄𝛄
+HàZZ
pure CP-odd
coupling
excluded at 3.7σ
|α| > 43 deg excluded @ 95% CL.
|𝑓𝐻𝑡𝑡| = 0.28 (< 0.55 at 1σ)
|𝑓𝐻𝑡𝑡| = (sin α)2
Marco Delmastro Twelve years with the Higgs boson 43
How well
do we know
the Higgs couplings?
7.
Couplings to…
Marco Delmastro Twelve years with the Higgs boson 44
… gauge bosons
… fermions
STXS: Simplified Template Cross Sections
Marco Delmastro Twelve years with the Higgs boson 45
• Cross sections per production mode in
different regions of phase space
ü Reduce dependency on theory
ü Allow MVA analysis
ü Exploit sensitivity of each channel specific region
of phase space (designed for combination)
ü Inclusive in decays (for now)
ü Binning defined to allow better estimate of
theoretical uncertainties, and easier merging
when insufficient experimental sensitivity
ü Largely model-independent approach to test for
BSM deviations in kinematic distributions
Stage 1.2
= 0-jet
pHjj
T
≥ 2-jet
mjj [350, ∞]
≃ 2-jet
! 3-jet
! 3-jet
≃ 2-jet
pH
T
0
10
350
700
1000
mjj
1500
∞
mjj [0, 350]
200
120
60
0
pH
T
= 1-jet
pH
T [0, 200]
0 ∞
25
∞
0 25
gg →H
pH
T [200, ∞]
300
200
pH
T
∞
650
450
0.15
pHj
T /pH
T
! 3-jet
≃ 2-jet ! 3-jet
≃ 2-jet
pHjj
T
pH
T [0, 200]
0 25 ∞
mjj [0, 350]
0 25 ∞
pHjj
T
0
60
mjj
120
350
mjj [350, ∞]
EW qqH = VBF+V (→qq)H
mjj
350
700
1000
1500
∞
pH
T [200, ∞]
0 25 ∞
≥ 2-jet
Stage 1.2
= 0-jet = 1-jet
qq̄′
→ W H
0-jet 1-jet ≥ 2-jet
gg → ZH
0-jet 1-jet ≥ 2-jet
qq̄ → ZH
0-jet 1-jet ≥ 2-jet
V H = V (→ leptons)H
75
0
150
250
400
∞
pV
T
Stage 1.2
Stage 1.2 tt̄H
pH
T
0
60
120
200
300
450
∞
2
−
10
1
−
10
1
10
2
10
(fb)
Β
obs
σ
Observed
syst)
⊕
(stat
σ
1
±
(syst)
σ
1
±
SM prediction
4.0
−
3.9
+
9.4
7
−
8
+
58
5
−
6
+
13
3
−
3
+
14
0.9
−
0.9
+
2.6
3.6
−
3.6
+
3.7
0.00
−
2.72
+
0.00
0.62
−
1.06
+
0.62
0.4
−
0.5
+
1.1
0.16
−
0.19
+
0.16
0.08
−
0.10
+
0.10
1.1
−
1.2
+
1.3
1.6
−
1.8
+
3.5
0.63
−
0.64
+
0.97
0.15
−
1.08
+
0.15
1.2
−
1.2
+
1.5
0.22
−
0.24
+
0.51
0.54
−
0.68
+
0.71
0.32
−
0.37
+
0.44
0.09
−
0.12
+
0.12
0.35
−
0.41
+
0.71
0.19
−
0.24
+
0.19
0.22
−
0.26
+
0.50
0.14
−
0.17
+
0.24
0.09
−
0.11
+
0.11
0.00
−
0.08
+
0.00
0.9
−
0.7
+
1.7
| < 2.5
H
, |y
γ
γ
→
H
STXS stage 1.2: minimal
= 70%
SM
p
= 125.38 GeV,
H
m
H
T
ggH
0J
low
p
H
T
ggH
0J
high
p
H
T
ggH
1J
low
p
H
T
ggH
1J
med
p
H
T
ggH
1J
high
p
H
T
2J
low
p
≥
ggH
H
T
2J
med
p
≥
ggH
H
T
2J
high
p
≥
ggH
<
300
H
T
ggH
BSM
200
<
p
<
450
H
T
ggH
BSM
300
<
p
>
450
H
T
ggH
BSM
p
Hjj
T
p
low
jj
VBF-like
low
m
Hjj
T
p
high
jj
VBF-like
low
m
Hjj
T
p
low
jj
VBF-like
high
m
Hjj
T
p
high
jj
VBF-like
high
m
qqH
VH-like
qqH
BSM
<
75
V
T
WH
lep
p
<
150
V
T
WH
lep
75
<
p
>
150
V
T
WH
lep
p
ZH
lep
<
60
H
T
ttH
p
<
120
H
T
ttH
60
<
p
<
200
H
T
ttH
120
<
p
<
300
H
T
ttH
200
<
p
>
300
H
T
ttH
p
tH
0
0.5
1
1.5
2
2.5
Ratio
to
SM
0
2
4
6
8
10
CMS (13 TeV)
-1
137 fb
STXS at work: H → 𝛄𝛄
Marco Delmastro Twelve years with the Higgs boson 46
JHEP 07 (2023) 088
JHEP 07 (2021) 027
2
− 0 2 4 6 8 10
SM
)
γ
γ
B
⋅
σ
)/(
γ
γ
B
⋅
σ
(
tH
300
≥
H
T
ttH, p
< 300
H
T
p
≤
ttH, 200
< 200
H
T
p
≤
ttH, 120
< 120
H
T
p
≤
ttH, 60
< 60
H
T
ttH, p
150
≥
V
t
, p
ν
ν
Hll/
→
pp
< 150
V
t
, p
ν
ν
Hll/
→
pp
150
≥
V
t
, p
ν
Hl
→
qq
< 150
V
t
, p
ν
Hl
→
qq
200
≥
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
200
≥
H
T
< 1000, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
< 200
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
< 200
H
T
< 1000, p
jj
m
≤
2-jets, 700
≥
Hqq',
→
qq'
< 200
H
T
< 700, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
2-jets, VH-had
≥
Hqq',
→
qq'
1-jet and VH-Veto
≤
Hqq',
→
qq'
450
≥
H
T
H, p
→
gg
< 450
H
T
p
≤
H, 300
→
gg
< 300
H
T
p
≤
H, 200
→
gg
< 200
H
T
350, p
≥
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
< 350, 120
jj
2-jets, m
≥
H,
→
gg
< 120
H
T
< 350, p
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
H, 1-jet, 120
→
gg
< 120
H
T
p
≤
H, 1-jet, 60
→
gg
< 60
H
T
H, 1-jet, p
→
gg
< 200
H
T
p
≤
H, 0-jet, 10
→
gg
< 10
H
T
H, 0-jet, p
→
gg
1
− 0 1 2 3 4 5 6
ATLAS -1
=13 TeV, 139 fb
s
|<2.5
H
= 125.09 GeV |y
H
m
γ
γ
→
H
p-value = 93%
Obs + Tot. Unc. Syst. unc. SM + Theo. unc.
Tot. Stat. Syst.
3
−
4
+
2 3
−
4
+
1
−
1
+
( )
0.7
−
0.9
+
1.1 0.7
−
0.9
+
0.1
−
0.2
+
( )
0.6
−
0.8
+
1.2 0.6
−
0.8
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.6 0.5
−
0.6
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.8 0.5
−
0.6
+
0.0
−
0.1
+
( )
0.7
−
0.8
+
0.8 0.7
−
0.8
+
0.1
−
0.1
+
( )
0.9
−
1.1
+
0.4 0.9
−
1.1
+
0.2
−
0.2
+
( )
0.2
−
0.9
+
-0.6 0.2
−
0.9
+
0.0
−
0.1
+
( )
0.9
−
1.1
+
1.6 0.9
−
1.1
+
0.1
−
0.1
+
( )
0.7
−
0.8
+
1.8 0.7
−
0.8
+
0.1
−
0.2
+
( )
0.5
−
0.6
+
1.6 0.5
−
0.6
+
0.2
−
0.3
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.35
−
0.43
+
1.19 0.30
−
0.33
+
0.19
−
0.28
+
( )
0.6
−
0.8
+
1.4 0.6
−
0.7
+
0.2
−
0.4
+
( )
0.6
−
0.8
+
1.2 0.5
−
0.6
+
0.2
−
0.5
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.8
−
0.9
+
0.9 0.8
−
0.8
+
0.2
−
0.3
+
( )
1.1
−
1.4
+
2.1 1.1
−
1.4
+
0.2
−
0.4
+
( )
0.5
−
0.5
+
0.2 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.4
−
0.4
+
1.6 0.4
−
0.4
+
0.1
−
0.2
+
( )
0.9
−
0.9
+
1.0 0.8
−
0.8
+
0.4
−
0.3
+
( )
0.5
−
0.5
+
1.3 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.5
−
0.5
+
0.6 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.5
−
0.5
+
1.0 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.34
−
0.38
+
1.11 0.30
−
0.30
+
0.16
−
0.22
+
( )
0.35
−
0.36
+
1.07 0.34
−
0.34
+
0.11
−
0.14
+
( )
0.17
−
0.18
+
1.23 0.15
−
0.15
+
0.09
−
0.10
+
( )
0.27
−
0.28
+
0.67 0.25
−
0.25
+
0.10
−
0.13
+
( )
2
−
10
1
−
10
1
10
2
10
(fb)
Β
obs
σ
Observed
syst)
⊕
(stat
σ
1
±
(syst)
σ
1
±
SM prediction
4.0
−
3.9
+
9.4
7
−
8
+
58
5
−
6
+
13
3
−
3
+
14
0.9
−
0.9
+
2.6
3.6
−
3.6
+
3.7
0.00
−
2.72
+
0.00
0.62
−
1.06
+
0.62
0.4
−
0.5
+
1.1
0.16
−
0.19
+
0.16
0.08
−
0.10
+
0.10
1.1
−
1.2
+
1.3
1.6
−
1.8
+
3.5
0.63
−
0.64
+
0.97
0.15
−
1.08
+
0.15
1.2
−
1.2
+
1.5
0.22
−
0.24
+
0.51
0.54
−
0.68
+
0.71
0.32
−
0.37
+
0.44
0.09
−
0.12
+
0.12
0.35
−
0.41
+
0.71
0.19
−
0.24
+
0.19
0.22
−
0.26
+
0.50
0.14
−
0.17
+
0.24
0.09
−
0.11
+
0.11
0.00
−
0.08
+
0.00
0.9
−
0.7
+
1.7
| < 2.5
H
, |y
γ
γ
→
H
STXS stage 1.2: minimal
= 70%
SM
p
= 125.38 GeV,
H
m
H
T
ggH
0J
low
p
H
T
ggH
0J
high
p
H
T
ggH
1J
low
p
H
T
ggH
1J
med
p
H
T
ggH
1J
high
p
H
T
2J
low
p
≥
ggH
H
T
2J
med
p
≥
ggH
H
T
2J
high
p
≥
ggH
<
300
H
T
ggH
BSM
200
<
p
<
450
H
T
ggH
BSM
300
<
p
>
450
H
T
ggH
BSM
p
Hjj
T
p
low
jj
VBF-like
low
m
Hjj
T
p
high
jj
VBF-like
low
m
Hjj
T
p
low
jj
VBF-like
high
m
Hjj
T
p
high
jj
VBF-like
high
m
qqH
VH-like
qqH
BSM
<
75
V
T
WH
lep
p
<
150
V
T
WH
lep
75
<
p
>
150
V
T
WH
lep
p
ZH
lep
<
60
H
T
ttH
p
<
120
H
T
ttH
60
<
p
<
200
H
T
ttH
120
<
p
<
300
H
T
ttH
200
<
p
>
300
H
T
ttH
p
tH
0
0.5
1
1.5
2
2.5
Ratio
to
SM
0
2
4
6
8
10
CMS (13 TeV)
-1
137 fb
STXS at work: H → 𝛄𝛄
Marco Delmastro Twelve years with the Higgs boson 47
arXiv:2207.00348
JHEP 07 (2021) 027
2
− 0 2 4 6 8 10
SM
)
γ
γ
B
⋅
σ
)/(
γ
γ
B
⋅
σ
(
tH
300
≥
H
T
ttH, p
< 300
H
T
p
≤
ttH, 200
< 200
H
T
p
≤
ttH, 120
< 120
H
T
p
≤
ttH, 60
< 60
H
T
ttH, p
150
≥
V
t
, p
ν
ν
Hll/
→
pp
< 150
V
t
, p
ν
ν
Hll/
→
pp
150
≥
V
t
, p
ν
Hl
→
qq
< 150
V
t
, p
ν
Hl
→
qq
200
≥
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
200
≥
H
T
< 1000, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
< 200
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
< 200
H
T
< 1000, p
jj
m
≤
2-jets, 700
≥
Hqq',
→
qq'
< 200
H
T
< 700, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
2-jets, VH-had
≥
Hqq',
→
qq'
1-jet and VH-Veto
≤
Hqq',
→
qq'
450
≥
H
T
H, p
→
gg
< 450
H
T
p
≤
H, 300
→
gg
< 300
H
T
p
≤
H, 200
→
gg
< 200
H
T
350, p
≥
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
< 350, 120
jj
2-jets, m
≥
H,
→
gg
< 120
H
T
< 350, p
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
H, 1-jet, 120
→
gg
< 120
H
T
p
≤
H, 1-jet, 60
→
gg
< 60
H
T
H, 1-jet, p
→
gg
< 200
H
T
p
≤
H, 0-jet, 10
→
gg
< 10
H
T
H, 0-jet, p
→
gg
1
− 0 1 2 3 4 5 6
ATLAS -1
=13 TeV, 139 fb
s
|<2.5
H
= 125.09 GeV |y
H
m
γ
γ
→
H
p-value = 93%
Obs + Tot. Unc. Syst. unc. SM + Theo. unc.
Tot. Stat. Syst.
3
−
4
+
2 3
−
4
+
1
−
1
+
( )
0.7
−
0.9
+
1.1 0.7
−
0.9
+
0.1
−
0.2
+
( )
0.6
−
0.8
+
1.2 0.6
−
0.8
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.6 0.5
−
0.6
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.8 0.5
−
0.6
+
0.0
−
0.1
+
( )
0.7
−
0.8
+
0.8 0.7
−
0.8
+
0.1
−
0.1
+
( )
0.9
−
1.1
+
0.4 0.9
−
1.1
+
0.2
−
0.2
+
( )
0.2
−
0.9
+
-0.6 0.2
−
0.9
+
0.0
−
0.1
+
( )
0.9
−
1.1
+
1.6 0.9
−
1.1
+
0.1
−
0.1
+
( )
0.7
−
0.8
+
1.8 0.7
−
0.8
+
0.1
−
0.2
+
( )
0.5
−
0.6
+
1.6 0.5
−
0.6
+
0.2
−
0.3
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.35
−
0.43
+
1.19 0.30
−
0.33
+
0.19
−
0.28
+
( )
0.6
−
0.8
+
1.4 0.6
−
0.7
+
0.2
−
0.4
+
( )
0.6
−
0.8
+
1.2 0.5
−
0.6
+
0.2
−
0.5
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.8
−
0.9
+
0.9 0.8
−
0.8
+
0.2
−
0.3
+
( )
1.1
−
1.4
+
2.1 1.1
−
1.4
+
0.2
−
0.4
+
( )
0.5
−
0.5
+
0.2 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.4
−
0.4
+
1.6 0.4
−
0.4
+
0.1
−
0.2
+
( )
0.9
−
0.9
+
1.0 0.8
−
0.8
+
0.4
−
0.3
+
( )
0.5
−
0.5
+
1.3 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.5
−
0.5
+
0.6 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.5
−
0.5
+
1.0 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.34
−
0.38
+
1.11 0.30
−
0.30
+
0.16
−
0.22
+
( )
0.35
−
0.36
+
1.07 0.34
−
0.34
+
0.11
−
0.14
+
( )
0.17
−
0.18
+
1.23 0.15
−
0.15
+
0.09
−
0.10
+
( )
0.27
−
0.28
+
0.67 0.25
−
0.25
+
0.10
−
0.13
+
( )
• Differential measurement of pT
H in ttH
SM prediction
0.16
−
0.19
+
0.16
0.08
−
0.10
+
0.10
1.1
−
1.2
+
1.3 0.63
−
0.64
+
0.97
0.15
−
1.08
+
0.15
1.2
−
1.5
0.22
−
0.24
+
0.51
0.54
−
0.68
+
0.71
0.32
−
0.37
+
0.44
0.09
−
0.12
+
0.12
0.35
−
0.41
+
0.71
0.19
−
0.24
+
0.19
0.22
−
0.26
+
0.50
0.14
−
0.17
+
0.24
0.09
−
0.11
+
0.11
0.00
−
0.08
+
0.00
0.9
−
0.7
+
1.7
<
450
H
T
H
BSM
300
<
p
>
450
H
T
ggH
BSM
p
Hjj
T
p
low
jj
VBF-like
low
m
Hjj
T
p
high
jj
BF-like
low
m
Hjj
T
p
low
jj
BF-like
high
m
Hjj
T
p
high
jj
BF-like
high
m
qqH
VH-like
qqH
BSM
<
75
V
T
WH
lep
p
<
150
V
T
WH
lep
75
<
p
>
150
V
T
WH
lep
p
ZH
lep
<
60
H
T
ttH
p
<
120
H
T
ttH
60
<
p
<
200
H
T
ttH
120
<
p
<
300
H
T
ttH
200
<
p
>
300
H
T
ttH
p
tH
0
2
4
6
8
10
2
−
10
1
−
10
1
10
2
10
(fb)
Β
obs
σ
Observed
syst)
⊕
(stat
σ
1
±
(syst)
σ
1
±
SM prediction
4.0
−
3.9
+
9.4
7
−
8
+
58
5
−
6
+
13
3
−
3
+
14
0.9
−
0.9
+
2.6
3.6
−
3.6
+
3.7
0.00
−
2.72
+
0.00
0.62
−
1.06
+
0.62
0.4
−
0.5
+
1.1
0.16
−
0.19
+
0.16
0.08
−
0.10
+
0.10
1.1
−
1.2
+
1.3
1.6
−
1.8
+
3.5
0.63
−
0.64
+
0.97
0.15
−
1.08
+
0.15
1.2
−
1.2
+
1.5
0.22
−
0.24
+
0.51
0.54
−
0.68
+
0.71
0.32
−
0.37
+
0.44
0.09
−
0.12
+
0.12
0.35
−
0.41
+
0.71
0.19
−
0.24
+
0.19
0.22
−
0.26
+
0.50
0.14
−
0.17
+
0.24
0.09
−
0.11
+
0.11
0.00
−
0.08
+
0.00
0.9
−
0.7
+
1.7
| < 2.5
H
, |y
γ
γ
→
H
STXS stage 1.2: minimal
= 70%
SM
p
= 125.38 GeV,
H
m
H
T
ggH
0J
low
p
H
T
ggH
0J
high
p
H
T
ggH
1J
low
p
H
T
ggH
1J
med
p
H
T
ggH
1J
high
p
H
T
2J
low
p
≥
ggH
H
T
2J
med
p
≥
ggH
H
T
2J
high
p
≥
ggH
<
300
H
T
ggH
BSM
200
<
p
<
450
H
T
ggH
BSM
300
<
p
>
450
H
T
ggH
BSM
p
Hjj
T
p
low
jj
VBF-like
low
m
Hjj
T
p
high
jj
VBF-like
low
m
Hjj
T
p
low
jj
VBF-like
high
m
Hjj
T
p
high
jj
VBF-like
high
m
qqH
VH-like
qqH
BSM
<
75
V
T
WH
lep
p
<
150
V
T
WH
lep
75
<
p
>
150
V
T
WH
lep
p
ZH
lep
<
60
H
T
ttH
p
<
120
H
T
ttH
60
<
p
<
200
H
T
ttH
120
<
p
<
300
H
T
ttH
200
<
p
>
300
H
T
ttH
p
tH
0
0.5
1
1.5
2
2.5
Ratio
to
SM
0
2
4
6
8
10
CMS (13 TeV)
-1
137 fb
STXS at work: H → 𝛄𝛄
Marco Delmastro Twelve years with the Higgs boson 48
arXiv:2207.00348
JHEP 07 (2021) 027
2
− 0 2 4 6 8 10
SM
)
γ
γ
B
⋅
σ
)/(
γ
γ
B
⋅
σ
(
tH
300
≥
H
T
ttH, p
< 300
H
T
p
≤
ttH, 200
< 200
H
T
p
≤
ttH, 120
< 120
H
T
p
≤
ttH, 60
< 60
H
T
ttH, p
150
≥
V
t
, p
ν
ν
Hll/
→
pp
< 150
V
t
, p
ν
ν
Hll/
→
pp
150
≥
V
t
, p
ν
Hl
→
qq
< 150
V
t
, p
ν
Hl
→
qq
200
≥
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
200
≥
H
T
< 1000, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
< 200
H
T
1000, p
≥
jj
2-jets, m
≥
Hqq',
→
qq'
< 200
H
T
< 1000, p
jj
m
≤
2-jets, 700
≥
Hqq',
→
qq'
< 200
H
T
< 700, p
jj
m
≤
2-jets, 350
≥
Hqq',
→
qq'
2-jets, VH-had
≥
Hqq',
→
qq'
1-jet and VH-Veto
≤
Hqq',
→
qq'
450
≥
H
T
H, p
→
gg
< 450
H
T
p
≤
H, 300
→
gg
< 300
H
T
p
≤
H, 200
→
gg
< 200
H
T
350, p
≥
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
< 350, 120
jj
2-jets, m
≥
H,
→
gg
< 120
H
T
< 350, p
jj
2-jets, m
≥
H,
→
gg
< 200
H
T
p
≤
H, 1-jet, 120
→
gg
< 120
H
T
p
≤
H, 1-jet, 60
→
gg
< 60
H
T
H, 1-jet, p
→
gg
< 200
H
T
p
≤
H, 0-jet, 10
→
gg
< 10
H
T
H, 0-jet, p
→
gg
1
− 0 1 2 3 4 5 6
ATLAS -1
=13 TeV, 139 fb
s
|<2.5
H
= 125.09 GeV |y
H
m
γ
γ
→
H
p-value = 93%
Obs + Tot. Unc. Syst. unc. SM + Theo. unc.
Tot. Stat. Syst.
3
−
4
+
2 3
−
4
+
1
−
1
+
( )
0.7
−
0.9
+
1.1 0.7
−
0.9
+
0.1
−
0.2
+
( )
0.6
−
0.8
+
1.2 0.6
−
0.8
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.6 0.5
−
0.6
+
0.1
−
0.1
+
( )
0.5
−
0.6
+
0.8 0.5
−
0.6
+
0.0
−
0.1
+
( )
0.7
−
0.8
+
0.8 0.7
−
0.8
+
0.1
−
0.1
+
( )
0.9
−
1.1
+
0.4 0.9
−
1.1
+
0.2
−
0.2
+
( )
0.2
−
0.9
+
-0.6 0.2
−
0.9
+
0.0
−
0.1
+
( )
0.9
−
1.1
+
1.6 0.9
−
1.1
+
0.1
−
0.1
+
( )
0.7
−
0.8
+
1.8 0.7
−
0.8
+
0.1
−
0.2
+
( )
0.5
−
0.6
+
1.6 0.5
−
0.6
+
0.2
−
0.3
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.35
−
0.43
+
1.19 0.30
−
0.33
+
0.19
−
0.28
+
( )
0.6
−
0.8
+
1.4 0.6
−
0.7
+
0.2
−
0.4
+
( )
0.6
−
0.8
+
1.2 0.5
−
0.6
+
0.2
−
0.5
+
( )
0.6
−
0.7
+
0.2 0.6
−
0.7
+
0.1
−
0.1
+
( )
0.8
−
0.9
+
0.9 0.8
−
0.8
+
0.2
−
0.3
+
( )
1.1
−
1.4
+
2.1 1.1
−
1.4
+
0.2
−
0.4
+
( )
0.5
−
0.5
+
0.2 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.4
−
0.4
+
1.6 0.4
−
0.4
+
0.1
−
0.2
+
( )
0.9
−
0.9
+
1.0 0.8
−
0.8
+
0.4
−
0.3
+
( )
0.5
−
0.5
+
1.3 0.4
−
0.5
+
0.1
−
0.1
+
( )
0.5
−
0.5
+
0.6 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.5
−
0.5
+
1.0 0.5
−
0.5
+
0.1
−
0.2
+
( )
0.34
−
0.38
+
1.11 0.30
−
0.30
+
0.16
−
0.22
+
( )
0.35
−
0.36
+
1.07 0.34
−
0.34
+
0.11
−
0.14
+
( )
0.17
−
0.18
+
1.23 0.15
−
0.15
+
0.09
−
0.10
+
( )
0.27
−
0.28
+
0.67 0.25
−
0.25
+
0.10
−
0.13
+
( )
• Closing in on tH production
ü ~10 ⨉ σtH
SM excluded at 95% CL
H → 𝛄𝛄 as an example: Run 2 vs HL-LHC
• While STXS measurement remains main current goal, traditional “production-mode” results (a.k.a. “Stage
0” STXS) still measured by more powerful decay channels and in combination
• Already at Run 2 some measurement limited by systematics: more and more true in the future!
Marco Delmastro Twelve years with the Higgs boson 49
0.8 0.9 1 1.1 1.2 1.3 1.4
SM
x B)
σ
x B) / (
σ
(
0.5
−
5.2
Total Stat Syst SM
ATLAS Preliminary
-1
= 14 TeV, 3000 fb
s
|<2.5
H
, |y
γ
γ
→
H
Total Stat. Syst.
top 0.06 )
±
0.05 ,
±
(
- 0.07
+ 0.08
1.00
VH )
- 0.04
+ 0.05
0.08 ,
±
0.09 (
±
1.00
VBF 0.08 )
±
0.04 ,
±
(
- 0.09
+ 0.10
1.00
ggF+bbH 0.03 )
±
0.02 ,
±
0.04 (
±
1.00
Projection from Run 2 data
arXiv:1902.00134
2
− 1
− 0 1 2 3 4 5 6
SM
H
σ
/
H
σ
Total Stat. Syst. SM
Preliminary
ATLAS
-1
= 13 TeV, 139 fb
s
= 125.09 GeV
H
, m
γ
γ
→
H
Total Stat. Syst.
ggF + bbH )
0.06
0.07
±
0.08 ,
±
0.11 (
±
1.02
VBF )
0.16
0.18
±
0.18 ,
±
(
0.24
0.26
±
1.34
WH )
0.10
0.13
±
,
0.49
0.53
±
(
0.50
0.55
±
2.33
ZH )
0.08
0.07
±
,
0.56
0.61
±
(
0.57
0.61
±
-0.64
ttH + tH )
0.07
0.09
±
,
0.23
0.25
±
(
0.24
0.27
±
0.92
ATLAS-CONF-2020-026
Marco Delmastro Twelve years with the Higgs boson 50
zoom on
Higgs coupling to fermions
PDG 2012
PDG 2022
8.
Why is Yukawa interaction important?
Marco Delmastro Twelve years with the Higgs boson 51
• Why is elementary mass important? Two ideas…
ü Mass of quark u and d is responsible for difference of mass between
neutron and proton, thus of proton stability, thus of existence of
hydrogen atoms…
ü Mass of electron determines Bohr radius, thus dimensions of atoms,
thus all chemistry…
In SMYukawa interaction between Higgs
and fermions gives fermions their mass… <latexit sha1_base64="fhpCNAEU04Zb3fp5Aqq9LOaPNAo=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEgsVElVAQtSBQtjkehDaqLKcZ3Wqu0E20GKoqws/AoLAwix8gds/A1umwFajnSl43Pule89Qcyo0o7zbS0tr6yurZc2yptb2zu79t5+W0WJxKSFIxbJboAUYVSQlqaakW4sCeIBI51gfD3xOw9EKhqJO53GxOdoKGhIMdJG6tuQ9ym8hKfQCyXCWWpenkjyzFP3Ume1PO/bFafqTAEXiVuQCijQ7Ntf3iDCCSdCY4aU6rlOrP0MSU0xI3nZSxSJER6jIekZKhAnys+ml+Tw2CgDGEbSlNBwqv6eyBBXKuWB6eRIj9S8NxH/83qJDi/8jIo40UTg2UdhwqCO4CQWOKCSYM1SQxCW1OwK8QiZSLQJr2xCcOdPXiTtWtU9q9Zv65XGVRFHCRyCI3ACXHAOGuAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+APr8wfDOJnL</latexit>
mi =
yi⌫
p
2
<latexit sha1_base64="z1bzfuT2pOSba8piZGnLZAmf4Ns=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrsiaiMEbSwjmAdklzA7mU2GzMyu8xDCsq2Nv2JjoYitf2Dn3zhJttDEAxcO59w7c++JUkaV9rxvp7S0vLK6Vl6vbGxube+4u3stlRiJSRMnLJGdCCnCqCBNTTUjnVQSxCNG2tHoeuK3H4hUNBF3epySkKOBoDHFSFup58JAGHgJg1ginAXc5Fmg7qXOAmbf6KM877lVr+ZNAReJX5AqKNDouV9BP8GGE6ExQ0p1fS/VYYakppiRvBIYRVKER2hAupYKxIkKs+klOTyySh/GibQlNJyqvycyxJUa88h2cqSHat6biP95XaPjizCjIjWaCDz7KDYM6gROYoF9KgnWbGwJwpLaXSEeIhuKtuFVbAj+/MmLpHVS889qp7en1fpVEUcZHIBDcAx8cA7q4AY0QBNg8AiewSt4c56cF+fd+Zi1lpxiZh/8gfP5AzLpmrE=</latexit>
⌫ =
µ
p
6 8 10 12 14 16
[TeV]
s
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
H)
[pb]
t
t
Æ
(pp
σ
ATLAS
Theory (NLO QCD + NLO EW)
Combined data
Stat. only
Total
1
− 0 1 2 3 4 5 6 7
H
t
t
µ
Combined
13 TeV
7+8 TeV
)
b
H(b
t
t
)
-
τ
+
τ
H(
t
t
)
γ
γ
H(
t
t
H(ZZ*)
t
t
H(WW*)
t
t
(13 TeV)
-1
(8 TeV) + 35.9 fb
-1
(7 TeV) + 19.7 fb
-1
5.1 fb
CMS Observed
syst)
⊕
(stat
σ
1
±
(syst)
σ
1
±
syst)
⊕
(stat
σ
2
±
Coupling to top quark: direct observation of ttH in 2018!
Marco Delmastro Twelve years with the Higgs boson 52
Probing Higgs Couplings at the LHC
4
The Higgs boson at the LHC.
Higgs boson production
g
g
H
t
q
H
q
q
q
V
H
V
q
q̄
V
g
g
H
t
t̄
Main production
channel
2 forward jets, little
hadronic activity in
between
Tag W and Z
leptonic and
hadronic decays
Tag 2 top quarks
Higgs boson decays
[GeV]
H
M
100 120 140 160 180 200
Higgs
BR
+
Total
Uncert
-3
10
-2
10
-1
10
1
LHC
HIGGS
XS
WG
2011
b
b
τ
τ
c
c
gg
γ
γ γ
Z
WW
ZZ
5 main decay channels at LHC
Decay branching fractions @ mH =
125 GeV
H ! bb̄ 57.7%
H ! W W ⇤
21.5%
H ! ⌧⌧ 6.3%
H ! ZZ⇤
2.6%
H ! 0.23%
() Oct 28, 2014 6 / 29
[GeV]
H
M
80 100 120 140 160 180 200
Higgs
BR
+
Total
Uncert
-4
10
-3
10
-2
10
-1
10
1
LHC
HIGGS
XS
WG
2013
b
b
τ
τ
µ
µ
c
c
gg
γ
γ γ
Z
WW
ZZ • H→bb: 58 %
• H→WW*: 21%
• H→τ+τ-: 6.3%
• H→ZZ*: 2.6%
• H→γγ: 0.23%
5 key decay channels
Decay branching fractions for mH = 125 GeV
Tag 2 top quarks
Main production
channel: gluon-
gluon fusion
2 forward jets,
little central
hadronic activity
Tag W and Z
decays
6.9M
3.8 pb
520k
2.3 pb
320k
0.5 pb
70k
49 pb
4 main production modes
σ [pb]
#Higgs produced during
Run-2
yt
Probing Higgs Couplings at the LHC
4
The Higgs boson at the LHC.
Higgs boson production
g
g
H
t
q
H
q
q
q
V
H
V
q
q̄
V
g
g
H
t
t̄
Main production
channel
2 forward jets, little
hadronic activity in
between
Tag W and Z
leptonic and
hadronic decays
Tag 2 top quarks
Higgs boson decays
[GeV]
H
M
100 120 140 160 180 200
Higgs
BR
+
Total
Uncert
-3
10
-2
10
-1
10
1
LHC
HIGGS
XS
WG
2011
b
b
τ
τ
c
c
gg
γ
γ γ
Z
WW
ZZ
5 main decay channels at LHC
Decay branching fractions @ mH =
125 GeV
H ! bb̄ 57.7%
H ! W W ⇤
21.5%
H ! ⌧⌧ 6.3%
H ! ZZ⇤
2.6%
H ! 0.23%
() Oct 28, 2014 6 / 29
[GeV]
H
M
80 100 120 140 160 180 200
Higgs
BR
+
Total
Uncert
-4
10
-3
10
-2
10
-1
10
1
LHC
HIGGS
XS
WG
2013
b
b
τ
τ
µ
µ
c
c
gg
γ
γ γ
Z
WW
ZZ • H→bb: 58 %
• H→WW*: 21%
• H→τ+τ-: 6.3%
• H→ZZ*: 2.6%
• H→γγ: 0.23%
5 key decay channels
Decay branching fractions for mH = 125 GeV
Tag 2 top quarks
Main production
channel: gluon-
gluon fusion
2 forward jets,
little central
hadronic activity
Tag W and Z
decays
6.9M
3.8 pb
520k
2.3 pb
320k
0.5 pb
70k
49 pb
4 main production modes
σ [pb]
#Higgs produced during
Run-2
yt
arXiv:1804.02610
CMS (Run 1 + 36 fb-1 Run 2): 5.2 σ (4.2 σ exp)
arXiv:1806.00425
ATLAS: (Run 1 + 36-80 fb-1 Run 2): 6.3 σ (5.1 σ exp)
Marco Delmastro Twelve years with the Higgs boson 53
m(jj) [GeV]
60 80 100 120 140 160
S/(S+B)
weighted
entries
0
500
1000
Data
b
b
→
VH,H
b
b
→
VZ,Z
S+B uncertainty
CMS
(13 TeV)
-1
77.2 fb
Coupling to bottom quark: observation of VH/Hàbb in 2018!
• Difficult channel despite large BR(58%) due to large backgrounds
ü VH production most sensitive à Observation in 2018!
• ATLAS: 5.4σ (5.5σ)
• CMS: 5.5σ (5.6σ)
Marco Delmastro Twelve years with the Higgs boson 54
µ
Best fit
0 1 2 3 4 5 6 7 8 9
Combined
ZH
WH
ttH
VBF
ggF
stat syst
0.14
±
0.14
±
1.04
0.16
±
0.24
±
0.88
0.24
±
0.29
±
1.24
0.37
±
0.23
±
0.85
1.17
±
0.98
±
2.53
1.30
±
2.08
±
2.80
CMS
(13 TeV)
-1
77.2 fb
≤
(8 TeV) +
-1
19.8 fb
≤
(7 TeV) +
-1
5.1 fb
≤
b
b
→
H
Observed
syst)
⊕
(stat
σ
1
±
(syst)
σ
1
±
CMS: arXiv:1808.08242
ATLAS: arXiv:1808.08238
CMS: arXiv:1808.08242
qq̄′
→ W H
0-jet 1-jet ≥ 2-jet
gg → ZH
0-jet 1-jet ≥ 2-jet
qq̄ → ZH
0-jet 1-jet ≥ 2-jet
V H = V (→ leptons)H
75
0
150
250
400
∞
pV
T
Stage 1.2
1
10
2
10
3
10
[fb]
lep
V
B
×
b
b
H
B
×
VH
STXS
σ
ATLAS Preliminary
-1
=13 TeV, 139 fb
s
V = W V = Z
lep. (resolved + boosted)
→
, V
b
b
→
VH, H
Observed Expected Theo. unc.
Boosted (PLB 816 136204)
Resolved (EPJC 81 178)
Combined
< 250 GeV
W,t
T
150 < p
< 400 GeV
W,t
T
250 < p > 400 GeV
W,t
T
p
< 150 GeV
Z,t
T
75 < p
< 250 GeV
Z,t
T
150 < p
< 400 GeV
Z,t
T
250 < p > 400 GeV
Z,t
T
p
0
1
2
Ratio
to
SM
ATLAS-CONF-2021-051
Coupling to 3rd generation leptons: Hàττ
• Observation already in Run 1 ATLAS+CMS coupling combination
• Now more precise measurements, bringing sensitivity to regions
of the phase space less well measured by e.g. H → γγ and H → 4l
ü i.e. ggF high pT
H and especially VBF
Marco Delmastro Twelve years with the Higgs boson 55
10
2
10
3
10
4
10
B
(fb)
σ
Observed (stat.)
σ
1
± σ
1
± Uncertainty in SM prediction
-370
+394
2960 -552
+592
3060
-73.3
+75.3
221
-792
+864
-964
-510
+519
-756
-261
+264
1010
-47.1
+51.9
99.1
-271
+251
19.0
-24.5
+24.3
24.2
-7.90
+7.82
13.0
-515
+552
374
-46.0
+45.8
-18.9
-17.3
+17.7
32.9
-4.17
+4.40
6.41
CMS Preliminary (13 TeV)
-1
137 fb
Process-based
τ
τ
→
H
τ
τ
→
ggH
τ
τ
→
qqH
ggH-0j/pT<200
ggH-1j/pT[0-60]
ggH-1j/pT[60-120]
ggH-1j/pT[120-200]
ggH-2j/pT<200
ggH/pT[200,300]
ggH/pT>300
qqH
non-VBF
topo
qqH-2j/mJJ[350-700]
qqH-2j/mJJ>700
qqH-2j/pT>200
3
−
2
−
1
−
0
1
2
3
4
Ratio
to
SM
CMS-PAS-HIG-19-010
1
/.


 3
,,./ .
/
/ ( /2
  
 
/ ) ,0 .
(.( /( ( 

3
/

)
5(/32
(

 ( ) 7
.. 2
3
/ (13 ,/36
  
 
3 (1 104/ 2
,2, (/3,),( 
 (
7
3

1
10
2
10
3
10
4
10
[fb]
τ
τ
H
B
×
i
σ
ATLAS
-1
= 13 TeV, 139 fb
s
= 95 %
SM
p
|  2.5)
H
cross-sections (|y
τ
τ
→
H
Observed Tot. unc. Stat. unc.
Expected Theo. unc.
0
2
4
Ratio
to
SM
N(jets):
(H) [GeV]:
T
p
[GeV]:
jj
m
1
≥ 1 2
≥ 0
≥ 0
≥ 2
≥ 2
≥ 2
≥
[60, 120] [120, 200] [200, 300] [
∞
[300, [0, 200]
♠
[0, 350] [0, 350] [
∞
[350, [60, 120] [
∞
[350,
qq)H
→
Z(
→
gluon fusion + gg qq)H
→
VBF + V( ttH
JHEP 08 (2022) 175
ggF high pTH VBF high mjj
Marco Delmastro Twelve years with the Higgs boson 56
couplings to
bosons
established
couplings to
3rd generation
fermions
observed
couplings
to 2nd
generation
fermion?
Is the Higgs boson
responsible for the
EW symmetry
breaking also
responsible for the
masses of
fermions?
Is the Higgs boson
responsible for the
masses of all
fermions?
Coupling to 2nd generation leptons: H൵ evidence in 2020!
• H൵ very rare (BR ~ 2 10-4) with large resonant background from DYà µµ (S/B ~ 0.1%)
Marco Delmastro Twelve years with the Higgs boson 57
JHEP 01 (2021) 148 PLB 812(2021) 135980
[GeV]
µ
µ
m
100
200
300
400
500
600
700
Weighted
Events
/
2
GeV
ATLAS
-1
= 13 TeV, 139 fb
s
, ln(1 + S/B) weighted
µ
µ
→
H
Data
Total pdf
Signal pdf
Bkg. pdf
110 115 120 125 130 135 140 145 150 155 160
[GeV]
µ
µ
m
2
−
0
2
Data
-
Bkg.
µ = 1.2 ± 0.2
Significance: 3.0 σ (2.5 expected)
µ = 1.2 ± 0.6
Significance: 2.0 σ (1.7 expected)
30
− 20
− 10
− 0 10 20 30
c
κ
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
)
c
κ
/
L
c
κ
-
ln(L
95% CL
Comb. (obs.)
Comb. (exp.)
0-lepton (obs.)
1-lepton (obs.)
2-lepton (obs.)
ATLAS
c
c
→
VH, H
-1
= 13 TeV, 139 fb
s
|  8.5 at 95% CL
c
κ
|
The next frontier: coupling to 2nd generation quarks Hàcc
• Very challenging channel: large backgrounds from multi-jets
ü c-tagging needed to discriminate H → bb
Marco Delmastro Twelve years with the Higgs boson 58
60 80 100 120 140 160 180 200
[GeV]
cj
m
500
−
0
500
1000
1500
2000
2500
3000
3500
Events
after
B-subtraction
/
10
GeV
Data
=-9)
µ
) (
c
c
→
VH(
=1.16)
µ
) (
c
c
→
VZ(
=0.83)
µ
cq) (
→
VW(
B-only uncertainty
26
×
)
c
c
→
SM VH(
ATLAS
-1
= 13 TeV, 139 fb
s
0+1+2 leptons
1 c-tag, All SR
VZ,VW: 3.8 σ forVW(→cq)
Eur. Phys. J. C 82 (2022) 717
limits on κc coupling
ATLAS: κc = σ/σSM  8.5 (12.4 exp.)
CMS: 1.1  κc  5.5 ( 3.4 exp.)
Phys. Rev. Lett. 131 (2023) 061801
Zàcc: 5.7 σ
2
− 1.5
− 1
− 0.5
− 0 0.5 1 1.5 2
b
κ
3
−
2
−
1
−
0
1
2
3
4
c
κ
SM
σ
1
±
σ
2
±
CMS Phase-2 Projection Preliminary (14 TeV)
-1
3000 fb
Will we observe Hàcc in the future?
• Extrapolations to HL-LHC luminosity
ü Sensitivity to kc (and kb) from ATLAS VH/Hàcc and
VH/Hàbb analyses Sensitivity to kc and kb from CMS pT
H
differential measurements
Marco Delmastro Twelve years with the Higgs boson 59
2
−
1
.
5
−
1
−
0
.
5
−
0
0
.
5
1
1
.
5
2
b
κ
4
−
2
−
0
2
4
6
8
1
0
c
κ
E
x
p
e
c
t
e
d
6
8
%
C
L
E
x
p
e
c
t
e
d
9
5
%
C
L
S
M
A
T
L
A
S
P
r
e
l
i
m
i
n
a
r
y
-
1
=
1
4
T
e
V
,
3
0
0
0
f
b
s
P
r
o
j
e
c
t
i
o
n
f
r
o
m
R
u
n
2
d
a
t
a
)
c
,
c
b
b
→
V
H
(
4
− 2
− 0 2 4
c
κ
0
0.5
1
1.5
2
2.5
3
)
max
L
L
-
log(
68% CL
95% CL
Combined (exp.)
0 lepton (exp.)
1 lepton (exp.)
2 lepton (exp.)
ATLAS Preliminary
-1
= 14 TeV, 3000 fb
s
Projection from Run 2 data
)
c
c
→
VH(
κc = σ/σSM  3 @ 95% CL
ATL-PHYS-PUB-2021-039
arXiv:1902.00134
Phys. Rev. Lett. 131 (2023) 061801
Marco Delmastro Twelve years with the Higgs boson 60
One for all,
all for one!
9.
4
−
10
3
−
10
2
−
10
1
−
10
1
vev
V
m
V
κ
or
vev
F
m
F
κ
Run 2
ATLAS
µ
c
τ b
W
Z
t
t
κ
=
c
κ
is a free parameter
c
κ
SM prediction
1
−
10 1 10 2
10
Particle mass [GeV]
0.8
1
1.2
1.4
V
κ
or
F
κ
e
ν µ
ν τ
ν u c t
Leptons Quarks
e µ τ d s b
g γ Z W H
Force carriers Higgs boson
The Standard Model rules (over 3 order of magnitudes)!
Marco Delmastro Twelve years with the Higgs boson 61
Nature
607
(2022)
52
Nature
607
(2022)
60
Marco Delmastro Twelve years with the Higgs boson 62
0 10 200
pH
T [GeV]
0
10
20
30
σ
[pb]
= 0 jets
0 60 120 200
pH
T [GeV]
0
5
10
σ
[pb]
= 1 jet
0 120 200
pH
T [GeV]
−2
0
2
4
σ
[pb]
mjj  350 GeV
0.0
0.5
1.0
1.5
σ
[pb]
mjj ≥ 350 GeV
200 300 450 ∞
pH
T [GeV]
101
102
103
σ
[fb]
pH
T ≥ 200 GeV
−2
0
2
4
σ
[pb]
≤ 1 jet
VH-enriched VBF-enriched
0
1
2
3
σ
[pb]
mjj  350 GeV
350 700 1000 1500 ∞
mjj [GeV]
0
500
σ
[fb]
pH
T  200 GeV
350 1000 ∞
mjj [GeV]
0
50
100
σ
[fb]
pH
T ≥ 200 GeV
0 75 150 250 400 ∞
pW
T [GeV]
100
101
102
103
σ
[fb]
qq' → WH → Hℓν
0 150 250 400 ∞
pZ
T [GeV]
100
101
102
σ
[fb]
pp → ZH → Hℓℓ
0 60 120 200 300 450 ∞
pH
T [GeV]
0
100
200
σ
[fb]
t ̄
tH
0
250
500
750
1000
σ
[fb]
tH
ATLAS Run 2
Data (Total uncertainty)
Syst. uncertainty
SM prediction
≥ 2 jets
pH
T  200 GeV
gg → H
mjj ≥ 350 GeV
≥ 2 jets
qq → qqH
V(ℓℓ, ℓν)H
Nature
607
(2022)
52
How well do we know the Higgs couplings?
• Higgs couplings known to ~6-15%
ü Some channel not included yet, or with partial statistics
ü Expect more improvements in next ~2 years, also from
ATLAS+CMS combination
Marco Delmastro Twelve years with the Higgs boson 63
0.8 1 1.2 1.4 1.6
68% CL interval
γ
Z
κ
γ
κ
g
κ
µ
κ
τ
κ
b
κ
t
κ
W
κ
Z
κ
ATLAS Run 2
= 0
u.
B
=
inv.
B
1
≤
V
κ
0,
≥
u.
B
free,
inv.
B
SM prediction
Parameter value not allowed
e
ν µ
ν τ
ν u c t
Leptons Quarks
e µ τ d s b
g γ Z W H
Force carriers Higgs boson
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Expected uncertainty
γ
Z
κ
µ
κ
τ
κ
b
κ
t
κ
g
κ
Z
κ
W
κ
γ
κ
9.8
4.3
1.9
3.7
3.4
2.5
1.5
1.7
1.8
6.4
7.2 1.7
1.7
3.8 1.0
1.5
0.9 0.8
3.2
1.3 1.3
3.1
0.9 1.1
2.1
0.9 0.8
1.2
0.7 0.6
1.3
0.8 0.7
1.3
0.8 1.0
Tot Stat Exp Th
Uncertainty [%]
CMS
and
ATLAS
HL-LHC Projection
per experiment
-1
= 14 TeV, 3000 fb
s
Total
Statistical
Experimental
Theory
2% 4%
How well will we know the Higgs couplings?
• 2-4% precision expected with 2 x 3000 fb-1
Marco Delmastro Twelve years with the Higgs boson 64
arXiv:1902.00134
Marco Delmastro Twelve years with the Higgs boson 65
Can the
Higgs boson
tell us something
about new phenomena?
10.
Can Higgs properties constrain BSM phenomena today?
• Most recent approach: Effective Field Theory (EFT) interpretation
Marco Delmastro Twelve years with the Higgs boson 66
• Oi
(n) affect rates and kinematics
• STXS measurements and Higgs BR reparametrized in terms of dimension-six Wilson coefficients ci in Warsaw basis
ü Correction for modified acceptance in H → 4l and H → lνlν
ü U(3)5 flavor symmetry assumed, linearized in Wilson coefficients contribution (linear contribution ∝ Λ−2
, expected to be leading)
Can Higgs properties constrain BSM phenomena today?
Marco Delmastro Twelve years with the Higgs boson 67
EFT interpretation of Higgs couplings: ci impact
Marco Delmastro Twelve years with the Higgs boson 68
ATLAS Preliminary
√s = 13 TeV 139 fb
−1 ggH
σ VBF
σ VH
σ ttH
σ BR
0.2
0.4
0.6
0.8
1
unc.
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.02
HB
c
= 0.04
HWB
c
= 0.04
HW
c
= 0.4
uW
c
= 0.4
uB
c
= 1
HDD
c
= 0.4
W
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.04
(3)
Hq
c
= 0.2
Hd
c
= 0.2
Hu
c
= 0.2
(1)
Hq
c
= 1
(1)
Hl
c
= 1
He
c
= 1
eH
c
= 1
dH
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 1
(3)
Hl
c
= 1
ll
c’
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.01
HG
c
= 0.2
uG
c
= 1
uH
c
= 1
G
c
= 0.2
(31)
qq
c
= 0.2
qq
c
= 0.2
(1)
uu
c
= 1
(8)
qu
c
= 1
(3)
qq
c
10
H
T
0-jet, p
200
H
T
p
≤
0-jet, 0
60
H
T
1-jet, p
120
H
T
p
≤
1-jet, 60
200
H
T
p
≤
1-jet, 120 60
H
T
2-jet, p
≥
120
H
T
p
≤
2-jet, 60
≥
200
H
T
p
≤
2-jet, 120
≥
200
H
T
700, p
jj
m
≤
2-jet, 350
≥
200
H
T
, p
jj
m
≤
2-jet, 700
≥
300
H
T
200p
450
H
T
300p H
T
450p
1-jet
≤
120
jj
60
|m
jj
2-jet m
≥
120
jj
m
≤
2-jet 60
≥
200
H
T
350
p
jj
2-jet m
≥
200
H
T
700
p
jj
2-jet 350m
≥
200
H
T
1000
p
jj
2-jet 700m
≥
200
H
T
1500
p
jj
2-jet 1000m
≥
200
H
T
1500
p
jj
2-jet m
≥
75
V
T
p
≤
W
H
0
150
V
T
p
≤
W
H
75
250
V
T
p
≤
W
H
150
400
V
T
p
≤
W
H
250
V
T
p
≤
W
H
400
150
V
T
p
≤
ZH
0
250
V
T
p
≤
ZH
150
400
V
T
p
≤
ZH
250
V
T
p
≤
ZH
400 60
H
T
p
≤
0
120
H
T
p
≤
60
200
H
T
p
≤
120
300
H
T
p
≤
200
450
H
T
p
≤
300 450
H
T
p tH
ZZ
→
H
W
W
→
H
γ
γ
→
H
bb
→
H
τ
τ
→
H
Measurement
uncertainty in STXS
bin / decay channel
Relative effect of
relevant operators
EFT interpretation of Higgs couplings: ci impact
Marco Delmastro Twelve years with the Higgs boson 69
ATLAS Preliminary
√s = 13 TeV 139 fb
−1 ggH
σ VBF
σ VH
σ ttH
σ BR
0.2
0.4
0.6
0.8
1
unc.
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.02
HB
c
= 0.04
HWB
c
= 0.04
HW
c
= 0.4
uW
c
= 0.4
uB
c
= 1
HDD
c
= 0.4
W
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.04
(3)
Hq
c
= 0.2
Hd
c
= 0.2
Hu
c
= 0.2
(1)
Hq
c
= 1
(1)
Hl
c
= 1
He
c
= 1
eH
c
= 1
dH
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 1
(3)
Hl
c
= 1
ll
c’
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.01
HG
c
= 0.2
uG
c
= 1
uH
c
= 1
G
c
= 0.2
(31)
qq
c
= 0.2
qq
c
= 0.2
(1)
uu
c
= 1
(8)
qu
c
= 1
(3)
qq
c
10
H
T
0-jet, p
200
H
T
p
≤
0-jet, 0
60
H
T
1-jet, p
120
H
T
p
≤
1-jet, 60
200
H
T
p
≤
1-jet, 120 60
H
T
2-jet, p
≥
120
H
T
p
≤
2-jet, 60
≥
200
H
T
p
≤
2-jet, 120
≥
200
H
T
700, p
jj
m
≤
2-jet, 350
≥
200
H
T
, p
jj
m
≤
2-jet, 700
≥
300
H
T
200p
450
H
T
300p H
T
450p
1-jet
≤
120
jj
60
|m
jj
2-jet m
≥
120
jj
m
≤
2-jet 60
≥
200
H
T
350
p
jj
2-jet m
≥
200
H
T
700
p
jj
2-jet 350m
≥
200
H
T
1000
p
jj
2-jet 700m
≥
200
H
T
1500
p
jj
2-jet 1000m
≥
200
H
T
1500
p
jj
2-jet m
≥
75
V
T
p
≤
W
H
0
150
V
T
p
≤
W
H
75
250
V
T
p
≤
W
H
150
400
V
T
p
≤
W
H
250
V
T
p
≤
W
H
400
150
V
T
p
≤
ZH
0
250
V
T
p
≤
ZH
150
400
V
T
p
≤
ZH
250
V
T
p
≤
ZH
400 60
H
T
p
≤
0
120
H
T
p
≤
60
200
H
T
p
≤
120
300
H
T
p
≤
200
450
H
T
p
≤
300 450
H
T
p tH
ZZ
→
H
W
W
→
H
γ
γ
→
H
bb
→
H
τ
τ
→
H
Measurement
uncertainty in STXS
bin / decay channel
Relative effect of
relevant operators
O(1) effects for small
values of cHB, cHW,
cHWB
(tree level H → γγ)
VH
σ ttH
σ BR
= 0.02
HB
c
= 0.04
HWB
c
= 0.04
HW
c
= 0.4
uW
c
= 0.4
uB
c
= 1
HDD
c
= 0.4
W
c
= 0.04
(3)
Hq
c
= 0.2
Hd
c
= 0.2
Hu
c
= 0.2
(1)
Hq
c
= 1
(1)
Hl
c
= 1
He
c
= 1
eH
c
= 1
c
H → 𝛄𝛄
EFT interpretation of Higgs couplings: ci impact
Marco Delmastro Twelve years with the Higgs boson 70
ATLAS Preliminary
√s = 13 TeV 139 fb
−1 ggH
σ VBF
σ VH
σ ttH
σ BR
0.2
0.4
0.6
0.8
1
unc.
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.02
HB
c
= 0.04
HWB
c
= 0.04
HW
c
= 0.4
uW
c
= 0.4
uB
c
= 1
HDD
c
= 0.4
W
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.04
(3)
Hq
c
= 0.2
Hd
c
= 0.2
Hu
c
= 0.2
(1)
Hq
c
= 1
(1)
Hl
c
= 1
He
c
= 1
eH
c
= 1
dH
c
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 1
(3)
Hl
c
= 1
ll
c’
1
−
0.5
−
0
0.5
1
)/SM
i
B)(c
×
σ
(
∆
= 0.01
HG
c
= 0.2
uG
c
= 1
uH
c
= 1
G
c
= 0.2
(31)
qq
c
= 0.2
qq
c
= 0.2
(1)
uu
c
= 1
(8)
qu
c
= 1
(3)
qq
c
10
H
T
0-jet, p
200
H
T
p
≤
0-jet, 0
60
H
T
1-jet, p
120
H
T
p
≤
1-jet, 60
200
H
T
p
≤
1-jet, 120 60
H
T
2-jet, p
≥
120
H
T
p
≤
2-jet, 60
≥
200
H
T
p
≤
2-jet, 120
≥
200
H
T
700, p
jj
m
≤
2-jet, 350
≥
200
H
T
, p
jj
m
≤
2-jet, 700
≥
300
H
T
200p
450
H
T
300p H
T
450p
1-jet
≤
120
jj
60
|m
jj
2-jet m
≥
120
jj
m
≤
2-jet 60
≥
200
H
T
350
p
jj
2-jet m
≥
200
H
T
700
p
jj
2-jet 350m
≥
200
H
T
1000
p
jj
2-jet 700m
≥
200
H
T
1500
p
jj
2-jet 1000m
≥
200
H
T
1500
p
jj
2-jet m
≥
75
V
T
p
≤
W
H
0
150
V
T
p
≤
W
H
75
250
V
T
p
≤
W
H
150
400
V
T
p
≤
W
H
250
V
T
p
≤
W
H
400
150
V
T
p
≤
ZH
0
250
V
T
p
≤
ZH
150
400
V
T
p
≤
ZH
250
V
T
p
≤
ZH
400 60
H
T
p
≤
0
120
H
T
p
≤
60
200
H
T
p
≤
120
300
H
T
p
≤
200
450
H
T
p
≤
300 450
H
T
p tH
ZZ
→
H
W
W
→
H
γ
γ
→
H
bb
→
H
τ
τ
→
H
Measurement
uncertainty in STXS
bin / decay channel
Strong energy
growt of effect of
c(3)
Hg, c(1)
Hg, cHu, cHd
WH ZH
= 0.04
HW
c
= 0.4
uW
c
= 0.4
uB
c
= 1
HDD
c
= 0.4
W
c
= 0.04
(3)
Hq
c
= 0.2
Hd
c
= 0.2
Hu
c
= 0.2
(1)
Hq
c
= 1
(1)
Hl
c
= 1
He
c
= 1
eH
c
= 1
dH
c
= 1
(3)
Hl
c
= 1
ll
c’
= 0.01
HG
c
= 0.2
uG
c
= 1
uH
c
EFT interpretation of Higgs couplings
• Simultaneously constraining all coefficients impossible
• Fit performed in sensitive directions
ü linear combinations informed by principal component analysis
• Examples
ü c[1]
HG,uG,uH: linear comb. with strong impact on gg → H
ü c[1]
HW,HB,HWB,HDD,uW,uB,W: strong impact on H → 𝛄𝛄
ü c(3)
Hq: unique impact on VH
Marco Delmastro Twelve years with the Higgs boson 71
1
1
1
0.62 0.78
0.83 0.55
0.24
0.26
0.37
0.87
0.9
0.42
0.43
0.31
0.84
0.17
0.95
0.27
0.88
0.02
0.47
0.13
0.05
0.03
0.02
0.02
0.07
0.04
0.05
0.04
0.01
0.02
0.04
1
1
0.04
0.09
0.2 0.05 0.02 0.38 0.08 0.78 0.01 0.23 0.05 0.02 0.37
ATLAS Preliminary
p
s =13 TeV, 139 fb 1
1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
c
(
3
)
H
q
c
d
H
c
e
H
c
H
e
c
(
1
)
H
l
c
(
3
)
H
l
c
0
l
l
c
H
d
c
H
u
c
(
1
)
H
q
c
H
B
c
H
W
c
H
W
B
c
H
D
D
c
W
c
u
B
c
u
W
c
H
G
c
u
G
c
u
H
c
G
c
(
8
)
q
d
c
(
1
)
q
q
c
q
q
c
(
3
)
q
q
c
(
3
1
)
q
q
c
(
1
)
q
u
c
(
8
)
q
u
c
(
8
)
u
d
c
u
u
c
(
1
)
u
u
c
[1]
top
c
[2]
HG,uG,uH
c
[1]
HG,uG,uH
c
[3]
HW ,HB,HWB,HDD,uW ,uB,W
c
[2]
HW ,HB,HWB,HDD,uW ,uB,W
c
[1]
HW ,HB,HWB,HDD,uW ,uB,W
c
[2]
Hu,Hd,Hq(1)
c
[1]
Hu,Hd,Hq(1)
c
[1]
Hl(3),ll0
c
[1]
Hl(1),He
ceH
cdH
c(3)
Hq
0.2 0.1 0 0.1 0.2
ATLAS Preliminary
p
s =13 TeV, 139 fb 1
mH = 125.09 GeV, |yH |  2.5
SMEFT ⇤ = 1 TeV
c[1]
HW,HB,HWB,HDD,uW,uB
c(3)
Hq
c[1]
HG,uG,uH,top (⇥10)
68 % CL
95 % CL
Linear
Linear + quadratic
2 1.5 1 0.5 0 0.5 1 1.5 2
c[2]
HG,uG,uH,top
c[1]
Hu,Hd,Hq(1)
c[2]
HW,HB,HWB,HDD,uW,uB
10 8 6 4 2 0 2 4 6 8 10
c[3]
HG,uG,uH,top
c[1]
Hl(3)
,ll0
c[1]
Hl(1)
,He
(⇥0.1)
c[3]
HW,HB,HWB,HDD,uW,uB
Parameter Value
Marco Delmastro Twelve years with the Higgs boson 72
The SM
missing piece
11
.
Marco Delmastro Twelve years with the Higgs boson 73
latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit
V ( ) = V0 +
1
2
m2
HH2
+ ⌫H3
+
1
4
H4
latexit sha1_base64=GxO25Tqi7v3asrbTl+QH1XYtk3A=AAACQXicbVDLSsNAFJ3UV62vqks3g0VosZakFHUjFN24rGAf0KRlMpmmQycPZiZCCfk1N/6BO/duXCji1o2TtAttvTBw7rn3cO4cO2RUSF1/0XIrq2vrG/nNwtb2zu5ecf+gI4KIY9LGAQt4z0aCMOqTtqSSkV7ICfJsRrr25Caddx8IFzTw7+U0JJaHXJ+OKEZSUcNir1M2W2NagVfwzPSiQR2m7cB0kOsSnjXwFMZm5tTnrm3FelWvGklsMuXioCSB5SVJZVAfFkt6Tc8KLgNjDkpgXq1h8dl0Ahx5xJeYISH6hh5KK0ZcUsxIUjAjQUKEJ8glfQV95BFhxdldCTxRjANHAVfPlzBjfyti5Akx9Wy16SE5FouzlPxv1o/k6NKKqR9Gkvh4ZjSKGJQBTOOEDuUESzZVAGFO1a0QjxFHWKrQCyoEY/HLy6BTrxnntcZdo9S8nseRB0fgGJSBAS5AE9yCFmgDDB7BK3gHH9qT9qZ9al+z1Zw21xyCP6V9/wAru63E/latexit
V ( ) = µ2 †
+ ( †
)2
latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit
V ( ) = V0 +
1
2
m2
HH2
+ ⌫H3
+
1
4
H4
latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit
V ( ) = V0 +
1
2
m2
HH2
+ ⌫H3
+
1
4
H4
Can we access the Higgs self-coupling at the LHC?
• Main avenues toward self-coupling measurement at LHC
ü Direct: HH production
ü Indirect: constraints from single Higgs measurements
• HH production
ü Very low cross-section (~1000x smaller than single Higgs!)
ü Destructive interference between ggàHH processes
Marco Delmastro Twelve years with the Higgs boson 74
How to measure di-Higgs production?
Marco Delmastro Twelve years with the Higgs boson 75
Closing in on di-Higgs production!
• Limits on kλ are improving dramatically, and there is more to be exploited (VBF production,
combination of all channels and between ATLAS and CMS, …)
• Di-Higgs studies will be a central aspect of the Run 3 (and of course HL-LHC)!
Marco Delmastro Twelve years with the Higgs boson 76
Phys. Lett. B 843 (2024) 137745 Nature 607 (2022) 60
Closing in on di-Higgs production!
• Di-Higgs studies will be a central aspect of the Run 3 (and of course HL-LHC)!
Marco Delmastro Twelve years with the Higgs boson 77
arXiv:2211.01216 Nature 607 (2022) 60
-0.4  κλ  6.3 @ 95% CL -1.24  κλ  6.49 @ 95% CL
When will we finding the missing piece of the SM?
Marco Delmastro Twelve years with the Higgs boson 78
arXiv:1902.00134
-2 0 2 4 6
kl
101
102
103
s
ggF+VBF
(HH)
[fb]
Expected: kl Œ [1.1,4.3] Baseline scenario
ATLAS Preliminary
p
s = 14 TeV, 3000 fb-1
HH ! bb̄gg
Projection from Run 2 data
Expected limit (95% CL)
Expected limit ±1s
Expected limit ±2s
Theory prediction (proj.)
SM prediction
A word of hope…
We often do
better than our
projections!
… and one of caution
Sometimes projection are
optimistic, and HL-LHC will
present formidable
challenges!
ATL-PHYS-PUB-2022-001
Marco Delmastro Twelve years with the Higgs boson 79
The road ahead
12.
We have a formidable tool to understand particle physics…
• In 12 years we have measured with great precision many Higgs boson properties
ü Mass, width, CP properties…
ü Coupling properties and differential distributions…
ü Closing in on coupling to 2nd generation, rare decays, self-interaction…
ü Higgs as a tool to constrain New Physics...
• The LHC has restarted in 2022 for its Run 3 and will operate for a long time…
ü A unique opportunity to continue characterizing the Higgs sector!
Marco Delmastro Twelve years with the Higgs boson 80
G. Giudice
via F. Gianotti
Marco Delmastro Twelve years with the Higgs boson 81
Marco Delmastro Twelve years with the Higgs boson 82
Marco Delmastro Twelve years with the Higgs boson 83
Peter Higgs following the Higgs
announcement seminar on July 4 2012
Marco Delmastro Twelve years with the Higgs boson 84
More material
ei𝛑.
The Standard Model
Marco Delmastro Twelve years with the Higgs boson 85
Marco Delmastro Twelve years with the Higgs boson 86
140 150 160 170 180 190
[GeV]
t
m
80.25
80.3
80.35
80.4
80.45
80.5
[GeV]
W
M
68% and 95% CL contours
measurements
t
and m
W
Fit w/o M
measurements
H
and M
t
, m
W
Fit w/o M
measurements
t
and m
W
Direct M
σ
1
±
comb.
W
M
0.013 GeV
±
= 80.379
W
M
σ
1
±
comb.
t
m
= 172.47 GeV
t
m
= 0.46 GeV
σ
GeV
theo
0.50
⊕
= 0.46
σ
= 125 GeV
H
M
= 50 GeV
H
M
= 300 GeV
H
M
= 600 GeV
H
M
Knowing the Higgs mass values…
Marco Delmastro Twelve years with the Higgs boson 87
… allows to make precision predictions … questions us on vacuum (meta) stability
102
104
106
108
1010
1012
1014
1016
1018
1020
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
RGE scale m in GeV
Higgs
quartic
coupling
l
3s bands in
Mt = 173.1 ± 0.6 GeV HgrayL
a3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL
Mt = 171.3 GeV
asHMZL = 0.1163
asHMZL = 0.1205
Mt = 174.9 GeV
0 50 100 150 200
0
50
100
150
200
Higgs mass Mh in GeV
Top
mass
M
t
in
GeV
Instability
Non-perturbativity
Stability
Meta-stability
latexit sha1_base64=DlHlwCsSaOcMjT50pC72fY6m5ZI=AAACUnicbVJbS8MwGM3mbc5b1UdfgkPYUEc7hvoiDH3xcYK7wNqNNM26sPRCkgqj9DcK4os/xBcf1LTbQDs/CJzvfNecxA4ZFVLX3wvFtfWNza3Sdnlnd2//QDs86oog4ph0cMAC3reRIIz6pCOpZKQfcoI8m5GePb1P471nwgUN/Cc5C4nlIdenY4qRVNRIo92q2Z7QGryFl6YXDRswdYemg1yX8BTDcxib2aABd20rNup6Zhd6HiQmU4MdlMBqvklt2BhplWUiXAXLrhWwsPZIezWdAEce8SVmSIiBoYfSihGXFDOSlM1IkBDhKXLJQEEfeURYcbZpAs8U48BxwNXxJczY3xUx8oSYebbK9JCciHwsJf+LDSI5vrFi6oeRJD6eDxpHDMoApvpCh3KCJZspgDCnaleIJ4gjLNUrlJUIRv7Kq6DbqBtX9eZjs9K6W8hRAifgFFSBAa5BCzyANugADF7AB/gC34W3wmdR/ZJ5arGwqDkGf6y4+wMgLq4j/latexit
V ( ) = µ2 †
+ ( †
)2
latexit sha1_base64=F+2k6ATD6pvRrGmPi8//VSZKJC8=AAACK3icbVBJSwMxGM241rqNevQSLIIHKTOlqBeh1EuPFewCnWHIpGkbmmTGJCOUYf6PF/+KBz244NX/YbqBtj4IPN77trwwZlRpx/mwVlbX1jc2c1v57Z3dvX374LCpokRi0sARi2Q7RIowKkhDU81IO5YE8ZCRVji8GfutByIVjcSdHsXE56gvaI9ipI0U2FUe1OA19NS91Gkp9SYTO7If+qlbdCY4dxZJ5jGzoYsymHkiCezC3IDLZD6lAGaoB/aL141wwonQmCGlOq4Taz9FUlPMSJb3EkVihIeoTzqGCsSJ8tPJZRk8NUoX9iJpntBwov7uSBFXasRDU8mRHqhFbyz+53US3bvyUyriRBOBp4t6CYM6guPgYJdKgjUbGYKwpOZWiAdIIqxNvHkTgrv45WXSLBXdi2L5tlyoVGdx5MAxOAFnwAWXoAJqoA4aAINH8AzewLv1ZL1an9bXtHTFmvUcgT+wvn8AVYOjdg==/latexit
mH =
p
2 ⌫
Vanishing quartic coupling at the Planck scale? Potential not bounded?
… but interpretation more sensitive to precision on top quark mass
Running of the Higgs self coupling,
assuming SM only at high scale
arXiv:1205.6497
Eur.
Phys.
J.
C78,
675
(2018)
170 172 174 176 178 180 182
[GeV]
t
m
0
1
2
3
4
5
6
7
8
9
10
2
χ
∆
σ
1
σ
2
σ
3
measurements
t
SM fit w/o m
measurements
H
and M
t
SM fit w/o m
ATLAS [ATLAS-CONF-2017-071]
CMS [PRD 93, 072004 (2016)]
D0 [PRD 95, 112004 (2017)]
CDF [CDF 11080 (2014)]
80.34 80.36 80.38 80.4 80.42
[GeV]
W
M
0
1
2
3
4
5
6
7
8
9
10
2
χ
∆
σ
1
σ
2
σ
3
measurements
W
SM fit w/o M
measurements
H
and M
W
SM fit w/o M
LEP [arXiv:1302.3415]
Tevatron [arXiv:1204.0042]
ATLAS [EPJC 78, 110 (2018)]
… but current mH precision has little impact
λ
H𝜏𝜏
CP properties of Higgs-τ coupling with Hà𝜏𝜏
Marco Delmastro Twelve years with the Higgs boson 88
latexit sha1_base64=7qYs1If7rGSo9H9Gy/3oD4IEcHk=AAACfXicbZHLahsxFIY101vq3txmmc2hJpD0YmZK2nRTCOnGiy5SqJOAZYYzssYWljRC0hSM8Fv0ybrrq2TTasaGpkkPCH59/zlI+lUaKZzPsl9JeufuvfsPdh72Hj1+8vRZ//mLc1c3lvExq2VtL0t0XArNx154yS+N5ahKyS/K5efWv/jOrRO1/uZXhk8VzrWoBEMfUdH/QRX6BUMZvqyLMKIem3at4RO8pZVFFlTRgUB1pHSJxmBHgEpe+QOgrHZAzUJsKNASbehGuv1roE7oaw1/fRB0jkph8R42jhXzhT+EUdEfZMOsK7gt8q0YkG2dFf2fdFazRnHtmUTnJnlm/DSg9YJJvu7RxnGDbIlzPolSo+JuGrr01rAfyQyq2salPXT0+kRA5dxKlbGzzcrd9Fr4P2/S+OrjNAhtGs812xxUNRJ8De1XwExYzrxcRYHMinhXYAuMmfv4Yb0YQn7zybfF+bth/mF49PVocHK6jWOH7JGX5IDk5JickBE5I2PCyFUCyWHyKvmd7qdv0uGmNU22M7vkn0qP/wA8AcIv/latexit
LH⌧⌧ =
m⌧
⌫
⌧ (cos ⌧ ¯
⌧⌧ + sin ⌧ ¯
⌧i 5⌧) H
Effective Lagrangian forYukawa coupling to tau leptons parameterized
by CP-Even and CP-odd components
0 60 120 180 240 300 360
(degrees)
CP
φ
0.02
0.04
0.06
0.08
0.1
a.u.
even
CP odd
CP
mix
CP Z
13 TeV
Simulation
CMS
-
π
+
π
→
-
τ
+
τ  33 GeV
τ
T
p
τ
τ
H
α
2
α𝐻ττ
(CMS) = φτ (ATLAS)
Eur.
Phys.
J.
C
83
(2023)
563
JHEP
06
(2022)
012
bin
CP
*
ϕ
1
−
10
1
10
2
10
3
10
Events
Data (best-fit)
τ
τ
→
H
(best-fit)
τ
τ
→
Z )
°
= 0
τ
φ
(
τ
τ
→
H
τ
Misidentified )
°
= 90
τ
φ
(
τ
τ
→
H
Other backgrounds Uncertainty
ATLAS
-1
= 13 TeV, 139 fb
s
High
had
τ
had
τ
Boost_0 Boost_1 VBF_0 VBF_1
0 5 10 15 20 25 30
bin
CP
*
ϕ
0
1
2
Data
/
Pred.
⇡
⇡+
n⇤
n⇤+
'⇤
CP
Uses either the impact parameter direction for single-
prong taus ( ±
) or momentum for τ → ±
ρ ντ
(also for 3-prong decays with ρ →
CP properties of Higgs-τ coupling with Hà𝜏𝜏
Marco Delmastro Twelve years with the Higgs boson 89
80
− 60
− 40
− 20
− 0 20 40 60 80
[degrees]
τ
φ
0
1
2
3
4
5
6
7
ln(L)
∆
-
(68% CL)
°
16
±
= 9
obs.
τ
φ
Observed:
(68% CL)
°
28
±
= 0
exp.
τ
φ
Expected:
σ
1
σ
2
σ
3
ATLAS
-1
= 13 TeV, 139 fb
s
°90 °45 0 45 90
aHtt(degrees)
0
2
4
6
8
10
12
°
2D
log
L
CMS 137 fb°1
(13 TeV)
68.3%
95.5%
99.7%
Observed: âHtt
obs. = °1 ± 19 ±(68.3% CL)
Expected: âHtt
exp. = 0 ± 21 ±(68.3% CL)
Observed: âHtt
obs. = °1 ± 19 ±(68.3% CL)
Expected: âHtt
exp. = 0 ± 21 ±(68.3% CL)
Eur.
Phys.
J.
C
83
(2023)
563
α𝐻ττ(CMS) = φτ (ATLAS)
φ𝜏 = -1 ± 19° (21° exp)
pure CP-odd coupling
excluded at 3 σ
φ𝜏 = 9 ± 16° (28° exp)
pure CP-odd coupling
excluded at 3.4 σ
JHEP
06
(2022)
012
Hà𝜏𝜏 decay CP
Marco Delmastro Twelve years with the Higgs boson 90
⇡
⇡+
n⇤
n⇤+
'⇤
CP
⇢
⇢+
⇡0
⇡
⇡0
⇡+
'⇤
CP
⇡
⇢+
n⇤
⇡0
⇡+
'⇤
CP
Impact parameter
directional distance of closest
approach of charged particle’s
track to reconstructed PV of the
event
4-vectors boosted to the rest
frame of visible di-𝜏 Zero
Momentum Frame (e.g. two
decay charged particles)
impact parameter ρ decay plane impact parameter +
ρ decay plane
1
− 0.8
− 0.6
− 0.4
− 0.2
− 0 0.2 0.4 0.6 0.8 1
ggH
a3
f
0
1
2
3
4
5
6
7
8
9
10
ln
L
∆
2
−
+ 4l
τ
τ
Observed
Expected
68% CL
95% CL
CMS (13 TeV)
-1
138 fb
CP properties of Higgs-gluon coupling with ggF+VBF
Marco Delmastro Twelve years with the Higgs boson 91
Hgg
ATLAS: ∆Φjj ggF+VBF HàWW* CMS: ∆Φjj or MELA discriminant ggF+VBF Hà𝜏𝜏
arXiv:2109.13808
arXiv:2205.05120
0
500
1000
1500
2000
2500
3000
3500
Events
/
Bin
Observation
ggH SM H (125)x50
ggH PS H (125)x50
bkg.
τ
τ
mis-ID
h
τ
→
jet
Other
Uncertainty
(13 TeV)
-1
138 fb
CMS
h
τ
h
τ
VBF Category
0 0.2 0.4 0.6 0.8 1
ggH
0-
D
0.8
1
1.2
Obs.
/
Exp.
0 2 4 6
jj
Φ
∆
0.05
0.1
0.15
Event
fraction
CP even CP odd CP mixed
ATLAS Simulation
ν
µ
ν
e
→
WW*
→
= 13 TeV, ggF H
s
|  3.0
jj
η
∆
|
2
4
6
8
weights
/
bin
Σ
Observed
Total unc.
VBF
ggF
Other Higgs
W + jets
Z + jets
Diboson
, Wt
t
t
-1
= 13 TeV, 36.1 fb
s
ν
µ
ν
e
→
WW*
→
H
VBF SR
ATLAS
0 π π
2
jj
Φ
∆
0.6
0.8
1
1.2
1.4
Data
/
pred.
8
− 6
− 4
− 2
− 0 2 4 6 8
)
α
tan(
0
0.2
0.4
0.6
0.8
1
1.2
NLL
∆
2
σ
1
-1
=13 TeV, 36.1 fb
s
ν
µ
ν
e
→
*
WW
→
H
= 1
gg
κ
fixed to SM,
VBF
µ
ATLAS
Expected
Observed
CP-even CP-odd
interference
ggF vs VBF
ggF CP-even vs
ggF CP-odd
Hà𝜏𝜏
(combined with Hà4l)
fa3
ggH parameterizes fraction of
CP-odd BSM point-like Hgg coupling
α parameterizes CP-
even/CP-odd mixture
on Hgg coupling
shape only
consistent
with SM
consistent
with SM
Study ggF+2 jets events: jet kinematics sensitive to Hgg coupling CP properties
HàWW*
H
V
V
HVV
1
− 0.5
− 0 0.5 1
dec
CP
D
0
50
100
Events
/
bin
Total =0.5
a3
VBF+VH f
CMS (13 TeV)
-1
137 fb
 0.7
bkg
4l, Untagged, D
→
HVV, H
0 0.2 0.4 0.6 0.8 1
VH+dec
0-
D
0
2
4
6
8
Events
/
bin
CMS (13 TeV)
-1
137 fb
 0.2
bkg
4l, VH-hadronic, D
→
HVV, H
CP properties of HVV coupling (mult. prod. + Hà4l)
Marco Delmastro Twelve years with the Higgs boson 92
HVV couplings parameterized by tensor structures in scattering amplitude
fa3 parameterizes fractional
contribution of CP-odd HZZ coupling
Multiple analyses constraining
HVV couplings with ggH, VBF,
VH, ttH, tH production and
H→ττ, H→4l, H→γγ decay
H
q
q
q
q
V
V
HVV
Phys.
Rev.
D
104,
052004
(2021)
V
V
H
q
q
HVV
0 0.2 0.4 0.6 0.8 1
VBF+dec
0-
D
0
5
10
15
Events
/
bin
CMS (13 TeV)
-1
137 fb
 0.2
bkg
4l, VBF-2jet, D
→
HVV, H
SM
a3
a2
f =1
=1
Λ1
f
ZZ/Zγ*
Z+X
data
HVV, H → 4ℓ
Total VBF+VH
CMS
Zγ
Λ1
f =1
f =1
CP properties of HVV coupling (mult. prod. + Hà4l; offshell)
Marco Delmastro Twelve years with the Higgs boson 93
2
− 1.5
− 1
− 0.5
− 0 0.5 1 1.5 2
3
−
10
×
a3
f
0
2
4
6
8
10
12
14
16
18
20
ln
L
∆
2
−
+ 4l
τ
τ
Approach 2,
Observed
Expected
68% CL
95% CL
CMS (13 TeV)
-1
138 fb
0.005
− 0 0.005
a3
f
0
2
4
6
8
10
12
14
16
lnL
∆
-2
=4.1 MeV
H
Γ
(u)
H
Γ
On-shell 4l
Observed
Expected
CMS (13 TeV)
-1
140 fb
≤
68% CL
95% CL
Constraint from combined analyses
Other anomalous HVV fixed to 0
𝑓a3 = 0.20 ⨉ 10-3
+ 0.26
-0.16
Constraints from Hà4l onshell + off-shell
Other anomalous couplings floated in fits
𝑓a3 = 0.024 ⨉ 10-3
+ 0.32
-0.064
consistent
with SM consistent
with SM
Phys.
Rev.
D
104,
052004
(2021)
arXiv:2202.06923
CP properties of HVV coupling with VBF
Marco Delmastro Twelve years with the Higgs boson 94
SM Lagrangian augmented with CP-odd dim-6 operators involving Higgs and EW
gauge fields in EFT formalism
2 dedicated BDT’s (VBF vs ggF,VBF vs yy)
Approach pursued
with various decay
modes, here most
recent ATLAS Hà𝛄𝛄,
then combined with
36 fb-1
Hà𝜏𝜏
Reference
Optimal Observable
V
V
V
H
V
q̄
q
q̄
q
HVV
latexit sha1_base64=/Jv6BXMQsA/o+NcH/q5rLeyeQZA=AAACG3icbVDNS8MwHE3n15xfVY9egkPwNNox1Isw9LKDhwnuA9Za0jTdwtK0JKkwSv8PL/4rXjwo4knw4H9jtvWgmw8Cj/feL8nv+QmjUlnWt1FaWV1b3yhvVra2d3b3zP2DroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88fXU7z0QIWnM79QkIW6EhpyGFCOlJc+sO4qygGRBDi+hEwqEM4en9/U8c270LQHSFGIvaxW5Xp57ZtWqWTPAZWIXpAoKtD3z0wlinEaEK8yQlAPbSpSbIaEoZiSvOKkkCcJjNCQDTTmKiHSz2W45PNFKAMNY6MMVnKm/JzIUSTmJfJ2MkBrJRW8q/ucNUhVeuBnlSaoIx/OHwpRBFcNpUTCggmDFJpogLKj+K8QjpAtSus6KLsFeXHmZdOs1+6zWuG1Um1dFHWVwBI7BKbDBOWiCFmiDDsDgETyDV/BmPBkvxrvxMY+WjGLmEPyB8fUDcWOhsg==/latexit
˜
d =
⌫2
⇤2
cHW̃
latexit sha1_base64=M4uFoFBqhyBqorQ5jE3gGro1dPg=AAACCHicbVDLSsNAFJ3UV62vqEsXDhbBVUmkqBuh1E2XFewD2hAmk2k7dPJg5kYoIUs3/oobF4q49RPc+TdO2yxq64ELh3Pu5d57vFhwBZb1YxTW1jc2t4rbpZ3dvf0D8/CoraJEUtaikYhk1yOKCR6yFnAQrBtLRgJPsI43vpv6nUcmFY/CB5jEzAnIMOQDTgloyTVPqZs2+sCFz9JOluFbvCDUs8w1y1bFmgGvEjsnZZSj6ZrffT+iScBCoIIo1bOtGJyUSOBUsKzUTxSLCR2TIetpGpKAKSedPZLhc634eBBJXSHgmbo4kZJAqUng6c6AwEgte1PxP6+XwODGSXkYJ8BCOl80SASGCE9TwT6XjIKYaEKo5PpWTEdEEgo6u5IOwV5+eZW0Lyv2VaV6Xy3X6nkcRXSCztAFstE1qqEGaqIWougJvaA39G48G6/Gh/E5by0Y+cwx+gPj6xe9yZnQ/latexit
cHW̃ = cHB̃
latexit sha1_base64=EoJZ2cSx2/uIewql05kDoW66u/8=AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkqBuh1E2XFewD2hAmk0k7dPJgZiKEUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3Hi/hTCrL+jZKG5tb2zvl3cre/sHhkXl80pNxKgjtkpjHYuBhSTmLaFcxxekgERSHHqd9b3o39/uPVEgWRw8qS6gT4nHEAkaw0pJrVombt/sjxbhP89Zshm6R5Zo1q24tgNaJXZAaFOi45tfIj0ka0kgRjqUc2lainBwLxQins8oolTTBZIrHdKhphEMqnXxx/Ayda8VHQSx0RQot1N8TOQ6lzEJPd4ZYTeSqNxf/84apCm6cnEVJqmhElouClCMVo3kSyGeCEsUzTTARTN+KyAQLTJTOq6JDsFdfXie9y7p9VW/cN2rNVhFHGU7hDC7AhmtoQhs60AUCGTzDK7wZT8aL8W58LFtLRjFThT8wPn8ApueUIA==/latexit
cHW B̃ = 0
0.3
− 0.2
− 0.1
− 0 0.1 0.2 0.3 0.4
VBF/ggF
BDT
0
0.05
0.1
0.15
0.2
0.25
Fraction
of
events
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
0.4
− 0.3
− 0.2
− 0.1
− 0 0.1 0.2 0.3 0.4 0.5
VBF/Continuum
BDT
0
0.05
0.1
0.15
0.2
0.25
Fraction
of
events
Data sidebands
SM VBF
SM ggF
Continuum background
6
− 4
− 2
− 0 2 4 6
10
20
30
40
50
60
70
80
ln(1+S/B)
weighted
events
/
1.0
Data
VBF (SM)
Total bkg.
Syst. Uncer.
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
[118, 132] GeV
∈
γ
γ
m
TT + TL + LT
110 120 130 140 150 160
[GeV]
γ
γ
m
0
10
20
30
40
50
ln(1
+
S/B)
weighted
events
/
2.5
GeV
Data
Sig. + bkg.
Total bkg.
Continuum bkg.
6
− 4
− 2
− 0 2 4 6
OO
5
10
Data
-
bkg.
VBF (SM)
=0.06)
d
~
VBF (
=-0.06)
d
~
VBF (
CERN-EP-2022-134
68% (exp.) 95% (exp.) 68% (obs.) 95% (obs.)
˜
d (inter. only) [-0.027, 0.027] [-0.055, 0.055] [-0.011, 0.036] [-0.032, 0.059]
˜
d (inter.+quad.) [-0.028, 0.028] [-0.061, 0.060] [-0.010, 0.040] [-0.034, 0.071]
˜
d from H ! ⌧⌧ [-0.038, 0.036] - [-0.090, 0.035] -
Combined ˜
d [-0.022, 0.021] [-0.046, 0.045] [-0.012, 0.030] [-0.034, 0.057]
cHW̃ (inter. only) [-0.48, 0.48] [-0.94, 0.94] [-0.16, 0.64] [-0.53, 1.02]
cHW̃ (inter.+quad.) [-0.48, 0.48] [-0.95, 0.95] [-0.15, 0.67] [-0.55, 1.07]
CP properties of HVV coupling with VBF
Marco Delmastro Twelve years with the Higgs boson 95
most stringent
constraints on
CP-properties of
HVV coupling to
date
1
− 0.5
− 0 0.5 1
W
~
H
c
0
1
2
3
4
5
6
7
8
9
NLL
∆
×
2
Exp. stat. + syst.
Obs. stat. + syst.
68% CL
95% CL
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
γ
γ
→
VBF H
latexit sha1_base64=/Jv6BXMQsA/o+NcH/q5rLeyeQZA=AAACG3icbVDNS8MwHE3n15xfVY9egkPwNNox1Isw9LKDhwnuA9Za0jTdwtK0JKkwSv8PL/4rXjwo4knw4H9jtvWgmw8Cj/feL8nv+QmjUlnWt1FaWV1b3yhvVra2d3b3zP2DroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88fXU7z0QIWnM79QkIW6EhpyGFCOlJc+sO4qygGRBDi+hEwqEM4en9/U8c270LQHSFGIvaxW5Xp57ZtWqWTPAZWIXpAoKtD3z0wlinEaEK8yQlAPbSpSbIaEoZiSvOKkkCcJjNCQDTTmKiHSz2W45PNFKAMNY6MMVnKm/JzIUSTmJfJ2MkBrJRW8q/ucNUhVeuBnlSaoIx/OHwpRBFcNpUTCggmDFJpogLKj+K8QjpAtSus6KLsFeXHmZdOs1+6zWuG1Um1dFHWVwBI7BKbDBOWiCFmiDDsDgETyDV/BmPBkvxrvxMY+WjGLmEPyB8fUDcWOhsg==/latexit
˜
d =
⌫2
⇤2
cHW̃
0.15
− 0.1
− 0.05
− 0 0.05 0.1 0.15
d
~
0
5
10
15
20
25
NLL
∆
×
2
Exp. Comb Obs. Comb
γ
γ
→
Exp. H γ
γ
→
Obs. H
τ
τ
→
Exp. H τ
τ
→
Obs. H
68% CL
95% CL
ATLAS Preliminary
-1
= 13 TeV, 36 - 139 fb
s
CERN-EP-2022-134
Other information about the Higgs width?
• Part of Higgs width could be due to decays to undetectable particles (Hàinvisible)
ü Limits from direct searches in Hà invisible, explicitly requiring MET in the event
Marco Delmastro Twelve years with the Higgs boson 96
ATLAS: BR(H à inv)  0.11 (exp. 0.11) @ 95% CL
CMS: BR(H à inv)  0.17 (exp. 0.11) @ 95% CL
ATLAS-CONF-2020-052
Run 2
ttH
Run 2
VBF
Run 2
Combined
Run 1
Combined
Run 1+2
Combined
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
inv
→
H
B
95%
CL
upper
limit
on
Observed
Expected
σ
1
±
σ
2
±
Observed
Expected
σ
1
±
σ
2
±
Observed
Expected
σ
1
±
σ
2
±
Observed
Expected
σ
1
±
σ
2
±
Observed
Expected
σ
1
±
σ
2
±
ATLAS Preliminary
-1
= 7 TeV, 4.7 fb
s
-1
= 8 TeV, 20.3 fb
s
-1
= 13 TeV, 139 fb
s
H
𝜒
𝜒
H
𝜒 𝜒
Nucleon
1 10 2
10 3
10
[GeV]
WIMP
m
49
−
10
47
−
10
45
−
10
43
−
10
41
−
10
]
2
[cm
-nucleon
WIMP
σ
49
−
10
47
−
10
45
−
10
43
−
10
41
−
10
Preliminary
ATLAS
-1
TeV, 4.7 fb
= 7
s
-1
TeV, 20.3 fb
= 8
s
-1
TeV, 139 fb
= 13
s
Higgs Portal Other experiments
Scalar WIMP DarkSide-50
Majorana WIMP LUX
PandaX-II
Xenon1T
 0.09
inv
→
H
B
All limits at 90% CL
Limits on BR(H-inv) can be recast in term of limit
on Dark Matter production
CMS-PAS-HIG-20-003
STXS at work: H → ZZ*
1
− 0 1 2 3 4 5 6 7
SM
)
B
⋅
σ
/(
B
⋅
σ
ttH
-Lep
VH
qq2Hqq-BSM
qq2Hqq-VBF
VH
qq2Hqq-
-High
H
T
p
gg2H-
j
gg2H-2
-High
H
T
p
-
j
gg2H-1
-Med
H
T
p
-
j
gg2H-1
-Low
H
T
p
-
j
gg2H-1
-High
H
T
p
-
j
gg2H-0
-Low
H
T
p
-
j
gg2H-0
ATLAS
4l
→
ZZ*
→
H
-1
= 13 TeV, 139 fb
s
|  2.5
H
Reduced Stage 1.1 - |y
[fb]
B
⋅
σ [fb]
SM
)
B
⋅
σ
(
-value = 77%
p
17
−
26
+
25
18
−
28
+
22
4.8
−
7.9
+
0.5
52
−
64
+
150
35
±
21
16
−
21
+
38
75
±
40
12
−
16
+
9
50
±
170
80
±
50
110
±
630
55
±
170
1.3
−
1.0
+
15.4
0.4
±
16.4
0.18
±
4.20
3.5
−
2.4
+
107.6
0.6
−
0.4
+
13.8
4
±
15
27
±
127
4
±
20
18
±
119
25
±
172
40
±
550
25
±
176
1 1.2 1.4 1.6 1.8
SM
N/N
tXX
ZZ-2j
ZZ-1j
ZZ-0j
Observed: Stat+Sys SM Prediction
Observed: Stat-Only [fb]
B
⋅
σ [fb]
SM
)
B
⋅
σ
(
-value = 77%
p
17
−
26
+
25
18
−
28
+
22
4.8
−
7.9
+
0.5
52
−
64
+
150
35
±
21
16
−
21
+
38
75
±
40
12
−
16
+
9
50
±
170
80
±
50
110
±
630
55
±
170
1.3
−
1.0
+
15.4
0.4
±
16.4
0.18
±
4.20
3.5
−
2.4
+
107.6
0.6
−
0.4
+
13.8
4
±
15
27
±
127
4
±
20
18
±
119
25
±
172
40
±
550
25
±
176
Marco Delmastro Twelve years with the Higgs boson 97
Eur. Phys. J. C 81 (2021) 488
Eur. Phys. J. C 80 (2020) 957
STXS at work: H → WW*
• Precision measurements have become
a possible also for those channels
where reconstructing the final state is
not possible, e.g. HàWW*
(neutrinos, missing transverse energy)!
Marco Delmastro Twelve years with the Higgs boson 98
arXiv:2207.00338 1
− 0 1 2 3 4 5 6 7 8
SM
)
*
WW
→
H
B
⋅
σ
/ (
*
WW
→
H
B
⋅
σ
0.44
−
0.49
+
1.17 ,
0.40
−
0.45
+
0.17
−
0.20
+
( ) 0.05
±
200 GeV
≥
H
T
p
350 GeV,
≥
jj
m
,
j
-2
qqH
EW
0.36
−
0.40
+
1.14 ,
0.34
−
0.37
+
0.14
−
0.15
+
( ) 0.08
±
 200 GeV
H
T
p
1500 GeV,
≥
jj
m
,
j
-2
qqH
EW
0.45
−
0.52
+
1.18 ,
0.41
−
0.45
+
0.19
−
0.25
+
( ) 0.07
±
 200 GeV
H
T
p
 1500 GeV,
jj
m
≤
, 1000
j
-2
qqH
EW
0.58
−
0.63
+
0.56 ,
0.48
−
0.53
+
0.34
−
0.35
+
( ) 0.07
±
 200 GeV
H
T
p
 1000 GeV,
jj
m
≤
, 700
j
-2
qqH
EW
0.57
−
0.57
+
0.05 ,
0.38
−
0.42
+
0.41
−
0.39
+
( ) 0.07
±
 200 GeV
H
T
p
 700 GeV,
jj
m
≤
, 350
j
-2
qqH
EW
0.83
−
0.87
+
2.11 ,
0.66
−
0.68
+
0.51
−
0.55
+
( ) 0.26
±
200 GeV
≥
H
T
p
,
ggH
0.87
−
0.89
+
1.59 ,
0.44
−
0.44
+
0.76
−
0.78
+
( ) 0.22
±
 200 GeV
H
T
p
,
j
-2
ggH
0.77
−
0.80
+
1.46 ,
0.62
−
0.63
+
0.47
−
0.49
+
( ) 0.19
±
 200 GeV
H
T
p
≤
, 120
j
-1
ggH
0.48
−
0.48
+
0.58 ,
0.32
−
0.32
+
0.36
−
0.36
+
( ) 0.15
±
 120 GeV
H
T
p
≤
, 60
j
-1
ggH
0.59
−
0.57
+
0.82 ,
0.30
−
0.30
+
0.51
−
0.49
+
( ) 0.14
±
 60 GeV
H
T
p
,
j
-1
ggH
0.16
−
0.16
+
1.21 ,
0.08
−
0.08
+
0.13
−
0.14
+
( ) 0.07
±
 200 GeV
H
T
p
,
j
-0
ggH
Total ( Stat. Syst. ) SM Unc.
Total
Statistical Unc.
Systematic Unc.
SM Prediction
ATLAS
1
−
= 13 TeV, 139 fb
s
ν
µ
ν
e
→
*
WW
→
H
-value = 53%
p
500
1000
1500
2000
2500
3000
3500
4000
Events
/
10
GeV
Data Uncertainty
ggF
H VBF
H
H
Other Wt
/
t
t
WW *
γ
Z/
Mis-Id )
V
(
VV
Other
ATLAS
-1
= 13 TeV, 139 fb
s
ν
µ
ν
e
→
WW*
→
H
=0
jet
N
ggF SR,
0.6
0.8
1
1.2
1.4
Data
/
Pred.
50 100 150 200 250
[GeV]
T
m
0
100
200
300
400
500
600
Bkg.
−
Total
H → 𝛄𝛄 and H → ZZ*: differential and fiducial cross-sections
Marco Delmastro Twelve years with the Higgs boson 99
0
10
20
30
40
50
[pb]
σ
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
γ
γ
Æ
H
*,
ZZ
Æ
H
*
ZZ
Æ
H
γ
γ
Æ
H
Combination
Systematic Uncertainty
Total Uncertainty
XH
=1.47, +
K
MG5 FxFx
XH
=1, +
K
STWZ,BLPTW
XH
=1, +
K
GoSam
XH
=1, +
K
Sherpa+MCFM+OpenLoops
XH
=1.1, +
K
NNLOPS
tH
+
H
b
b
+
H
t
t
=VBF+VH+
XH
=0
jets
N =1
jets
N =2
jets
N 3
≥
jets
N
jets
N
0.5
1
1.5
Theory/Data
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
)[pb/GeV]
H
T
p
/d(
σ
d
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
γ
γ
Æ
H
*,
ZZ
Æ
H
*
ZZ
Æ
H
γ
γ
Æ
H
Combination
Systematic Uncertainty
Total Uncertainty
XH
=1.47, +
K
MG5 FxFx
XH
=1.14, +
K
ResBos2
XH
=1, +
K
SCETlib
XH
=1, +
K
RadiSH
XH
=1.1, +
K
NNLOPS
tH
+
H
b
b
+
H
t
t
=VBF+VH+
XH
0 10 20 30 45 60 80 120 200 300 650 1000
[GeV]
H
T
p
0.5
1
1.5
2
Theory/Data
ATLAS-CONF-2022-002
H → 𝛄𝛄 and H → ZZ*: inclusive cross-sections
Marco Delmastro Twelve years with the Higgs boson 100
7 8 9 10 11 12 13 14
[TeV]
s
0
10
20
30
40
50
60
70
80
90
100
[pb]
H
→
pp
σ
ATLAS = 125.09 GeV)
H
m
,
H
→
pp
(
σ
SM
QCD scale uncertainty
)
s
α
PDF+
⊕
(scale
Total uncertainty
γ
γ
→
H l
4
→
*
ZZ
→
H
l
4
→
H
+
γ
γ
→
H
Combined
-1
= 7 TeV, 4.5 fb
s
-1
= 8 TeV, 20.3 fb
s
-1
= 13 TeV, 139 fb
s
-1
= 13.6 TeV, 29.0-31.4 fb
s
Eur. Phys. J. C 84 (2024) 78
[GeV]
T
H
p
500 1000 1500
(SM)
σ
/
σ
0
20
40
60
80
95% C.L. Upper Limit
Fit
ATLAS
-1
= 13 TeV, 136 fb
s
Reaching the highest pT
H with Hàbb
• Jets substructure with 1 or 2 b-tags
• Fiducial cross-section (mostly ggF)
• Can be recasted as STXS
• Highest pT
H
most sensitive to BSM effects
Marco Delmastro Twelve years with the Higgs boson 101
0.2
0.4
0.6
0.8
1
1.2
3
10
×
Events
/
10
GeV
Data
=18)
µ
(
4
T
H, p
Z
W
Top
Multijet
Signal + Background
ATLAS
-1
= 13 TeV, 136 fb
s
TeV
1

T
SRL, p
0
100
Data-Multijet
σ
1
±
Multijet
80 100 120 140 160 180 200
Jet mass [GeV]
50
−
0
50
Data-bkg
σ
1
±
Multijet, Top, W  Z
arXiv:2111.08340
pT
H
 1TeV 800 GeV  pT
H
 1.2 TeV
JHEP12(2020)085
Other rare Higgs decays within reach?
Marco Delmastro Twelve years with the Higgs boson 102
Imma Riu @ LHCP 2021
[GeV]
γ
Z
m
40
50
60
70
80
weights
/
GeV
∑
Data
Sig+Bkg Fit
Bkg
ATLAS
-1
= 13 TeV, 139 fb
s
All categories
) weighted sum
68
B
/
68
S
ln(1+
115 120 125 130 135 140 145
[GeV]
γ
Z
m
4
−
2
−
0
2
4
w
-
Bkg
∑
Other rare Higgs decays within reach?
• SU(2)L symmetry relates the HWW, HZZ, Hyy and HZy interactions
ü If New Physics respects SU(2)L, effect correlated in all four channels
ü Important to observed and measure also HàZy
Marco Delmastro Twelve years with the Higgs boson 103
µ = 2.4 ± 0.9
Significance: 2.7 σ
(1.2 expected)
µ = 2.0 ± 0.9
Significance: 2.2 σ
(1.2 expected)
JHEP 05 (2023) 233 Phys. Lett. B 809 (2020) 135754
Phys. Rev. Lett. 132 (2024) 021803
µ = 2.2 ± 0.7
Significance: 3.4 σ
How well should we know the Higgs couplings?
Marco Delmastro Twelve years with the Higgs boson 104
Sally Dawson
More tools at hand! Constraining κλ with single-Higgs
Marco Delmastro Twelve years with the Higgs boson 105
• Single Higgs boson productions and decays as well as kinematics sensitive to the self-coupling through EW corrections
arXiv:2211.01216
4
- 2
- 0 2 4 6 8 10 12
b
κ
10
-
0
10
20
30
40
c
κ
ATLAS Preliminary
γ
γ
Æ
H
,
ZZ*
Æ
H
-1
= 13 TeV, 139 fb
s
68% CL
95% CL
Standard Model
ZZ*
Æ
H
Obs.
γ
γ
Æ
H
Obs.
Obs. Combination
Direct Hàcc search is not the only tool…
• Charm quark contributes to ggF loop, modification to Higgs-charm coupling can alter pT
H
• Analogous effect on quark-initiated production of the Higgs boson
• Shape of differential pTH cross-section can be interpreted in term of Higgs-charm coupling
Marco Delmastro Twelve years with the Higgs boson 106
ATLAS-CONF-2022-002
arXiv:1606.09253
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
)[pb/GeV]
H
T
p
/d(
σ
d
ATLAS Preliminary
-1
= 13 TeV, 139 fb
s
γ
γ
Æ
H
*,
ZZ
Æ
H
*
ZZ
Æ
H
γ
γ
Æ
H
Combination
Systematic Uncertainty
Total Uncertainty
XH
=1.47, +
K
MG5 FxFx
XH
=1.14, +
K
ResBos2
XH
=1, +
K
SCETlib
XH
=1, +
K
RadiSH
XH
=1.1, +
K
NNLOPS
tH
+
H
b
b
+
H
t
t
=VBF+VH+
XH
0 10 20 30 45 60 80 120 200 300 650 1000
[GeV]
H
T
p
0.5
1
1.5
2
Theory/Data
Is it the Standard Model Higgs potential?
• How the Higgs potential is realized in Nature can provide important answers to many
open points in our understanding of Nature…
ü e.g. BSM scenarios of Higgs sector, electroweak phase transition in the SM, baryogenesis…
Marco Delmastro Twelve years with the Higgs boson 107
modified Higgs self-
coupling needed for
strong 1st order transition
in electroweak symmetry
breaking which allows
baryogenesis
Different models predicts different potential shape Evolution of Higgs potential could explain matter/antimatter
asymmetry via electroweak baryogenesis
arXiv:1511.03969
Phys. Rev. D 101, 075023 (2020)
Higgs at FC-ee
Marco Delmastro Twelve years with the Higgs boson 108
L = 5 ab-1
ZH = 106
VBF = 2x104
L = 1.5 ab-1
ZH = 2.5x105
VBF = 5x104

Living with a pre-teen Higgs boson. 12 years with the Higgs boson, and the next 12 years: a tale in 12 chapters.

  • 1.
    Marco Delmastro 1 Universitéde Genève, 8/5/2024 (12 years with the Higgs boson, and the next 12 years) Living with a pre-teen Higgs boson Marco Delmastro A tale in 12 chapters Twelve years with the Higgs boson Calvin and Hobbes characters copyright by Bill Watterson and Universal Press Syndicate
  • 2.
    Marco Delmastro Twelveyears with the Higgs boson 2 Peter Higgs (29 May 1929 – 8 April 2024)
  • 3.
    Marco Delmastro Twelveyears with the Higgs boson 3 Why the Higgs boson? 1.
  • 4.
    A fundamental question MarcoDelmastro Twelve years with the Higgs boson 4 How do elementary particles get mass?
  • 5.
    This is nota QFT lecture… Marco Delmastro Twelve years with the Higgs boson 5 All microscopic phenomena seems to be well described by a remarkably simple theory (that we continue to call “model” only for historical reasons...) <latexit sha1_base64="t7jABaN4vfTdPKJHm4B2gXRZMQ0=">AAACvnicdVFba9swGJXdXTrv0mx73ItYGLQsGF9ycRiDbHvJwwYdW9pCbIysKK4W+YIklwahPznYw/7NFNcPW9p9IDico+873yWrGRXS835b9sG9+w8eHj5yHj95+uyo9/zFmagajskCV6ziFxkShNGSLCSVjFzUnKAiY+Q823za6edXhAtald/ltiZJgfKSrilG0lBp71dcIHmJEVOfdapiSa4lL9S3L1rD99C5U8xRkxOtjx0Vt/5LnmeJ8txxGIS+N/DccDoOI9+AaBQGk0jHtaCpoloPugzFyUp/SJE+gW//YzKneS6MyZ5HFA2nwdSUnoy8sb8DwWg8Gk31XA9MwUFrRU/SXt9zvTbgbeB3oA+6OE17P+NVhZuClBIzJMTS92qZKMQlxYxoJ24EqRHeoJwsDSxRQUSi2tY0fGOYFVxX3LxSwpb9O0OhQohtkZmfu1HFvrYj79KWjVxHiaJl3UhS4hujdcOgrODulnBFOcGSbQ1AmFPTK8SXiCMszcUdswR/f+Tb4Cxw/bE7/Drszz526zgEr8BrcAx8MAEzMAenYAGw9c5C1g9rY8/stV3Y1c1X2+pyXoJ/wr7+A/i81Qs=</latexit> LSM = Lgauge( i, Aa) + LHiggs(H, Aa, i) massless particles interact by exchanges of forces carried by massless gauge bosons. QFT describes free fields, interactions generated by gauge symmetries (thus renormalizable) mass terms cannot be directly added without breaking theory gauge invariance (i.e. mass is not a fundamental property, rather an emerging phenomenon) Theory would not make sense without a Higgs field (or something similar) responsible for spontaneous symmetry breaking and mass generation…
  • 6.
    Marco Delmastro Twelveyears with the Higgs boson 6 An idea from 1964 2.
  • 7.
    What’s hot inin physics in 1964? Marco Delmastro Twelve years with the Higgs boson 7 Quark model
  • 8.
    What’s hot inin physics in 1964? Marco Delmastro Twelve years with the Higgs boson 8 Observation of CP-violation
  • 9.
    The Brout-Englert-Higgs mechanismis also proposed… Marco Delmastro Twelve years with the Higgs boson 9 14 citations in the first 5 years 18 citations in the first 5 years 11 citations in the first 5 years 23 citations in the first 5 years … and barely noticed!
  • 10.
    It would take10 more years to become “mainstream”… Marco Delmastro Twelve years with the Higgs boson 10 1967 Photon remains massless Electroweak Symmetry Breaking incorporated into Standard Model 1967 1971-72 Standard Model is renormalizable
  • 11.
    Marco Delmastro Twelveyears with the Higgs boson 11 A closer look to the SM Lagrangian 3.
  • 12.
    Marco Delmastro Twelveyears with the Higgs boson 12
  • 13.
    Marco Delmastro Twelveyears with the Higgs boson 13 “This equation neatly sums up our current understanding of fundamental particles and forces” understanding = knowledge? understanding = hypothesis?
  • 14.
    Gauge sector Marco DelmastroTwelve years with the Higgs boson 14 This part is very well known (one could even say since the discovery of Maxwell equations in 1880), elegant and very well experimentally verified! understanding = knowledge
  • 15.
    Electro-weak symmetry breaking MarcoDelmastro Twelve years with the Higgs boson 15 Still a gauge interaction (nothing new, one might be tempted to say…), only this time between bosons and a scalar field! Nothing like this directly observed before 2012 (but tested before by precision electroweak interactions) Experimentally observed in 2012 with Higgs boson discovery… …this term could not exist without a v.e.v.
  • 16.
    Fermion masses via Yukawainteraction Marco Delmastro Twelve years with the Higgs boson 16 Before 2012 this term was almost a conjecture… and even after the discovery in 2012, it remains an “anomalous” term (it’s not a gauge interaction, and no interaction with this structure has ever been observed in nature) understanding = hypothesis Is the Higgs boson responsible for the EW symmetry breaking also responsible for the masses of fermions? Is the Higgs boson responsible for the masses of all fermions?
  • 17.
    Higgs potential Marco DelmastroTwelve years with the Higgs boson 17 It defines all characteristics of Higgs field and defines Higgs self- interaction properties. Nothing like this has ever been observed in nature Is the shape of the Higgs potential that postulated by the Standard Model? <latexit sha1_base64="BBVZUPbRYadmWj7o4wIXeYEGuaw=">AAACKnicbVDLSgMxFM34rPU16tJNsAgtYpkpRd0IVTcuK9gHdKYlk8lMQzMPkoxQhn6PG3/FTRdKceuHmGlnoa0HAifn3HuTe5yYUSENY6atrW9sbm0Xdoq7e/sHh/rRcVtECcekhSMW8a6DBGE0JC1JJSPdmBMUOIx0nNFD5ndeCBc0Cp/lOCZ2gPyQehQjqaSBftcuW80hrcBbeAmtIOnXYHbvWy7yfcIzDi+gxdREF8Hyslfp1wZ6yagac8BVYuakBHI0B/rUciOcBCSUmCEheqYRSztFXFLMyKRoJYLECI+QT3qKhiggwk7nq07guVJc6EVcnVDCufq7I0WBEOPAUZUBkkOx7GXif14vkd6NndIwTiQJ8eIhL2FQRjDLDbqUEyzZWBGEOVV/hXiIOMJSpVtUIZjLK6+Sdq1qXlXrT/VS4z6PowBOwRkoAxNcgwZ4BE3QAhi8gnfwAT61N22qzbSvRemalvecgD/Qvn8Av9ukfw==</latexit> V ( ) = µ2 † + ( † )2
  • 18.
    A couple ofthings about the Higgs potential… Marco Delmastro Twelve years with the Higgs boson 18 <latexit sha1_base64="BBVZUPbRYadmWj7o4wIXeYEGuaw=">AAACKnicbVDLSgMxFM34rPU16tJNsAgtYpkpRd0IVTcuK9gHdKYlk8lMQzMPkoxQhn6PG3/FTRdKceuHmGlnoa0HAifn3HuTe5yYUSENY6atrW9sbm0Xdoq7e/sHh/rRcVtECcekhSMW8a6DBGE0JC1JJSPdmBMUOIx0nNFD5ndeCBc0Cp/lOCZ2gPyQehQjqaSBftcuW80hrcBbeAmtIOnXYHbvWy7yfcIzDi+gxdREF8Hyslfp1wZ6yagac8BVYuakBHI0B/rUciOcBCSUmCEheqYRSztFXFLMyKRoJYLECI+QT3qKhiggwk7nq07guVJc6EVcnVDCufq7I0WBEOPAUZUBkkOx7GXif14vkd6NndIwTiQJ8eIhL2FQRjDLDbqUEyzZWBGEOVV/hXiIOMJSpVtUIZjLK6+Sdq1qXlXrT/VS4z6PowBOwRkoAxNcgwZ4BE3QAhi8gnfwAT61N22qzbSvRemalvecgD/Qvn8Av9ukfw==</latexit> V ( ) = µ2 † + ( † )2 <latexit sha1_base64="80N4xcst4+16Xy1xtBczLyHshr8=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CiBYWQRvLCOZDkjPsbfaSJbt7x+6eEI78ChsLRWz9OXb+GzfJFZr4YODx3gwz84KYM21c99vJra1vbG7ltws7u3v7B8XDo5aOEkVok0Q8Up0Aa8qZpE3DDKedWFEsAk7bwfhm5refqNIskvdmElNf4KFkISPYWOmhJ5LHCrpCbr9YcsvuHGiVeBkpQYZGv/jVG0QkEVQawrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtlVhQ7afzg6fozCoDFEbKljRorv6eSLHQeiIC2ymwGellbyb+53UTE176KZNxYqgki0VhwpGJ0Ox7NGCKEsMnlmCimL0VkRFWmBibUcGG4C2/vEpalbJXK1fvqqX6dRZHHk7gFM7Bgwuowy00oAkEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx8oAY9X</latexit> µ2 < 0 <latexit sha1_base64="6PqXgsjNoBhoamJZl5E4cuWvJV4=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdSdOOygn3AdCiZTKYNzSRDkhHK0M9w40IRt36NO//GtJ2Fth4IHM45l9x7wpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpaZIrRNJJeqF2JNORO0bZjhtJcqipOQ0244vpv53SeqNJPi0UxSGiR4KFjMCDZW8vvcRiOMbpA7qNbcujsHWiVeQWpQoDWofvUjSbKECkM41tr33NQEOVaGEU6nlX6maYrJGA+pb6nACdVBPl95is6sEqFYKvuEQXP190SOE60nSWiTCTYjvezNxP88PzPxdZAzkWaGCrL4KM44MhLN7kcRU5QYPrEEE8XsroiMsMLE2JYqtgRv+eRV0rmoe5f1xkOj1rwt6ijDCZzCOXhwBU24hxa0gYCEZ3iFN8c4L86787GIlpxi5hj+wPn8Aec2kFw=</latexit> > 0 The potential is symmetric under rotations in Φ space It has a minimum which is not at <Φ>=0 known as the vacuum expectation value (vev) v that defines the electroweak scale <latexit sha1_base64="31IS0dPFHrmngnacU6nYltdgeZc=">AAACLHicbVBNSysxFM2oz4/6nq/q0k2wCG9VZqT0uRFEF7pUsK3QKSWT3qnBJDMmd8QS5ge5eX/lgbhQxK2/w7QW8etA4OSce29yT5JLYTEMH4KZ2bkf8wuLS5Xln79WfldX19o2KwyHFs9kZs4SZkEKDS0UKOEsN8BUIqGTXByM/c4VGCsyfYqjHHqKDbVIBWfopX71INYF3aVxahh3sSpKF9tLgy6WfsaAleWbqfqd0g3H9+1Gk8YI12iUO4R22a/Wwno4Af1KoimpkSmO+9XbeJDxQoFGLpm13SjMseeYQcEllJW4sJAzfsGG0PVUMwW25ybLlnTLKwOaZsYfjXSivu9wTFk7UomvVAzP7WdvLH7ndQtMd3pO6LxA0Pz1obSQFDM6To4OhAGOcuQJ40b4v1J+znw06POt+BCizyt/Je3tetSsN04atb39aRyLZINskj8kIn/JHjkix6RFOLkh/8k9eQj+BXfBY/D0WjoTTHvWyQcEzy83e6gx</latexit> ⌫ = µ p = mW g = 246GeV The mass of the Higgs boson is not predicted by the theory! <latexit sha1_base64="w9Fmr3Xsu0VA/q0jNv8I5c43Vqw=">AAACOXicbVDLSgMxFM34rPVVdekmWAQXUmZKUTdC0U2XFewDZoYhk6ZtaJIZk4xQhvktN/6FO8GNC0Xc+gOmL9TWA4GTc+7NvTlhzKjStv1sLS2vrK6t5zbym1vbO7uFvf2mihKJSQNHLJLtECnCqCANTTUj7VgSxENGWuHgeuS37olUNBK3ehgTn6OeoF2KkTZSUKin3vgRV/ZCP3VK9hin9jzJeFCDl9BTd1Kn5czjyc/NY2ZeB2XQE0kWFIqzHrhIZgOKYIp6UHjyOhFOOBEaM6SU69ix9lMkNcWMZHkvUSRGeIB6xDVUIE6Un46XzuCxUTqwG0lzhIZj9XdHirhSQx6aSo50X817I/E/z01098JPqYgTTQSeDOomDOoIjmKEHSoJ1mxoCMKSml0h7iOJsDZh500IzvyXF0mzXHLOSpWbSrF6NY0jBw7BETgBDjgHVVADddAAGDyAF/AG3q1H69X6sD4npUvWtOcA/IH19Q0ZsakN</latexit> mH = p 2µ = p 2 ⌫
  • 19.
    Marco Delmastro Twelveyears with the Higgs boson 19 A textbook discovery 4.
  • 20.
    The Large HadronCollider Marco Delmastro Twelve years with the Higgs boson 20
  • 21.
    Higgs boson productionat the LHC Marco Delmastro Twelve years with the Higgs boson 21 [TeV] s 6 7 8 9 10 11 12 13 14 15 H+X) [pb] → (pp σ 2 − 10 1 − 10 1 10 2 10 M(H)= 125 GeV LHC HIGGS XS WG 2016 H (N3LO QCD + NLO EW) → pp qqH (NNLO QCD + NLO EW) → pp WH (NNLO QCD + NLO EW) → pp ZH (NNLO QCD + NLO EW) → pp ttH (NLO QCD + NLO EW) → pp bbH (NNLO QCD in 5FS, NLO QCD in 4FS) → pp tH (NLO QCD, t-ch + s-ch) → pp Probing Higgs Couplings at the LHC The Higgs boson at the LHC. Higgs boson production g g H t q H q q q V H V q q̄ V g g Main production channel 2 forward jets, little hadronic activity in between Tag W and Z leptonic and hadronic decays Tag 2 Higgs boson decays + Total Uncert -1 1 LHC HIGGS XS WG 2011 b b τ τ gg WW 5 main decay channels at Decay branching fractions Total Uncert -1 10 1 LHC HIGGS XS WG 2013 b b τ τ gg WW ZZ • H→bb: 58 % 5 key decay chan Tag Main production channel: gluon- gluon fusion 2 forward jets, little central hadronic activity Tag W and Z decays 6.9M 3.8 pb 520k 2.3 pb 320k 0.5 pb 70k 49 pb 4 main production modes #H σ[pb] @ 13TeV # Higgs produced in 140 fb-1 in one experiment Vector Boson Fusion 2 well-separated forward jets VH tag W and Z boson decays ttH tag 2 top quarks gluon-gluon fusion: main production mode at LHC gs at the LHC 4 HC. q H q H V q q̄ V g g H t t̄ e n Tag W and Z leptonic and Tag 2 top quarks Tag 2 top quarks Tag W and Z 2.3 pb 320k 0.5 pb 70k σ [pb] #Higgs produced during Run-2
  • 22.
    The Higgs bosonis an unstable particle Marco Delmastro Twelve years with the Higgs boson 22 [GeV] H M 80 100 120 140 160 180 200 Higgs BR + Total Uncert -4 10 -3 10 -2 10 -1 10 1 LHC HIGGS XS WG 2013 b b τ τ µ µ c c gg γ γ γ Z WW ZZ Higgs BR @ mH = 125 GeV
  • 23.
    Almost exactly 12years ago… Marco Delmastro Twelve years with the Higgs boson 23 End of 2011… … June 2012…
  • 24.
    Marco Delmastro Twelveyears with the Higgs boson 24
  • 25.
    Marco Delmastro Twelveyears with the Higgs boson 25
  • 26.
    5 σ! Marco DelmastroTwelve years with the Higgs boson 26 Fabiola Gianotti revealing the combined significance of the ATLAS Higgs searches on on July 4 2012
  • 27.
    Higgs boson discoverychannels Marco Delmastro Twelve years with the Higgs boson 27 ATLAS: PLB 716 (2012) 1-29 CMS: PLB 716 (2012) 30 W
  • 28.
    Marco Delmastro Twelveyears with the Higgs boson 28 12 years of Higgs measurements 5.
  • 29.
    A long waysince the discovery… Marco Delmastro Twelve years with the Higgs boson 29 100 110 120 130 140 150 160 Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 γ γ Æ H Data Sig+Bkg Fit Bkg (4th order polynomial) -1 Ldt=4.8fb ∫ =7 TeV, s -1 Ldt=5.9fb ∫ =8 TeV, s ATLAS =126.5 GeV) H (m [GeV] γ γ m 100 110 120 130 140 150 160 Events - Bkg -200 -100 0 100 200 [GeV] 4l m 100 150 200 250 Events/5 GeV 0 5 10 15 20 25 -1 Ldt = 4.8 fb ∫ = 7 TeV: s -1 Ldt = 5.8 fb ∫ = 8 TeV: s 4l Æ (*) ZZ Æ H Data (*) Background ZZ t Background Z+jets, t =125 GeV) H Signal (m Syst.Unc. ATLAS Phys Lett B 716 (1) 1-29 2012 2012 PDG 2012
  • 30.
    A long waysince the discovery… Marco Delmastro Twelve years with the Higgs boson 30 [GeV] γ γ m 500 1000 1500 2000 2500 Sum of Weights / GeV Data Background Signal + Background ATLAS -1 = 13 TeV, 139 fb s = 125.09 GeV H m All categories ln(1+S/B) weighted sum S = Inclusive 110 120 130 140 150 160 [GeV] γ γ m 50 − 0 50 100 Cont. Bkg. − Data JHEP 07 (2023) 088 80 90 100 110 120 130 140 150 160 170 [GeV] 4l m 0 20 40 60 80 100 120 140 160 180 Events/2.5 GeV Data Higgs (125 GeV) Z(Z*) tXX, VVV t Z+jets, t Uncertainty ATLAS 4l Æ ZZ* Æ H -1 = 13 TeV, 139 fb s Eur. Phys. J. C 80 (2020) 942 YESTERDAY
  • 31.
    A long waysince the discovery… Marco Delmastro Twelve years with the Higgs boson 31 PDG 2022
  • 32.
    12 years withthe Higgs boson, and the next 12+ years… Marco Delmastro Twelve years with the Higgs boson 32 Higgs discovery Run 2 ~140 fb-1 @ 13TeV Run 3 ~150-300 fb-1 @ 13.6TeV expected TODAY COVID Schedules are meant to be adjusted… HL-LHC ~3000 fb-1 @ 14TeV expected
  • 33.
    Marco Delmastro Twelveyears with the Higgs boson 33 How well do we know the “basic” Higgs properties? 6.
  • 34.
    Marco Delmastro Twelveyears with the Higgs boson 34 Higgs boson mass and width <latexit sha1_base64="GjAZA3sF3xFCnzOLFd0uDoAcIeU=">AAACUnicbVJbS8MwFM7mbc5b1UdfgkPYUEc7hvoiDH3xcYK7wNqNNM26sPRCkgqj9DcK4os/xBcf1LTbQDsPBD6+75zz5ZzEDhkVUtffC8W19Y3NrdJ2eWd3b/9AOzzqiiDimHRwwALet5EgjPqkI6lkpB9ygjybkZ49vU/13jPhggb+k5yFxPKQ69MxxUgqaqTRbtVsT2gN3sLYzNoNuGtbsVHXs7jQ8yC5NL1o2EhgWjc0HeS6hKcYnkOTKWcHwWpeqw0bI62ybAFXwdKvAhbRHmmvphPgyCO+xAwJMTD0UFox4pJiRpKyGQkSIjxFLhko6COPCCvOZkjgmWIcOA64Or6EGfu7IkaeEDPPVpkekhOR11LyP20QyfGNFVM/jCTx8dxoHDEoA5juFzqUEyzZTAGEOVV3hXiCOMJSvUJZLcHIj7wKuo26cVVvPjYrrbvFOkrgBJyCKjDANWiBB9AGHYDBC/gAX+C78Fb4LKpfMk8tFhY1x+BPFHd/AOCQriM=</latexit> V ( ) = µ2 † + ( † )2 <latexit sha1_base64="1fWNXo0BKyAl0MhO6RXZ6twxrvU=">AAACUHicbVFNSwMxEJ2t3/Wr6tFLsAiKUnZrUS+C6KXHCrYK3XXJptk2mM0uSVYoYX+iF2/+Di8eFE1rFb8Gknm8N8NMXqKMM6Vd99EpTU3PzM7NL5QXl5ZXVitr6x2V5pLQNkl5Kq8jrChngrY105xeZ5LiJOL0Kro9H+lXd1QqlopLPcxokOC+YDEjWFsqrPQ7O35rwHbRCeqELtpDfiwxMV5h6gUy/nhAV/ajwHj77r5bmCRs3tSLAtl7VM3tqB5Gvsgtc/C9v1F8qc2bRlipujV3HOgv8CagCpNohZUHv5eSPKFCE46V6npupgODpWaE06Ls54pmmNziPu1aKHBCVWDG+xZo2zI9FKfSHqHRmP3eYXCi1DCJbGWC9UD91kbkf1o31/FxYJjIck0F+RgU5xzpFI3cRT0mKdF8aAEmktldERlg64i2f1C2Jni/n/wXdOo177DWuGhUT88mdszDJmzBDnhwBKfQhBa0gcA9PMELvDoPzrPzVnI+Sj8zbMCPKJXfAW7NsAI=</latexit> V ( ) = V0 + 1 2 m2 HH2 + ⌫H3 + 1 4 H4 <latexit sha1_base64="w9Fmr3Xsu0VA/q0jNv8I5c43Vqw=">AAACOXicbVDLSgMxFM34rPVVdekmWAQXUmZKUTdC0U2XFewDZoYhk6ZtaJIZk4xQhvktN/6FO8GNC0Xc+gOmL9TWA4GTc+7NvTlhzKjStv1sLS2vrK6t5zbym1vbO7uFvf2mihKJSQNHLJLtECnCqCANTTUj7VgSxENGWuHgeuS37olUNBK3ehgTn6OeoF2KkTZSUKin3vgRV/ZCP3VK9hin9jzJeFCDl9BTd1Kn5czjyc/NY2ZeB2XQE0kWFIqzHrhIZgOKYIp6UHjyOhFOOBEaM6SU69ix9lMkNcWMZHkvUSRGeIB6xDVUIE6Un46XzuCxUTqwG0lzhIZj9XdHirhSQx6aSo50X817I/E/z01098JPqYgTTQSeDOomDOoIjmKEHSoJ1mxoCMKSml0h7iOJsDZh500IzvyXF0mzXHLOSpWbSrF6NY0jBw7BETgBDjgHVVADddAAGDyAF/AG3q1H69X6sD4npUvWtOcA/IH19Q0ZsakN</latexit> mH = p 2µ = p 2 ⌫ <latexit sha1_base64="z1bzfuT2pOSba8piZGnLZAmf4Ns=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrsiaiMEbSwjmAdklzA7mU2GzMyu8xDCsq2Nv2JjoYitf2Dn3zhJttDEAxcO59w7c++JUkaV9rxvp7S0vLK6Vl6vbGxube+4u3stlRiJSRMnLJGdCCnCqCBNTTUjnVQSxCNG2tHoeuK3H4hUNBF3epySkKOBoDHFSFup58JAGHgJg1ginAXc5Fmg7qXOAmbf6KM877lVr+ZNAReJX5AqKNDouV9BP8GGE6ExQ0p1fS/VYYakppiRvBIYRVKER2hAupYKxIkKs+klOTyySh/GibQlNJyqvycyxJUa88h2cqSHat6biP95XaPjizCjIjWaCDz7KDYM6gROYoF9KgnWbGwJwpLaXSEeIhuKtuFVbAj+/MmLpHVS889qp7en1fpVEUcZHIBDcAx8cA7q4AY0QBNg8AiewSt4c56cF+fd+Zi1lpxiZh/8gfP5AzLpmrE=</latexit> ⌫ = µ p
  • 35.
    How well dowe know the Higgs mass? • mH Not predicted by theory • All Higgs coupling properties depend on mH • Excellent measurements by ATLAS and CMS ü Precision depends on energy (photons, electrons) and momentum (muons) calibration Marco Delmastro Twelve years with the Higgs boson 35 110 MeV (0.09%) <latexit sha1_base64="afTg4ohr3jY2DSaxuYm93cEIb/Y=">AAACJnicbVDLSsNAFJ34rPUVdelmsAgupCSlqJtC0U2XFewDmhAm00k7dCaJMxOhhHyNG3/FjYuKiDs/xWnagrYeGDice+5jjh8zKpVlfRlr6xubW9uFneLu3v7BoXl03JZRIjBp4YhFousjSRgNSUtRxUg3FgRxn5GOP7qb1jtPREgahQ9qHBOXo0FIA4qR0pJn1lInH9ITA99N7bKV49JaJlnKvQasQUc+CpVWMujwJMs8s7QwwFWymFYCczQ9c+L0I5xwEirMkJQ924qVmyKhKGYkKzqJJDHCIzQgPU1DxIl00/zCDJ5rpQ+DSOgXKpirvztSxKUcc187OVJDuVybiv/VeokKbtyUhnGiSIhni4KEQRXBaWawTwXBio01QVhQfSvEQyQQVjrZog7BXv7yKmlXyvZVuXpfLdVv53EUwCk4AxfABtegDhqgCVoAg2fwCibg3Xgx3owP43NmXTPmPSfgD4zvH2hxoX4=</latexit> mH = p 2µ ATLAS Run 1: p s = 7-8 TeV, 25 fb°1 , Run 2: p s = 13 TeV, 140 fb°1 Total Stat. Syst. Combination Total Stat. Syst. Run 1 H ! ∞∞ Run 2 H ! ∞∞ Run 1+2 H ! ∞∞ Run 1 H ! 4` Run 2 H ! 4` Run 1+2 H ! 4` Run 1 Combined Run 2 Combined Run 1+2 Combined Phys. Rev. Lett. 131 (2023) 251802
  • 36.
    Higgs width: aproblem difficult to tackle directly! Marco Delmastro Twelve years with the Higgs boson 36 Total Higgs natural width in SM is small! ü Too small to be accessed experimentally at LHC from resonance line-shape in analysis where peak can be reconstructed… Direct measurement severely limited by detector resolution! One (old) example: ΓH < 2.4 (3.1) GeV obs. (exp.) dominated by <latexit sha1_base64="KkmEo32xE7fu1RPKHaswFM2hYGE=">AAACAXicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7EtRj0IO5CBHNA7JrmJ1MkiEzu8tMrxiW9eKvePGgiFf/wpt/4+Rx0MSChqKqm+4uPxJcg21/W5mFxaXllexqbm19Y3Mrv71T12GsKKvRUISq6RPNBA9YDTgI1owUI9IXrOEPLkZ+454pzcPgFoYR8yTpBbzLKQEjtfN77iWRkrSTSnqXuMAeQMnk5ipN2/mCXbTHwPPEmZICmqLazn+5nZDGkgVABdG65dgReAlRwKlgac6NNYsIHZAeaxkaEMm0l4w/SPGhUTq4GypTAeCx+nsiIVLrofRNpyTQ17PeSPzPa8XQPfMSHkQxsIBOFnVjgSHEozhwhytGQQwNIVRxcyumfaIIBRNazoTgzL48T+rHReekWLouFcrn0ziyaB8doCPkoFNURhVURTVE0SN6Rq/ozXqyXqx362PSmrGmM7voD6zPH0Xrl3A=</latexit> SM H ΓH = 4.07 MeV SM from Run 1 Hà𝛄𝛄 peak Eur. Phys. J. C 74 (2˚014) 3076
  • 37.
    g g H Z Z gg ! H! ZZ: g g H Z Z gg ! H ! ZZ: g g H Z Z gg ! H ! ZZ: g g H Z Z gg ! H ! ZZ: 500 1000 (GeV) ν 2l2 m 7 − 10 6 − 10 5 − 10 4 − 10 3 − 10 2 − 10 1 − 10 1 10 2 10 3 10 4 10 (fb/GeV) ν 2l2 / dm σ d ) 2 SM H signal (|H| ) 2 SM contin. (|C| ) 2 SM total (|H+C| 2 +|C| 2 |H| CMSSimulation 13 TeV ) µ (l=e, ν 2l2 → gg The Higgs boson as propagator: width from off-shell Higgs Marco Delmastro Twelve years with the Higgs boson 37 • Interference impacts both total cross section and m(VV) line-shape • Assuming on-shell and off-shell couplings are equal: ggF as an example <latexit sha1_base64="35EB4L7x+gWe4D86BPECU3LMt90=">AAACR3icbVBNa9swGJbTbc2yL6877iIWBrss2CN0vQxCe9gug5Q2HxBnQVZeNyKSbKTXY8H43/XS6277C7vs0FJ6rJKYdkv2gtDD88ErPXEmhcUg+OXVdh48fLRbf9x48vTZ8xf+y72+TXPDocdTmZphzCxIoaGHAiUMMwNMxRIG8fxoqQ++g7Ei1ae4yGCs2JkWieAMHTXxv0WJYbyIVD4pIoQfaFSRJsl7OwMpy7LcUPSdQD/RKvqZKcXK6r73nnx1ronfDFrBaug2CCvQJNV0J/7PaJryXIFGLpm1ozDIcFwwg4JLKBtRbiFjfM7OYOSgZgrsuFj1UNK3jpnSJDXuaKQr9u9EwZS1CxU7p2I4s5vakvyfNsoxORgXQmc5gubrRUkuKaZ0WSqdCgMc5cIBxo1wb6V8xlw76KpvuBLCzS9vg/6HVrjfah+3m53Dqo46eU3ekHckJB9Jh3whXdIjnJyT3+SSXHkX3h/v2rtZW2telXlF/pmadwuRDrXX</latexit> µo↵-shell µon-shell = SM on-shell vv!H!4` / g2 gluong2 V H <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> o↵-shell vv!H!4` / g2 gluong2 V <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> vv = gg <latexit sha1_base64="lk/UoFiZxdJulev7N5joDqhkknw=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+gDWWznaZLN5uwuymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YiGkg84o8ZKrfGY3JIw7JXKbsWdg6wSLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCp8VuqjGhbERD7FgqaYTaz+bnTsm5VfpkECtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qBjd+xmWSGpRssWiQCmJiMvud9LlCZsTEEsoUt7cSNqSKMmMTKtoQvOWXV0mzWvEuK9XHq3LtLo+jAKdwBhfgwTXU4AHq0AAGI3iGV3hzEufFeXc+Fq1rTj5zAn/gfP4AcaWO+w==</latexit> vv = WW, ZZ, Z , <latexit sha1_base64="SvYte+ooWphPJ1xqZFFjf5IxBcw=">AAACC3icbVDLTgIxFO3gC/E16tJNAzFxQcgMmujGhOjGJSbCEGBCOqUDDW1n0nZIyIS9G3/FjQuNcesPuPNvLAwLBU9y25Nz7k17TxAzqrTjfFu5tfWNza38dmFnd2//wD48aqookZg0cMQi2QqQIowK0tBUM9KKJUE8YMQLRrcz3xsTqWgkHvQkJj5HA0FDipE2Us8ujsfwGnpeGbbbproDxDkqw+zOzp5dcirOHHCVuAtSAgvUe/ZXtx/hhBOhMUNKdVwn1n6KpKaYkWmhmygSIzxCA9IxVCBOlJ/Od5nCU6P0YRhJU0LDufp7IkVcqQkPTCdHeqiWvZn4n9dJdHjlp1TEiSYCZw+FCYM6grNgYJ9KgjWbGIKwpOavEA+RRFib+AomBHd55VXSrFbc80r1/qJUu1nEkQcnoAjOgAsuQQ3cgTpoAAwewTN4BW/Wk/VivVsfWWvOWswcgz+wPn8AAZeZKQ==</latexit> g g Z Z gg ! ZZ: arXiv:2202.06923 <latexit sha1_base64="OziqKQ84H1WPJGVHom+THq/cc3A=">AAACFXicbZDLSgMxFIYz9VbrbdSlm2ARKmqZKUVdFl3YZQV7gc60ZNJMDU0yQ5IRytCXcOOruHGhiFvBnW9jello6w+BL/85h+T8Qcyo0o7zbWWWlldW17LruY3Nre0de3evoaJEYlLHEYtkK0CKMCpIXVPNSCuWBPGAkWYwuB7Xmw9EKhqJOz2Mic9RX9CQYqSN1bVPvVAinLqjtMA7JXgGebfaKR0bPIHeDeIcje9Td9S1807RmQgugjuDPJip1rW/vF6EE06Exgwp1XadWPspkppiRkY5L1EkRniA+qRtUCBOlJ9OthrBI+P0YBhJc4SGE/f3RIq4UkMemE6O9L2ar43N/2rtRIeXfkpFnGgi8PShMGFQR3AcEexRSbBmQwMIS2r+CvE9MjFpE2TOhODOr7wIjVLRPS+Wb8v5ytUsjiw4AIegAFxwASqgCmqgDjB4BM/gFbxZT9aL9W59TFsz1mxmH/yR9fkD0HucGQ==</latexit> 1 (m2 m2 H)2 + 2 Hm2 H
  • 38.
    0 5 1015 (MeV) H Γ 0 2 4 6 8 10 12 14 lnL ∆ -2 +4l off-shell + 4l on-shell ν 2l2 off-shell + 4l on-shell ν 2l2 4l off-shell + 4l on-shell Observed Expected CMS (13 TeV) -1 140 fb ≤ 68% CL 95% CL Measurements of the Higgs width from off-shell production Marco Delmastro Twelve years with the Higgs boson 38 Measurements in 4l and 2l2𝝼 final states and for different production modes arXiv:2202.06923 arXiv:2202.06923v1 140 fb-1 on-shell 4l 78 fb-1 off-shell 4l 138 fb-1 off-shell 2l2v ~3 σ evidence for off-shell H production CMS ΓH=3.2 +2.5 MeV -1.7 4l 0 0.5 1 1.5 2 2.5 3 3.5 4 SM H Γ / H Γ 0 2 4 6 8 10 12 14 16 18 20 ) λ -2ln( 0.5 − 0.6 + Obs-Stat. only: 1.1 0.6 − 0.7 + Obs-Sys: 1.1 0.9 − 0.8 + Exp-Stat. only: 1.0 0.9 − 0.9 + Exp-Sys: 1.0 Obs-Stat. only Obs-Sys Exp-Stat. only Exp-Sys ATLAS On + Off-shell combined -1 13 TeV, 139 fb σ 1 σ 2 ATLAS ΓH=4.5 +3.3 MeV -2.5 Phys. Lett. B 846 (2023) 138223
  • 39.
    How well willwe know the Higgs width? Marco Delmastro Twelve years with the Higgs boson 39 • Combined ATLAS + CMS width sensitivity with 3000 fb-1, based on the off-shell measurement üΓH = 4.1± 0.8 MeV • More conservative assumptions on theoretical uncertainties than Run 2 results – i.e. signal and background k-factors 1 2 3 4 5 6 7 (MeV) H Γ 0 5 10 15 q =0) ai w/ YR18 syst. uncert. (f =0) ai w/ Run 2 syst. uncert. (f =0) ai w/ Stat. uncert. only (f (13 TeV) -1 3000 fb CMS Projection 68% CL 95% CL arXiv:1902.00134 “YR18” systematics: uncertainties reduced wrt Run 2 according to the improvements expected to be reached at the end of HL-LHC e.g. theory uncertainties generally halved. See https://twiki.cern.ch/twiki/bin/view /LHCPhysics/HLHELHCCommon Systematics
  • 40.
    Studies of theHiggs CP properties Marco Delmastro Twelve years with the Higgs boson 40 Spin is property of the particle, CP of the coupling… coupling to EW vector bosons H q q q q V V HVV V V H q q HVV H V V HVV g g t̄ H t Htt coupling to fermions H𝜏𝜏 coupling to gluons Hgg H
  • 41.
    ) P f(J 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 m + 2 gg production h2 + 2 production q q h3 + 2 (gg acceptance) decay-onlydiscriminants h + 2 b + 2 h6 + 2 h7 + 2 h - 2 h9 - 2 h10 - 2 m + 2 h2 + 2 h3 + 2 h + 2 b + 2 h6 + 2 h7 + 2 h - 2 h9 - 2 h10 - 2 m + 2 h2 + 2 h3 + 2 h + 2 b + 2 h6 + 2 h7 + 2 h - 2 h9 - 2 h10 - 2 σ 1 ± Best fit Excluded at 95% CL Expected at 95% CL Expected at 68% CL CMS (7 TeV) -1 (8 TeV) + 5.1 fb -1 19.7 fb ZZ → H SM Higgs spin and CP properties Marco Delmastro Twelve years with the Higgs boson 41 • SM Higgs has spin 0 and positive (even) parity (JCP = 0++) • At the end of Run 1 we knew Higgs had spin 0… ü Spin 1 and 2 hypotheses excluded at > 99.9% CL using Hà𝛄𝛄, HàZZ* and HàWW* *| θ |cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Events / 0.1 0 50 100 150 200 250 Expected + = 2 P J Data + = 2 P J Bkg. syst. uncertainty ATLAS -1 L dt = 20.7 fb ∫ = 8 TeV s γ γ → H =0%) q q (f γγ polar angle θ* with respect to Z-axis in Collins-Soper frame Phys. Lett. B 726 (2013) 120 Phys. Rev. D 92 (2015) 012004 Example: J=2 model exclusions with HàZZ *| θ |cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Events / 0.1 0 50 100 150 200 250 Expected + = 0 P J Data + = 0 P J Bkg. syst. uncertainty ATLAS -1 L dt = 20.7 fb ∫ = 8 TeV s γ γ → H Example: Hà𝛄𝛄 spin analysis
  • 42.
    1.5 − 1 − 0.5 −0 0.5 1 1.5 2 ) α cos( t κ 2 − 1.5 − 1 − 0.5 − 0 0.5 1 1.5 2 ) α sin( t κ ATLAS -1 = 13 TeV, 139 fb s Best fit SM σ 1 σ 2 σ 3 1 − 0.5 − 0 0.5 1 1.5 t κ 1.5 − 1 − 0.5 − 0 0.5 1 1.5 t κ ∼ 68% CL 95% CL Best fit SM expected CMS (13 TeV) -1 138 fb Multilepton → H /ZZ γ γ → H /ZZ γ γ Multilepton/ → H CP properties of Higgs-top coupling with ttH Marco Delmastro Twelve years with the Higgs boson 42 Effective Lagrangian forYukawa coupling to top quarks parameterized by CP-Even and CP-odd components Two examples: JHEP 07 (2023) 092 g g t̄ H t Htt Phys. Rev. Lett. 125 (2020) 061802 ATLAS ttH Hà𝛄𝛄 pure CP-odd coupling excluded at 3.9σ CMS ttH HàML + Hà𝛄𝛄 +HàZZ pure CP-odd coupling excluded at 3.7σ |α| > 43 deg excluded @ 95% CL. |𝑓𝐻𝑡𝑡| = 0.28 (< 0.55 at 1σ) |𝑓𝐻𝑡𝑡| = (sin α)2
  • 43.
    Marco Delmastro Twelveyears with the Higgs boson 43 How well do we know the Higgs couplings? 7.
  • 44.
    Couplings to… Marco DelmastroTwelve years with the Higgs boson 44 … gauge bosons … fermions
  • 45.
    STXS: Simplified TemplateCross Sections Marco Delmastro Twelve years with the Higgs boson 45 • Cross sections per production mode in different regions of phase space ü Reduce dependency on theory ü Allow MVA analysis ü Exploit sensitivity of each channel specific region of phase space (designed for combination) ü Inclusive in decays (for now) ü Binning defined to allow better estimate of theoretical uncertainties, and easier merging when insufficient experimental sensitivity ü Largely model-independent approach to test for BSM deviations in kinematic distributions Stage 1.2 = 0-jet pHjj T ≥ 2-jet mjj [350, ∞] ≃ 2-jet ! 3-jet ! 3-jet ≃ 2-jet pH T 0 10 350 700 1000 mjj 1500 ∞ mjj [0, 350] 200 120 60 0 pH T = 1-jet pH T [0, 200] 0 ∞ 25 ∞ 0 25 gg →H pH T [200, ∞] 300 200 pH T ∞ 650 450 0.15 pHj T /pH T ! 3-jet ≃ 2-jet ! 3-jet ≃ 2-jet pHjj T pH T [0, 200] 0 25 ∞ mjj [0, 350] 0 25 ∞ pHjj T 0 60 mjj 120 350 mjj [350, ∞] EW qqH = VBF+V (→qq)H mjj 350 700 1000 1500 ∞ pH T [200, ∞] 0 25 ∞ ≥ 2-jet Stage 1.2 = 0-jet = 1-jet qq̄′ → W H 0-jet 1-jet ≥ 2-jet gg → ZH 0-jet 1-jet ≥ 2-jet qq̄ → ZH 0-jet 1-jet ≥ 2-jet V H = V (→ leptons)H 75 0 150 250 400 ∞ pV T Stage 1.2 Stage 1.2 tt̄H pH T 0 60 120 200 300 450 ∞
  • 46.
    2 − 10 1 − 10 1 10 2 10 (fb) Β obs σ Observed syst) ⊕ (stat σ 1 ± (syst) σ 1 ± SM prediction 4.0 − 3.9 + 9.4 7 − 8 + 58 5 − 6 + 13 3 − 3 + 14 0.9 − 0.9 + 2.6 3.6 − 3.6 + 3.7 0.00 − 2.72 + 0.00 0.62 − 1.06 + 0.62 0.4 − 0.5 + 1.1 0.16 − 0.19 + 0.16 0.08 − 0.10 + 0.10 1.1 − 1.2 + 1.3 1.6 − 1.8 + 3.5 0.63 − 0.64 + 0.97 0.15 − 1.08 + 0.15 1.2 − 1.2 + 1.5 0.22 − 0.24 + 0.51 0.54 − 0.68 + 0.71 0.32 − 0.37 + 0.44 0.09 − 0.12 + 0.12 0.35 − 0.41 + 0.71 0.19 − 0.24 + 0.19 0.22 − 0.26 + 0.50 0.14 − 0.17 + 0.24 0.09 − 0.11 + 0.11 0.00 − 0.08 + 0.00 0.9 − 0.7 + 1.7 | <2.5 H , |y γ γ → H STXS stage 1.2: minimal = 70% SM p = 125.38 GeV, H m H T ggH 0J low p H T ggH 0J high p H T ggH 1J low p H T ggH 1J med p H T ggH 1J high p H T 2J low p ≥ ggH H T 2J med p ≥ ggH H T 2J high p ≥ ggH < 300 H T ggH BSM 200 < p < 450 H T ggH BSM 300 < p > 450 H T ggH BSM p Hjj T p low jj VBF-like low m Hjj T p high jj VBF-like low m Hjj T p low jj VBF-like high m Hjj T p high jj VBF-like high m qqH VH-like qqH BSM < 75 V T WH lep p < 150 V T WH lep 75 < p > 150 V T WH lep p ZH lep < 60 H T ttH p < 120 H T ttH 60 < p < 200 H T ttH 120 < p < 300 H T ttH 200 < p > 300 H T ttH p tH 0 0.5 1 1.5 2 2.5 Ratio to SM 0 2 4 6 8 10 CMS (13 TeV) -1 137 fb STXS at work: H → 𝛄𝛄 Marco Delmastro Twelve years with the Higgs boson 46 JHEP 07 (2023) 088 JHEP 07 (2021) 027 2 − 0 2 4 6 8 10 SM ) γ γ B ⋅ σ )/( γ γ B ⋅ σ ( tH 300 ≥ H T ttH, p < 300 H T p ≤ ttH, 200 < 200 H T p ≤ ttH, 120 < 120 H T p ≤ ttH, 60 < 60 H T ttH, p 150 ≥ V t , p ν ν Hll/ → pp < 150 V t , p ν ν Hll/ → pp 150 ≥ V t , p ν Hl → qq < 150 V t , p ν Hl → qq 200 ≥ H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' 200 ≥ H T < 1000, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' < 200 H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' < 200 H T < 1000, p jj m ≤ 2-jets, 700 ≥ Hqq', → qq' < 200 H T < 700, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' 2-jets, VH-had ≥ Hqq', → qq' 1-jet and VH-Veto ≤ Hqq', → qq' 450 ≥ H T H, p → gg < 450 H T p ≤ H, 300 → gg < 300 H T p ≤ H, 200 → gg < 200 H T 350, p ≥ jj 2-jets, m ≥ H, → gg < 200 H T p ≤ < 350, 120 jj 2-jets, m ≥ H, → gg < 120 H T < 350, p jj 2-jets, m ≥ H, → gg < 200 H T p ≤ H, 1-jet, 120 → gg < 120 H T p ≤ H, 1-jet, 60 → gg < 60 H T H, 1-jet, p → gg < 200 H T p ≤ H, 0-jet, 10 → gg < 10 H T H, 0-jet, p → gg 1 − 0 1 2 3 4 5 6 ATLAS -1 =13 TeV, 139 fb s |<2.5 H = 125.09 GeV |y H m γ γ → H p-value = 93% Obs + Tot. Unc. Syst. unc. SM + Theo. unc. Tot. Stat. Syst. 3 − 4 + 2 3 − 4 + 1 − 1 + ( ) 0.7 − 0.9 + 1.1 0.7 − 0.9 + 0.1 − 0.2 + ( ) 0.6 − 0.8 + 1.2 0.6 − 0.8 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.6 0.5 − 0.6 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.8 0.5 − 0.6 + 0.0 − 0.1 + ( ) 0.7 − 0.8 + 0.8 0.7 − 0.8 + 0.1 − 0.1 + ( ) 0.9 − 1.1 + 0.4 0.9 − 1.1 + 0.2 − 0.2 + ( ) 0.2 − 0.9 + -0.6 0.2 − 0.9 + 0.0 − 0.1 + ( ) 0.9 − 1.1 + 1.6 0.9 − 1.1 + 0.1 − 0.1 + ( ) 0.7 − 0.8 + 1.8 0.7 − 0.8 + 0.1 − 0.2 + ( ) 0.5 − 0.6 + 1.6 0.5 − 0.6 + 0.2 − 0.3 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.35 − 0.43 + 1.19 0.30 − 0.33 + 0.19 − 0.28 + ( ) 0.6 − 0.8 + 1.4 0.6 − 0.7 + 0.2 − 0.4 + ( ) 0.6 − 0.8 + 1.2 0.5 − 0.6 + 0.2 − 0.5 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.8 − 0.9 + 0.9 0.8 − 0.8 + 0.2 − 0.3 + ( ) 1.1 − 1.4 + 2.1 1.1 − 1.4 + 0.2 − 0.4 + ( ) 0.5 − 0.5 + 0.2 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.4 − 0.4 + 1.6 0.4 − 0.4 + 0.1 − 0.2 + ( ) 0.9 − 0.9 + 1.0 0.8 − 0.8 + 0.4 − 0.3 + ( ) 0.5 − 0.5 + 1.3 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.5 − 0.5 + 0.6 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.5 − 0.5 + 1.0 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.34 − 0.38 + 1.11 0.30 − 0.30 + 0.16 − 0.22 + ( ) 0.35 − 0.36 + 1.07 0.34 − 0.34 + 0.11 − 0.14 + ( ) 0.17 − 0.18 + 1.23 0.15 − 0.15 + 0.09 − 0.10 + ( ) 0.27 − 0.28 + 0.67 0.25 − 0.25 + 0.10 − 0.13 + ( )
  • 47.
    2 − 10 1 − 10 1 10 2 10 (fb) Β obs σ Observed syst) ⊕ (stat σ 1 ± (syst) σ 1 ± SM prediction 4.0 − 3.9 + 9.4 7 − 8 + 58 5 − 6 + 13 3 − 3 + 14 0.9 − 0.9 + 2.6 3.6 − 3.6 + 3.7 0.00 − 2.72 + 0.00 0.62 − 1.06 + 0.62 0.4 − 0.5 + 1.1 0.16 − 0.19 + 0.16 0.08 − 0.10 + 0.10 1.1 − 1.2 + 1.3 1.6 − 1.8 + 3.5 0.63 − 0.64 + 0.97 0.15 − 1.08 + 0.15 1.2 − 1.2 + 1.5 0.22 − 0.24 + 0.51 0.54 − 0.68 + 0.71 0.32 − 0.37 + 0.44 0.09 − 0.12 + 0.12 0.35 − 0.41 + 0.71 0.19 − 0.24 + 0.19 0.22 − 0.26 + 0.50 0.14 − 0.17 + 0.24 0.09 − 0.11 + 0.11 0.00 − 0.08 + 0.00 0.9 − 0.7 + 1.7 | <2.5 H , |y γ γ → H STXS stage 1.2: minimal = 70% SM p = 125.38 GeV, H m H T ggH 0J low p H T ggH 0J high p H T ggH 1J low p H T ggH 1J med p H T ggH 1J high p H T 2J low p ≥ ggH H T 2J med p ≥ ggH H T 2J high p ≥ ggH < 300 H T ggH BSM 200 < p < 450 H T ggH BSM 300 < p > 450 H T ggH BSM p Hjj T p low jj VBF-like low m Hjj T p high jj VBF-like low m Hjj T p low jj VBF-like high m Hjj T p high jj VBF-like high m qqH VH-like qqH BSM < 75 V T WH lep p < 150 V T WH lep 75 < p > 150 V T WH lep p ZH lep < 60 H T ttH p < 120 H T ttH 60 < p < 200 H T ttH 120 < p < 300 H T ttH 200 < p > 300 H T ttH p tH 0 0.5 1 1.5 2 2.5 Ratio to SM 0 2 4 6 8 10 CMS (13 TeV) -1 137 fb STXS at work: H → 𝛄𝛄 Marco Delmastro Twelve years with the Higgs boson 47 arXiv:2207.00348 JHEP 07 (2021) 027 2 − 0 2 4 6 8 10 SM ) γ γ B ⋅ σ )/( γ γ B ⋅ σ ( tH 300 ≥ H T ttH, p < 300 H T p ≤ ttH, 200 < 200 H T p ≤ ttH, 120 < 120 H T p ≤ ttH, 60 < 60 H T ttH, p 150 ≥ V t , p ν ν Hll/ → pp < 150 V t , p ν ν Hll/ → pp 150 ≥ V t , p ν Hl → qq < 150 V t , p ν Hl → qq 200 ≥ H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' 200 ≥ H T < 1000, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' < 200 H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' < 200 H T < 1000, p jj m ≤ 2-jets, 700 ≥ Hqq', → qq' < 200 H T < 700, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' 2-jets, VH-had ≥ Hqq', → qq' 1-jet and VH-Veto ≤ Hqq', → qq' 450 ≥ H T H, p → gg < 450 H T p ≤ H, 300 → gg < 300 H T p ≤ H, 200 → gg < 200 H T 350, p ≥ jj 2-jets, m ≥ H, → gg < 200 H T p ≤ < 350, 120 jj 2-jets, m ≥ H, → gg < 120 H T < 350, p jj 2-jets, m ≥ H, → gg < 200 H T p ≤ H, 1-jet, 120 → gg < 120 H T p ≤ H, 1-jet, 60 → gg < 60 H T H, 1-jet, p → gg < 200 H T p ≤ H, 0-jet, 10 → gg < 10 H T H, 0-jet, p → gg 1 − 0 1 2 3 4 5 6 ATLAS -1 =13 TeV, 139 fb s |<2.5 H = 125.09 GeV |y H m γ γ → H p-value = 93% Obs + Tot. Unc. Syst. unc. SM + Theo. unc. Tot. Stat. Syst. 3 − 4 + 2 3 − 4 + 1 − 1 + ( ) 0.7 − 0.9 + 1.1 0.7 − 0.9 + 0.1 − 0.2 + ( ) 0.6 − 0.8 + 1.2 0.6 − 0.8 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.6 0.5 − 0.6 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.8 0.5 − 0.6 + 0.0 − 0.1 + ( ) 0.7 − 0.8 + 0.8 0.7 − 0.8 + 0.1 − 0.1 + ( ) 0.9 − 1.1 + 0.4 0.9 − 1.1 + 0.2 − 0.2 + ( ) 0.2 − 0.9 + -0.6 0.2 − 0.9 + 0.0 − 0.1 + ( ) 0.9 − 1.1 + 1.6 0.9 − 1.1 + 0.1 − 0.1 + ( ) 0.7 − 0.8 + 1.8 0.7 − 0.8 + 0.1 − 0.2 + ( ) 0.5 − 0.6 + 1.6 0.5 − 0.6 + 0.2 − 0.3 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.35 − 0.43 + 1.19 0.30 − 0.33 + 0.19 − 0.28 + ( ) 0.6 − 0.8 + 1.4 0.6 − 0.7 + 0.2 − 0.4 + ( ) 0.6 − 0.8 + 1.2 0.5 − 0.6 + 0.2 − 0.5 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.8 − 0.9 + 0.9 0.8 − 0.8 + 0.2 − 0.3 + ( ) 1.1 − 1.4 + 2.1 1.1 − 1.4 + 0.2 − 0.4 + ( ) 0.5 − 0.5 + 0.2 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.4 − 0.4 + 1.6 0.4 − 0.4 + 0.1 − 0.2 + ( ) 0.9 − 0.9 + 1.0 0.8 − 0.8 + 0.4 − 0.3 + ( ) 0.5 − 0.5 + 1.3 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.5 − 0.5 + 0.6 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.5 − 0.5 + 1.0 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.34 − 0.38 + 1.11 0.30 − 0.30 + 0.16 − 0.22 + ( ) 0.35 − 0.36 + 1.07 0.34 − 0.34 + 0.11 − 0.14 + ( ) 0.17 − 0.18 + 1.23 0.15 − 0.15 + 0.09 − 0.10 + ( ) 0.27 − 0.28 + 0.67 0.25 − 0.25 + 0.10 − 0.13 + ( ) • Differential measurement of pT H in ttH SM prediction 0.16 − 0.19 + 0.16 0.08 − 0.10 + 0.10 1.1 − 1.2 + 1.3 0.63 − 0.64 + 0.97 0.15 − 1.08 + 0.15 1.2 − 1.5 0.22 − 0.24 + 0.51 0.54 − 0.68 + 0.71 0.32 − 0.37 + 0.44 0.09 − 0.12 + 0.12 0.35 − 0.41 + 0.71 0.19 − 0.24 + 0.19 0.22 − 0.26 + 0.50 0.14 − 0.17 + 0.24 0.09 − 0.11 + 0.11 0.00 − 0.08 + 0.00 0.9 − 0.7 + 1.7 < 450 H T H BSM 300 < p > 450 H T ggH BSM p Hjj T p low jj VBF-like low m Hjj T p high jj BF-like low m Hjj T p low jj BF-like high m Hjj T p high jj BF-like high m qqH VH-like qqH BSM < 75 V T WH lep p < 150 V T WH lep 75 < p > 150 V T WH lep p ZH lep < 60 H T ttH p < 120 H T ttH 60 < p < 200 H T ttH 120 < p < 300 H T ttH 200 < p > 300 H T ttH p tH 0 2 4 6 8 10
  • 48.
    2 − 10 1 − 10 1 10 2 10 (fb) Β obs σ Observed syst) ⊕ (stat σ 1 ± (syst) σ 1 ± SM prediction 4.0 − 3.9 + 9.4 7 − 8 + 58 5 − 6 + 13 3 − 3 + 14 0.9 − 0.9 + 2.6 3.6 − 3.6 + 3.7 0.00 − 2.72 + 0.00 0.62 − 1.06 + 0.62 0.4 − 0.5 + 1.1 0.16 − 0.19 + 0.16 0.08 − 0.10 + 0.10 1.1 − 1.2 + 1.3 1.6 − 1.8 + 3.5 0.63 − 0.64 + 0.97 0.15 − 1.08 + 0.15 1.2 − 1.2 + 1.5 0.22 − 0.24 + 0.51 0.54 − 0.68 + 0.71 0.32 − 0.37 + 0.44 0.09 − 0.12 + 0.12 0.35 − 0.41 + 0.71 0.19 − 0.24 + 0.19 0.22 − 0.26 + 0.50 0.14 − 0.17 + 0.24 0.09 − 0.11 + 0.11 0.00 − 0.08 + 0.00 0.9 − 0.7 + 1.7 | <2.5 H , |y γ γ → H STXS stage 1.2: minimal = 70% SM p = 125.38 GeV, H m H T ggH 0J low p H T ggH 0J high p H T ggH 1J low p H T ggH 1J med p H T ggH 1J high p H T 2J low p ≥ ggH H T 2J med p ≥ ggH H T 2J high p ≥ ggH < 300 H T ggH BSM 200 < p < 450 H T ggH BSM 300 < p > 450 H T ggH BSM p Hjj T p low jj VBF-like low m Hjj T p high jj VBF-like low m Hjj T p low jj VBF-like high m Hjj T p high jj VBF-like high m qqH VH-like qqH BSM < 75 V T WH lep p < 150 V T WH lep 75 < p > 150 V T WH lep p ZH lep < 60 H T ttH p < 120 H T ttH 60 < p < 200 H T ttH 120 < p < 300 H T ttH 200 < p > 300 H T ttH p tH 0 0.5 1 1.5 2 2.5 Ratio to SM 0 2 4 6 8 10 CMS (13 TeV) -1 137 fb STXS at work: H → 𝛄𝛄 Marco Delmastro Twelve years with the Higgs boson 48 arXiv:2207.00348 JHEP 07 (2021) 027 2 − 0 2 4 6 8 10 SM ) γ γ B ⋅ σ )/( γ γ B ⋅ σ ( tH 300 ≥ H T ttH, p < 300 H T p ≤ ttH, 200 < 200 H T p ≤ ttH, 120 < 120 H T p ≤ ttH, 60 < 60 H T ttH, p 150 ≥ V t , p ν ν Hll/ → pp < 150 V t , p ν ν Hll/ → pp 150 ≥ V t , p ν Hl → qq < 150 V t , p ν Hl → qq 200 ≥ H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' 200 ≥ H T < 1000, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' < 200 H T 1000, p ≥ jj 2-jets, m ≥ Hqq', → qq' < 200 H T < 1000, p jj m ≤ 2-jets, 700 ≥ Hqq', → qq' < 200 H T < 700, p jj m ≤ 2-jets, 350 ≥ Hqq', → qq' 2-jets, VH-had ≥ Hqq', → qq' 1-jet and VH-Veto ≤ Hqq', → qq' 450 ≥ H T H, p → gg < 450 H T p ≤ H, 300 → gg < 300 H T p ≤ H, 200 → gg < 200 H T 350, p ≥ jj 2-jets, m ≥ H, → gg < 200 H T p ≤ < 350, 120 jj 2-jets, m ≥ H, → gg < 120 H T < 350, p jj 2-jets, m ≥ H, → gg < 200 H T p ≤ H, 1-jet, 120 → gg < 120 H T p ≤ H, 1-jet, 60 → gg < 60 H T H, 1-jet, p → gg < 200 H T p ≤ H, 0-jet, 10 → gg < 10 H T H, 0-jet, p → gg 1 − 0 1 2 3 4 5 6 ATLAS -1 =13 TeV, 139 fb s |<2.5 H = 125.09 GeV |y H m γ γ → H p-value = 93% Obs + Tot. Unc. Syst. unc. SM + Theo. unc. Tot. Stat. Syst. 3 − 4 + 2 3 − 4 + 1 − 1 + ( ) 0.7 − 0.9 + 1.1 0.7 − 0.9 + 0.1 − 0.2 + ( ) 0.6 − 0.8 + 1.2 0.6 − 0.8 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.6 0.5 − 0.6 + 0.1 − 0.1 + ( ) 0.5 − 0.6 + 0.8 0.5 − 0.6 + 0.0 − 0.1 + ( ) 0.7 − 0.8 + 0.8 0.7 − 0.8 + 0.1 − 0.1 + ( ) 0.9 − 1.1 + 0.4 0.9 − 1.1 + 0.2 − 0.2 + ( ) 0.2 − 0.9 + -0.6 0.2 − 0.9 + 0.0 − 0.1 + ( ) 0.9 − 1.1 + 1.6 0.9 − 1.1 + 0.1 − 0.1 + ( ) 0.7 − 0.8 + 1.8 0.7 − 0.8 + 0.1 − 0.2 + ( ) 0.5 − 0.6 + 1.6 0.5 − 0.6 + 0.2 − 0.3 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.35 − 0.43 + 1.19 0.30 − 0.33 + 0.19 − 0.28 + ( ) 0.6 − 0.8 + 1.4 0.6 − 0.7 + 0.2 − 0.4 + ( ) 0.6 − 0.8 + 1.2 0.5 − 0.6 + 0.2 − 0.5 + ( ) 0.6 − 0.7 + 0.2 0.6 − 0.7 + 0.1 − 0.1 + ( ) 0.8 − 0.9 + 0.9 0.8 − 0.8 + 0.2 − 0.3 + ( ) 1.1 − 1.4 + 2.1 1.1 − 1.4 + 0.2 − 0.4 + ( ) 0.5 − 0.5 + 0.2 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.4 − 0.4 + 1.6 0.4 − 0.4 + 0.1 − 0.2 + ( ) 0.9 − 0.9 + 1.0 0.8 − 0.8 + 0.4 − 0.3 + ( ) 0.5 − 0.5 + 1.3 0.4 − 0.5 + 0.1 − 0.1 + ( ) 0.5 − 0.5 + 0.6 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.5 − 0.5 + 1.0 0.5 − 0.5 + 0.1 − 0.2 + ( ) 0.34 − 0.38 + 1.11 0.30 − 0.30 + 0.16 − 0.22 + ( ) 0.35 − 0.36 + 1.07 0.34 − 0.34 + 0.11 − 0.14 + ( ) 0.17 − 0.18 + 1.23 0.15 − 0.15 + 0.09 − 0.10 + ( ) 0.27 − 0.28 + 0.67 0.25 − 0.25 + 0.10 − 0.13 + ( ) • Closing in on tH production ü ~10 ⨉ σtH SM excluded at 95% CL
  • 49.
    H → 𝛄𝛄as an example: Run 2 vs HL-LHC • While STXS measurement remains main current goal, traditional “production-mode” results (a.k.a. “Stage 0” STXS) still measured by more powerful decay channels and in combination • Already at Run 2 some measurement limited by systematics: more and more true in the future! Marco Delmastro Twelve years with the Higgs boson 49 0.8 0.9 1 1.1 1.2 1.3 1.4 SM x B) σ x B) / ( σ ( 0.5 − 5.2 Total Stat Syst SM ATLAS Preliminary -1 = 14 TeV, 3000 fb s |<2.5 H , |y γ γ → H Total Stat. Syst. top 0.06 ) ± 0.05 , ± ( - 0.07 + 0.08 1.00 VH ) - 0.04 + 0.05 0.08 , ± 0.09 ( ± 1.00 VBF 0.08 ) ± 0.04 , ± ( - 0.09 + 0.10 1.00 ggF+bbH 0.03 ) ± 0.02 , ± 0.04 ( ± 1.00 Projection from Run 2 data arXiv:1902.00134 2 − 1 − 0 1 2 3 4 5 6 SM H σ / H σ Total Stat. Syst. SM Preliminary ATLAS -1 = 13 TeV, 139 fb s = 125.09 GeV H , m γ γ → H Total Stat. Syst. ggF + bbH ) 0.06 0.07 ± 0.08 , ± 0.11 ( ± 1.02 VBF ) 0.16 0.18 ± 0.18 , ± ( 0.24 0.26 ± 1.34 WH ) 0.10 0.13 ± , 0.49 0.53 ± ( 0.50 0.55 ± 2.33 ZH ) 0.08 0.07 ± , 0.56 0.61 ± ( 0.57 0.61 ± -0.64 ttH + tH ) 0.07 0.09 ± , 0.23 0.25 ± ( 0.24 0.27 ± 0.92 ATLAS-CONF-2020-026
  • 50.
    Marco Delmastro Twelveyears with the Higgs boson 50 zoom on Higgs coupling to fermions PDG 2012 PDG 2022 8.
  • 51.
    Why is Yukawainteraction important? Marco Delmastro Twelve years with the Higgs boson 51 • Why is elementary mass important? Two ideas… ü Mass of quark u and d is responsible for difference of mass between neutron and proton, thus of proton stability, thus of existence of hydrogen atoms… ü Mass of electron determines Bohr radius, thus dimensions of atoms, thus all chemistry… In SMYukawa interaction between Higgs and fermions gives fermions their mass… <latexit sha1_base64="fhpCNAEU04Zb3fp5Aqq9LOaPNAo=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEgsVElVAQtSBQtjkehDaqLKcZ3Wqu0E20GKoqws/AoLAwix8gds/A1umwFajnSl43Pule89Qcyo0o7zbS0tr6yurZc2yptb2zu79t5+W0WJxKSFIxbJboAUYVSQlqaakW4sCeIBI51gfD3xOw9EKhqJO53GxOdoKGhIMdJG6tuQ9ym8hKfQCyXCWWpenkjyzFP3Ume1PO/bFafqTAEXiVuQCijQ7Ntf3iDCCSdCY4aU6rlOrP0MSU0xI3nZSxSJER6jIekZKhAnys+ml+Tw2CgDGEbSlNBwqv6eyBBXKuWB6eRIj9S8NxH/83qJDi/8jIo40UTg2UdhwqCO4CQWOKCSYM1SQxCW1OwK8QiZSLQJr2xCcOdPXiTtWtU9q9Zv65XGVRFHCRyCI3ACXHAOGuAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+APr8wfDOJnL</latexit> mi = yi⌫ p 2 <latexit sha1_base64="z1bzfuT2pOSba8piZGnLZAmf4Ns=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrsiaiMEbSwjmAdklzA7mU2GzMyu8xDCsq2Nv2JjoYitf2Dn3zhJttDEAxcO59w7c++JUkaV9rxvp7S0vLK6Vl6vbGxube+4u3stlRiJSRMnLJGdCCnCqCBNTTUjnVQSxCNG2tHoeuK3H4hUNBF3epySkKOBoDHFSFup58JAGHgJg1ginAXc5Fmg7qXOAmbf6KM877lVr+ZNAReJX5AqKNDouV9BP8GGE6ExQ0p1fS/VYYakppiRvBIYRVKER2hAupYKxIkKs+klOTyySh/GibQlNJyqvycyxJUa88h2cqSHat6biP95XaPjizCjIjWaCDz7KDYM6gROYoF9KgnWbGwJwpLaXSEeIhuKtuFVbAj+/MmLpHVS889qp7en1fpVEUcZHIBDcAx8cA7q4AY0QBNg8AiewSt4c56cF+fd+Zi1lpxiZh/8gfP5AzLpmrE=</latexit> ⌫ = µ p
  • 52.
    6 8 1012 14 16 [TeV] s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 H) [pb] t t Æ (pp σ ATLAS Theory (NLO QCD + NLO EW) Combined data Stat. only Total 1 − 0 1 2 3 4 5 6 7 H t t µ Combined 13 TeV 7+8 TeV ) b H(b t t ) - τ + τ H( t t ) γ γ H( t t H(ZZ*) t t H(WW*) t t (13 TeV) -1 (8 TeV) + 35.9 fb -1 (7 TeV) + 19.7 fb -1 5.1 fb CMS Observed syst) ⊕ (stat σ 1 ± (syst) σ 1 ± syst) ⊕ (stat σ 2 ± Coupling to top quark: direct observation of ttH in 2018! Marco Delmastro Twelve years with the Higgs boson 52 Probing Higgs Couplings at the LHC 4 The Higgs boson at the LHC. Higgs boson production g g H t q H q q q V H V q q̄ V g g H t t̄ Main production channel 2 forward jets, little hadronic activity in between Tag W and Z leptonic and hadronic decays Tag 2 top quarks Higgs boson decays [GeV] H M 100 120 140 160 180 200 Higgs BR + Total Uncert -3 10 -2 10 -1 10 1 LHC HIGGS XS WG 2011 b b τ τ c c gg γ γ γ Z WW ZZ 5 main decay channels at LHC Decay branching fractions @ mH = 125 GeV H ! bb̄ 57.7% H ! W W ⇤ 21.5% H ! ⌧⌧ 6.3% H ! ZZ⇤ 2.6% H ! 0.23% () Oct 28, 2014 6 / 29 [GeV] H M 80 100 120 140 160 180 200 Higgs BR + Total Uncert -4 10 -3 10 -2 10 -1 10 1 LHC HIGGS XS WG 2013 b b τ τ µ µ c c gg γ γ γ Z WW ZZ • H→bb: 58 % • H→WW*: 21% • H→τ+τ-: 6.3% • H→ZZ*: 2.6% • H→γγ: 0.23% 5 key decay channels Decay branching fractions for mH = 125 GeV Tag 2 top quarks Main production channel: gluon- gluon fusion 2 forward jets, little central hadronic activity Tag W and Z decays 6.9M 3.8 pb 520k 2.3 pb 320k 0.5 pb 70k 49 pb 4 main production modes σ [pb] #Higgs produced during Run-2 yt Probing Higgs Couplings at the LHC 4 The Higgs boson at the LHC. Higgs boson production g g H t q H q q q V H V q q̄ V g g H t t̄ Main production channel 2 forward jets, little hadronic activity in between Tag W and Z leptonic and hadronic decays Tag 2 top quarks Higgs boson decays [GeV] H M 100 120 140 160 180 200 Higgs BR + Total Uncert -3 10 -2 10 -1 10 1 LHC HIGGS XS WG 2011 b b τ τ c c gg γ γ γ Z WW ZZ 5 main decay channels at LHC Decay branching fractions @ mH = 125 GeV H ! bb̄ 57.7% H ! W W ⇤ 21.5% H ! ⌧⌧ 6.3% H ! ZZ⇤ 2.6% H ! 0.23% () Oct 28, 2014 6 / 29 [GeV] H M 80 100 120 140 160 180 200 Higgs BR + Total Uncert -4 10 -3 10 -2 10 -1 10 1 LHC HIGGS XS WG 2013 b b τ τ µ µ c c gg γ γ γ Z WW ZZ • H→bb: 58 % • H→WW*: 21% • H→τ+τ-: 6.3% • H→ZZ*: 2.6% • H→γγ: 0.23% 5 key decay channels Decay branching fractions for mH = 125 GeV Tag 2 top quarks Main production channel: gluon- gluon fusion 2 forward jets, little central hadronic activity Tag W and Z decays 6.9M 3.8 pb 520k 2.3 pb 320k 0.5 pb 70k 49 pb 4 main production modes σ [pb] #Higgs produced during Run-2 yt arXiv:1804.02610 CMS (Run 1 + 36 fb-1 Run 2): 5.2 σ (4.2 σ exp) arXiv:1806.00425 ATLAS: (Run 1 + 36-80 fb-1 Run 2): 6.3 σ (5.1 σ exp)
  • 53.
    Marco Delmastro Twelveyears with the Higgs boson 53
  • 54.
    m(jj) [GeV] 60 80100 120 140 160 S/(S+B) weighted entries 0 500 1000 Data b b → VH,H b b → VZ,Z S+B uncertainty CMS (13 TeV) -1 77.2 fb Coupling to bottom quark: observation of VH/Hàbb in 2018! • Difficult channel despite large BR(58%) due to large backgrounds ü VH production most sensitive à Observation in 2018! • ATLAS: 5.4σ (5.5σ) • CMS: 5.5σ (5.6σ) Marco Delmastro Twelve years with the Higgs boson 54 µ Best fit 0 1 2 3 4 5 6 7 8 9 Combined ZH WH ttH VBF ggF stat syst 0.14 ± 0.14 ± 1.04 0.16 ± 0.24 ± 0.88 0.24 ± 0.29 ± 1.24 0.37 ± 0.23 ± 0.85 1.17 ± 0.98 ± 2.53 1.30 ± 2.08 ± 2.80 CMS (13 TeV) -1 77.2 fb ≤ (8 TeV) + -1 19.8 fb ≤ (7 TeV) + -1 5.1 fb ≤ b b → H Observed syst) ⊕ (stat σ 1 ± (syst) σ 1 ± CMS: arXiv:1808.08242 ATLAS: arXiv:1808.08238 CMS: arXiv:1808.08242 qq̄′ → W H 0-jet 1-jet ≥ 2-jet gg → ZH 0-jet 1-jet ≥ 2-jet qq̄ → ZH 0-jet 1-jet ≥ 2-jet V H = V (→ leptons)H 75 0 150 250 400 ∞ pV T Stage 1.2 1 10 2 10 3 10 [fb] lep V B × b b H B × VH STXS σ ATLAS Preliminary -1 =13 TeV, 139 fb s V = W V = Z lep. (resolved + boosted) → , V b b → VH, H Observed Expected Theo. unc. Boosted (PLB 816 136204) Resolved (EPJC 81 178) Combined < 250 GeV W,t T 150 < p < 400 GeV W,t T 250 < p > 400 GeV W,t T p < 150 GeV Z,t T 75 < p < 250 GeV Z,t T 150 < p < 400 GeV Z,t T 250 < p > 400 GeV Z,t T p 0 1 2 Ratio to SM ATLAS-CONF-2021-051
  • 55.
    Coupling to 3rdgeneration leptons: Hàττ • Observation already in Run 1 ATLAS+CMS coupling combination • Now more precise measurements, bringing sensitivity to regions of the phase space less well measured by e.g. H → γγ and H → 4l ü i.e. ggF high pT H and especially VBF Marco Delmastro Twelve years with the Higgs boson 55 10 2 10 3 10 4 10 B (fb) σ Observed (stat.) σ 1 ± σ 1 ± Uncertainty in SM prediction -370 +394 2960 -552 +592 3060 -73.3 +75.3 221 -792 +864 -964 -510 +519 -756 -261 +264 1010 -47.1 +51.9 99.1 -271 +251 19.0 -24.5 +24.3 24.2 -7.90 +7.82 13.0 -515 +552 374 -46.0 +45.8 -18.9 -17.3 +17.7 32.9 -4.17 +4.40 6.41 CMS Preliminary (13 TeV) -1 137 fb Process-based τ τ → H τ τ → ggH τ τ → qqH ggH-0j/pT<200 ggH-1j/pT[0-60] ggH-1j/pT[60-120] ggH-1j/pT[120-200] ggH-2j/pT<200 ggH/pT[200,300] ggH/pT>300 qqH non-VBF topo qqH-2j/mJJ[350-700] qqH-2j/mJJ>700 qqH-2j/pT>200 3 − 2 − 1 − 0 1 2 3 4 Ratio to SM CMS-PAS-HIG-19-010 1 /. 3 ,,./ . / / ( /2 / ) ,0 . (.( /( ( 3 / ) 5(/32 ( ( ) 7 .. 2 3 / (13 ,/36 3 (1 104/ 2 ,2, (/3,),( ( 7 3 1 10 2 10 3 10 4 10 [fb] τ τ H B × i σ ATLAS -1 = 13 TeV, 139 fb s = 95 % SM p | 2.5) H cross-sections (|y τ τ → H Observed Tot. unc. Stat. unc. Expected Theo. unc. 0 2 4 Ratio to SM N(jets): (H) [GeV]: T p [GeV]: jj m 1 ≥ 1 2 ≥ 0 ≥ 0 ≥ 2 ≥ 2 ≥ 2 ≥ [60, 120] [120, 200] [200, 300] [ ∞ [300, [0, 200] ♠ [0, 350] [0, 350] [ ∞ [350, [60, 120] [ ∞ [350, qq)H → Z( → gluon fusion + gg qq)H → VBF + V( ttH JHEP 08 (2022) 175 ggF high pTH VBF high mjj
  • 56.
    Marco Delmastro Twelveyears with the Higgs boson 56 couplings to bosons established couplings to 3rd generation fermions observed couplings to 2nd generation fermion? Is the Higgs boson responsible for the EW symmetry breaking also responsible for the masses of fermions? Is the Higgs boson responsible for the masses of all fermions?
  • 57.
    Coupling to 2ndgeneration leptons: H൵ evidence in 2020! • H൵ very rare (BR ~ 2 10-4) with large resonant background from DYà µµ (S/B ~ 0.1%) Marco Delmastro Twelve years with the Higgs boson 57 JHEP 01 (2021) 148 PLB 812(2021) 135980 [GeV] µ µ m 100 200 300 400 500 600 700 Weighted Events / 2 GeV ATLAS -1 = 13 TeV, 139 fb s , ln(1 + S/B) weighted µ µ → H Data Total pdf Signal pdf Bkg. pdf 110 115 120 125 130 135 140 145 150 155 160 [GeV] µ µ m 2 − 0 2 Data - Bkg. µ = 1.2 ± 0.2 Significance: 3.0 σ (2.5 expected) µ = 1.2 ± 0.6 Significance: 2.0 σ (1.7 expected)
  • 58.
    30 − 20 − 10 −0 10 20 30 c κ 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ) c κ / L c κ - ln(L 95% CL Comb. (obs.) Comb. (exp.) 0-lepton (obs.) 1-lepton (obs.) 2-lepton (obs.) ATLAS c c → VH, H -1 = 13 TeV, 139 fb s | 8.5 at 95% CL c κ | The next frontier: coupling to 2nd generation quarks Hàcc • Very challenging channel: large backgrounds from multi-jets ü c-tagging needed to discriminate H → bb Marco Delmastro Twelve years with the Higgs boson 58 60 80 100 120 140 160 180 200 [GeV] cj m 500 − 0 500 1000 1500 2000 2500 3000 3500 Events after B-subtraction / 10 GeV Data =-9) µ ) ( c c → VH( =1.16) µ ) ( c c → VZ( =0.83) µ cq) ( → VW( B-only uncertainty 26 × ) c c → SM VH( ATLAS -1 = 13 TeV, 139 fb s 0+1+2 leptons 1 c-tag, All SR VZ,VW: 3.8 σ forVW(→cq) Eur. Phys. J. C 82 (2022) 717 limits on κc coupling ATLAS: κc = σ/σSM 8.5 (12.4 exp.) CMS: 1.1 κc 5.5 ( 3.4 exp.) Phys. Rev. Lett. 131 (2023) 061801 Zàcc: 5.7 σ
  • 59.
    2 − 1.5 − 1 −0.5 − 0 0.5 1 1.5 2 b κ 3 − 2 − 1 − 0 1 2 3 4 c κ SM σ 1 ± σ 2 ± CMS Phase-2 Projection Preliminary (14 TeV) -1 3000 fb Will we observe Hàcc in the future? • Extrapolations to HL-LHC luminosity ü Sensitivity to kc (and kb) from ATLAS VH/Hàcc and VH/Hàbb analyses Sensitivity to kc and kb from CMS pT H differential measurements Marco Delmastro Twelve years with the Higgs boson 59 2 − 1 . 5 − 1 − 0 . 5 − 0 0 . 5 1 1 . 5 2 b κ 4 − 2 − 0 2 4 6 8 1 0 c κ E x p e c t e d 6 8 % C L E x p e c t e d 9 5 % C L S M A T L A S P r e l i m i n a r y - 1 = 1 4 T e V , 3 0 0 0 f b s P r o j e c t i o n f r o m R u n 2 d a t a ) c , c b b → V H ( 4 − 2 − 0 2 4 c κ 0 0.5 1 1.5 2 2.5 3 ) max L L - log( 68% CL 95% CL Combined (exp.) 0 lepton (exp.) 1 lepton (exp.) 2 lepton (exp.) ATLAS Preliminary -1 = 14 TeV, 3000 fb s Projection from Run 2 data ) c c → VH( κc = σ/σSM 3 @ 95% CL ATL-PHYS-PUB-2021-039 arXiv:1902.00134 Phys. Rev. Lett. 131 (2023) 061801
  • 60.
    Marco Delmastro Twelveyears with the Higgs boson 60 One for all, all for one! 9.
  • 61.
    4 − 10 3 − 10 2 − 10 1 − 10 1 vev V m V κ or vev F m F κ Run 2 ATLAS µ c τ b W Z t t κ = c κ isa free parameter c κ SM prediction 1 − 10 1 10 2 10 Particle mass [GeV] 0.8 1 1.2 1.4 V κ or F κ e ν µ ν τ ν u c t Leptons Quarks e µ τ d s b g γ Z W H Force carriers Higgs boson The Standard Model rules (over 3 order of magnitudes)! Marco Delmastro Twelve years with the Higgs boson 61 Nature 607 (2022) 52 Nature 607 (2022) 60
  • 62.
    Marco Delmastro Twelveyears with the Higgs boson 62 0 10 200 pH T [GeV] 0 10 20 30 σ [pb] = 0 jets 0 60 120 200 pH T [GeV] 0 5 10 σ [pb] = 1 jet 0 120 200 pH T [GeV] −2 0 2 4 σ [pb] mjj 350 GeV 0.0 0.5 1.0 1.5 σ [pb] mjj ≥ 350 GeV 200 300 450 ∞ pH T [GeV] 101 102 103 σ [fb] pH T ≥ 200 GeV −2 0 2 4 σ [pb] ≤ 1 jet VH-enriched VBF-enriched 0 1 2 3 σ [pb] mjj 350 GeV 350 700 1000 1500 ∞ mjj [GeV] 0 500 σ [fb] pH T 200 GeV 350 1000 ∞ mjj [GeV] 0 50 100 σ [fb] pH T ≥ 200 GeV 0 75 150 250 400 ∞ pW T [GeV] 100 101 102 103 σ [fb] qq' → WH → Hℓν 0 150 250 400 ∞ pZ T [GeV] 100 101 102 σ [fb] pp → ZH → Hℓℓ 0 60 120 200 300 450 ∞ pH T [GeV] 0 100 200 σ [fb] t ̄ tH 0 250 500 750 1000 σ [fb] tH ATLAS Run 2 Data (Total uncertainty) Syst. uncertainty SM prediction ≥ 2 jets pH T 200 GeV gg → H mjj ≥ 350 GeV ≥ 2 jets qq → qqH V(ℓℓ, ℓν)H Nature 607 (2022) 52
  • 63.
    How well dowe know the Higgs couplings? • Higgs couplings known to ~6-15% ü Some channel not included yet, or with partial statistics ü Expect more improvements in next ~2 years, also from ATLAS+CMS combination Marco Delmastro Twelve years with the Higgs boson 63 0.8 1 1.2 1.4 1.6 68% CL interval γ Z κ γ κ g κ µ κ τ κ b κ t κ W κ Z κ ATLAS Run 2 = 0 u. B = inv. B 1 ≤ V κ 0, ≥ u. B free, inv. B SM prediction Parameter value not allowed e ν µ ν τ ν u c t Leptons Quarks e µ τ d s b g γ Z W H Force carriers Higgs boson
  • 64.
    0 0.02 0.040.06 0.08 0.1 0.12 0.14 Expected uncertainty γ Z κ µ κ τ κ b κ t κ g κ Z κ W κ γ κ 9.8 4.3 1.9 3.7 3.4 2.5 1.5 1.7 1.8 6.4 7.2 1.7 1.7 3.8 1.0 1.5 0.9 0.8 3.2 1.3 1.3 3.1 0.9 1.1 2.1 0.9 0.8 1.2 0.7 0.6 1.3 0.8 0.7 1.3 0.8 1.0 Tot Stat Exp Th Uncertainty [%] CMS and ATLAS HL-LHC Projection per experiment -1 = 14 TeV, 3000 fb s Total Statistical Experimental Theory 2% 4% How well will we know the Higgs couplings? • 2-4% precision expected with 2 x 3000 fb-1 Marco Delmastro Twelve years with the Higgs boson 64 arXiv:1902.00134
  • 65.
    Marco Delmastro Twelveyears with the Higgs boson 65 Can the Higgs boson tell us something about new phenomena? 10.
  • 66.
    Can Higgs propertiesconstrain BSM phenomena today? • Most recent approach: Effective Field Theory (EFT) interpretation Marco Delmastro Twelve years with the Higgs boson 66 • Oi (n) affect rates and kinematics • STXS measurements and Higgs BR reparametrized in terms of dimension-six Wilson coefficients ci in Warsaw basis ü Correction for modified acceptance in H → 4l and H → lνlν ü U(3)5 flavor symmetry assumed, linearized in Wilson coefficients contribution (linear contribution ∝ Λ−2 , expected to be leading)
  • 67.
    Can Higgs propertiesconstrain BSM phenomena today? Marco Delmastro Twelve years with the Higgs boson 67
  • 68.
    EFT interpretation ofHiggs couplings: ci impact Marco Delmastro Twelve years with the Higgs boson 68 ATLAS Preliminary √s = 13 TeV 139 fb −1 ggH σ VBF σ VH σ ttH σ BR 0.2 0.4 0.6 0.8 1 unc. 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.02 HB c = 0.04 HWB c = 0.04 HW c = 0.4 uW c = 0.4 uB c = 1 HDD c = 0.4 W c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.04 (3) Hq c = 0.2 Hd c = 0.2 Hu c = 0.2 (1) Hq c = 1 (1) Hl c = 1 He c = 1 eH c = 1 dH c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 1 (3) Hl c = 1 ll c’ 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.01 HG c = 0.2 uG c = 1 uH c = 1 G c = 0.2 (31) qq c = 0.2 qq c = 0.2 (1) uu c = 1 (8) qu c = 1 (3) qq c 10 H T 0-jet, p 200 H T p ≤ 0-jet, 0 60 H T 1-jet, p 120 H T p ≤ 1-jet, 60 200 H T p ≤ 1-jet, 120 60 H T 2-jet, p ≥ 120 H T p ≤ 2-jet, 60 ≥ 200 H T p ≤ 2-jet, 120 ≥ 200 H T 700, p jj m ≤ 2-jet, 350 ≥ 200 H T , p jj m ≤ 2-jet, 700 ≥ 300 H T 200p 450 H T 300p H T 450p 1-jet ≤ 120 jj 60 |m jj 2-jet m ≥ 120 jj m ≤ 2-jet 60 ≥ 200 H T 350 p jj 2-jet m ≥ 200 H T 700 p jj 2-jet 350m ≥ 200 H T 1000 p jj 2-jet 700m ≥ 200 H T 1500 p jj 2-jet 1000m ≥ 200 H T 1500 p jj 2-jet m ≥ 75 V T p ≤ W H 0 150 V T p ≤ W H 75 250 V T p ≤ W H 150 400 V T p ≤ W H 250 V T p ≤ W H 400 150 V T p ≤ ZH 0 250 V T p ≤ ZH 150 400 V T p ≤ ZH 250 V T p ≤ ZH 400 60 H T p ≤ 0 120 H T p ≤ 60 200 H T p ≤ 120 300 H T p ≤ 200 450 H T p ≤ 300 450 H T p tH ZZ → H W W → H γ γ → H bb → H τ τ → H Measurement uncertainty in STXS bin / decay channel Relative effect of relevant operators
  • 69.
    EFT interpretation ofHiggs couplings: ci impact Marco Delmastro Twelve years with the Higgs boson 69 ATLAS Preliminary √s = 13 TeV 139 fb −1 ggH σ VBF σ VH σ ttH σ BR 0.2 0.4 0.6 0.8 1 unc. 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.02 HB c = 0.04 HWB c = 0.04 HW c = 0.4 uW c = 0.4 uB c = 1 HDD c = 0.4 W c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.04 (3) Hq c = 0.2 Hd c = 0.2 Hu c = 0.2 (1) Hq c = 1 (1) Hl c = 1 He c = 1 eH c = 1 dH c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 1 (3) Hl c = 1 ll c’ 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.01 HG c = 0.2 uG c = 1 uH c = 1 G c = 0.2 (31) qq c = 0.2 qq c = 0.2 (1) uu c = 1 (8) qu c = 1 (3) qq c 10 H T 0-jet, p 200 H T p ≤ 0-jet, 0 60 H T 1-jet, p 120 H T p ≤ 1-jet, 60 200 H T p ≤ 1-jet, 120 60 H T 2-jet, p ≥ 120 H T p ≤ 2-jet, 60 ≥ 200 H T p ≤ 2-jet, 120 ≥ 200 H T 700, p jj m ≤ 2-jet, 350 ≥ 200 H T , p jj m ≤ 2-jet, 700 ≥ 300 H T 200p 450 H T 300p H T 450p 1-jet ≤ 120 jj 60 |m jj 2-jet m ≥ 120 jj m ≤ 2-jet 60 ≥ 200 H T 350 p jj 2-jet m ≥ 200 H T 700 p jj 2-jet 350m ≥ 200 H T 1000 p jj 2-jet 700m ≥ 200 H T 1500 p jj 2-jet 1000m ≥ 200 H T 1500 p jj 2-jet m ≥ 75 V T p ≤ W H 0 150 V T p ≤ W H 75 250 V T p ≤ W H 150 400 V T p ≤ W H 250 V T p ≤ W H 400 150 V T p ≤ ZH 0 250 V T p ≤ ZH 150 400 V T p ≤ ZH 250 V T p ≤ ZH 400 60 H T p ≤ 0 120 H T p ≤ 60 200 H T p ≤ 120 300 H T p ≤ 200 450 H T p ≤ 300 450 H T p tH ZZ → H W W → H γ γ → H bb → H τ τ → H Measurement uncertainty in STXS bin / decay channel Relative effect of relevant operators O(1) effects for small values of cHB, cHW, cHWB (tree level H → γγ) VH σ ttH σ BR = 0.02 HB c = 0.04 HWB c = 0.04 HW c = 0.4 uW c = 0.4 uB c = 1 HDD c = 0.4 W c = 0.04 (3) Hq c = 0.2 Hd c = 0.2 Hu c = 0.2 (1) Hq c = 1 (1) Hl c = 1 He c = 1 eH c = 1 c H → 𝛄𝛄
  • 70.
    EFT interpretation ofHiggs couplings: ci impact Marco Delmastro Twelve years with the Higgs boson 70 ATLAS Preliminary √s = 13 TeV 139 fb −1 ggH σ VBF σ VH σ ttH σ BR 0.2 0.4 0.6 0.8 1 unc. 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.02 HB c = 0.04 HWB c = 0.04 HW c = 0.4 uW c = 0.4 uB c = 1 HDD c = 0.4 W c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.04 (3) Hq c = 0.2 Hd c = 0.2 Hu c = 0.2 (1) Hq c = 1 (1) Hl c = 1 He c = 1 eH c = 1 dH c 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 1 (3) Hl c = 1 ll c’ 1 − 0.5 − 0 0.5 1 )/SM i B)(c × σ ( ∆ = 0.01 HG c = 0.2 uG c = 1 uH c = 1 G c = 0.2 (31) qq c = 0.2 qq c = 0.2 (1) uu c = 1 (8) qu c = 1 (3) qq c 10 H T 0-jet, p 200 H T p ≤ 0-jet, 0 60 H T 1-jet, p 120 H T p ≤ 1-jet, 60 200 H T p ≤ 1-jet, 120 60 H T 2-jet, p ≥ 120 H T p ≤ 2-jet, 60 ≥ 200 H T p ≤ 2-jet, 120 ≥ 200 H T 700, p jj m ≤ 2-jet, 350 ≥ 200 H T , p jj m ≤ 2-jet, 700 ≥ 300 H T 200p 450 H T 300p H T 450p 1-jet ≤ 120 jj 60 |m jj 2-jet m ≥ 120 jj m ≤ 2-jet 60 ≥ 200 H T 350 p jj 2-jet m ≥ 200 H T 700 p jj 2-jet 350m ≥ 200 H T 1000 p jj 2-jet 700m ≥ 200 H T 1500 p jj 2-jet 1000m ≥ 200 H T 1500 p jj 2-jet m ≥ 75 V T p ≤ W H 0 150 V T p ≤ W H 75 250 V T p ≤ W H 150 400 V T p ≤ W H 250 V T p ≤ W H 400 150 V T p ≤ ZH 0 250 V T p ≤ ZH 150 400 V T p ≤ ZH 250 V T p ≤ ZH 400 60 H T p ≤ 0 120 H T p ≤ 60 200 H T p ≤ 120 300 H T p ≤ 200 450 H T p ≤ 300 450 H T p tH ZZ → H W W → H γ γ → H bb → H τ τ → H Measurement uncertainty in STXS bin / decay channel Strong energy growt of effect of c(3) Hg, c(1) Hg, cHu, cHd WH ZH = 0.04 HW c = 0.4 uW c = 0.4 uB c = 1 HDD c = 0.4 W c = 0.04 (3) Hq c = 0.2 Hd c = 0.2 Hu c = 0.2 (1) Hq c = 1 (1) Hl c = 1 He c = 1 eH c = 1 dH c = 1 (3) Hl c = 1 ll c’ = 0.01 HG c = 0.2 uG c = 1 uH c
  • 71.
    EFT interpretation ofHiggs couplings • Simultaneously constraining all coefficients impossible • Fit performed in sensitive directions ü linear combinations informed by principal component analysis • Examples ü c[1] HG,uG,uH: linear comb. with strong impact on gg → H ü c[1] HW,HB,HWB,HDD,uW,uB,W: strong impact on H → 𝛄𝛄 ü c(3) Hq: unique impact on VH Marco Delmastro Twelve years with the Higgs boson 71 1 1 1 0.62 0.78 0.83 0.55 0.24 0.26 0.37 0.87 0.9 0.42 0.43 0.31 0.84 0.17 0.95 0.27 0.88 0.02 0.47 0.13 0.05 0.03 0.02 0.02 0.07 0.04 0.05 0.04 0.01 0.02 0.04 1 1 0.04 0.09 0.2 0.05 0.02 0.38 0.08 0.78 0.01 0.23 0.05 0.02 0.37 ATLAS Preliminary p s =13 TeV, 139 fb 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 c ( 3 ) H q c d H c e H c H e c ( 1 ) H l c ( 3 ) H l c 0 l l c H d c H u c ( 1 ) H q c H B c H W c H W B c H D D c W c u B c u W c H G c u G c u H c G c ( 8 ) q d c ( 1 ) q q c q q c ( 3 ) q q c ( 3 1 ) q q c ( 1 ) q u c ( 8 ) q u c ( 8 ) u d c u u c ( 1 ) u u c [1] top c [2] HG,uG,uH c [1] HG,uG,uH c [3] HW ,HB,HWB,HDD,uW ,uB,W c [2] HW ,HB,HWB,HDD,uW ,uB,W c [1] HW ,HB,HWB,HDD,uW ,uB,W c [2] Hu,Hd,Hq(1) c [1] Hu,Hd,Hq(1) c [1] Hl(3),ll0 c [1] Hl(1),He ceH cdH c(3) Hq 0.2 0.1 0 0.1 0.2 ATLAS Preliminary p s =13 TeV, 139 fb 1 mH = 125.09 GeV, |yH | 2.5 SMEFT ⇤ = 1 TeV c[1] HW,HB,HWB,HDD,uW,uB c(3) Hq c[1] HG,uG,uH,top (⇥10) 68 % CL 95 % CL Linear Linear + quadratic 2 1.5 1 0.5 0 0.5 1 1.5 2 c[2] HG,uG,uH,top c[1] Hu,Hd,Hq(1) c[2] HW,HB,HWB,HDD,uW,uB 10 8 6 4 2 0 2 4 6 8 10 c[3] HG,uG,uH,top c[1] Hl(3) ,ll0 c[1] Hl(1) ,He (⇥0.1) c[3] HW,HB,HWB,HDD,uW,uB Parameter Value
  • 72.
    Marco Delmastro Twelveyears with the Higgs boson 72 The SM missing piece 11 .
  • 73.
    Marco Delmastro Twelveyears with the Higgs boson 73 latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit V ( ) = V0 + 1 2 m2 HH2 + ⌫H3 + 1 4 H4 latexit sha1_base64=GxO25Tqi7v3asrbTl+QH1XYtk3A=AAACQXicbVDLSsNAFJ3UV62vqks3g0VosZakFHUjFN24rGAf0KRlMpmmQycPZiZCCfk1N/6BO/duXCji1o2TtAttvTBw7rn3cO4cO2RUSF1/0XIrq2vrG/nNwtb2zu5ecf+gI4KIY9LGAQt4z0aCMOqTtqSSkV7ICfJsRrr25Caddx8IFzTw7+U0JJaHXJ+OKEZSUcNir1M2W2NagVfwzPSiQR2m7cB0kOsSnjXwFMZm5tTnrm3FelWvGklsMuXioCSB5SVJZVAfFkt6Tc8KLgNjDkpgXq1h8dl0Ahx5xJeYISH6hh5KK0ZcUsxIUjAjQUKEJ8glfQV95BFhxdldCTxRjANHAVfPlzBjfyti5Akx9Wy16SE5FouzlPxv1o/k6NKKqR9Gkvh4ZjSKGJQBTOOEDuUESzZVAGFO1a0QjxFHWKrQCyoEY/HLy6BTrxnntcZdo9S8nseRB0fgGJSBAS5AE9yCFmgDDB7BK3gHH9qT9qZ9al+z1Zw21xyCP6V9/wAru63E/latexit V ( ) = µ2 † + ( † )2 latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit V ( ) = V0 + 1 2 m2 HH2 + ⌫H3 + 1 4 H4 latexit sha1_base64=gAy+0xlpWca0hvyMbehnFCAjmaY=AAACZnicfVFNS8NAEN3Er1q/qiIevAwWoaKUpBb1IohePFawtdDEsNlu2qWbTdjdCCXkT3rz7MWf4Tb24BcODDzevMfMvg1TzpR2nFfLXlhcWl6prFbX1jc2t2rbOz2VZJLQLkl4IvshVpQzQbuaaU77qaQ4Djl9DCe3s/njM5WKJeJBT1Pqx3gkWMQI1oYKakWv4XXG7BiuoBc4cAJeJDHJ3SJvFRAHd08tmPUJ5F65bCBHoZ87p86pkXjcLBpi8ERWFEZ39tXfLv7zlPp2UKs7Tacs+A3cOaijeXWC2os3TEgWU6EJx0oNXCfVfo6lZoTToupliqaYTPCIDgwUOKbKz8srCjgyzBCiRJoWGkr2qyPHsVLTODTKGOux+jmbkX/NBpmOLv2ciTTTVJDPRVHGQScwyxyGTFKi+dQATCQztwIZY5OTNj9TNSG4P5/8G/RaTfe82b5v169v5nFU0AE6RA3kogt0je5QB3URQW/WqrVj7Vrv9qa9Z+9/Sm1r7tlF38qGD4RvtCI=/latexit V ( ) = V0 + 1 2 m2 HH2 + ⌫H3 + 1 4 H4
  • 74.
    Can we accessthe Higgs self-coupling at the LHC? • Main avenues toward self-coupling measurement at LHC ü Direct: HH production ü Indirect: constraints from single Higgs measurements • HH production ü Very low cross-section (~1000x smaller than single Higgs!) ü Destructive interference between ggàHH processes Marco Delmastro Twelve years with the Higgs boson 74
  • 75.
    How to measuredi-Higgs production? Marco Delmastro Twelve years with the Higgs boson 75
  • 76.
    Closing in ondi-Higgs production! • Limits on kλ are improving dramatically, and there is more to be exploited (VBF production, combination of all channels and between ATLAS and CMS, …) • Di-Higgs studies will be a central aspect of the Run 3 (and of course HL-LHC)! Marco Delmastro Twelve years with the Higgs boson 76 Phys. Lett. B 843 (2024) 137745 Nature 607 (2022) 60
  • 77.
    Closing in ondi-Higgs production! • Di-Higgs studies will be a central aspect of the Run 3 (and of course HL-LHC)! Marco Delmastro Twelve years with the Higgs boson 77 arXiv:2211.01216 Nature 607 (2022) 60 -0.4 κλ 6.3 @ 95% CL -1.24 κλ 6.49 @ 95% CL
  • 78.
    When will wefinding the missing piece of the SM? Marco Delmastro Twelve years with the Higgs boson 78 arXiv:1902.00134 -2 0 2 4 6 kl 101 102 103 s ggF+VBF (HH) [fb] Expected: kl Œ [1.1,4.3] Baseline scenario ATLAS Preliminary p s = 14 TeV, 3000 fb-1 HH ! bb̄gg Projection from Run 2 data Expected limit (95% CL) Expected limit ±1s Expected limit ±2s Theory prediction (proj.) SM prediction A word of hope… We often do better than our projections! … and one of caution Sometimes projection are optimistic, and HL-LHC will present formidable challenges! ATL-PHYS-PUB-2022-001
  • 79.
    Marco Delmastro Twelveyears with the Higgs boson 79 The road ahead 12.
  • 80.
    We have aformidable tool to understand particle physics… • In 12 years we have measured with great precision many Higgs boson properties ü Mass, width, CP properties… ü Coupling properties and differential distributions… ü Closing in on coupling to 2nd generation, rare decays, self-interaction… ü Higgs as a tool to constrain New Physics... • The LHC has restarted in 2022 for its Run 3 and will operate for a long time… ü A unique opportunity to continue characterizing the Higgs sector! Marco Delmastro Twelve years with the Higgs boson 80 G. Giudice via F. Gianotti
  • 81.
    Marco Delmastro Twelveyears with the Higgs boson 81
  • 82.
    Marco Delmastro Twelveyears with the Higgs boson 82
  • 83.
    Marco Delmastro Twelveyears with the Higgs boson 83 Peter Higgs following the Higgs announcement seminar on July 4 2012
  • 84.
    Marco Delmastro Twelveyears with the Higgs boson 84 More material ei𝛑.
  • 85.
    The Standard Model MarcoDelmastro Twelve years with the Higgs boson 85
  • 86.
    Marco Delmastro Twelveyears with the Higgs boson 86
  • 87.
    140 150 160170 180 190 [GeV] t m 80.25 80.3 80.35 80.4 80.45 80.5 [GeV] W M 68% and 95% CL contours measurements t and m W Fit w/o M measurements H and M t , m W Fit w/o M measurements t and m W Direct M σ 1 ± comb. W M 0.013 GeV ± = 80.379 W M σ 1 ± comb. t m = 172.47 GeV t m = 0.46 GeV σ GeV theo 0.50 ⊕ = 0.46 σ = 125 GeV H M = 50 GeV H M = 300 GeV H M = 600 GeV H M Knowing the Higgs mass values… Marco Delmastro Twelve years with the Higgs boson 87 … allows to make precision predictions … questions us on vacuum (meta) stability 102 104 106 108 1010 1012 1014 1016 1018 1020 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 RGE scale m in GeV Higgs quartic coupling l 3s bands in Mt = 173.1 ± 0.6 GeV HgrayL a3HMZL = 0.1184 ± 0.0007HredL Mh = 125.7 ± 0.3 GeV HblueL Mt = 171.3 GeV asHMZL = 0.1163 asHMZL = 0.1205 Mt = 174.9 GeV 0 50 100 150 200 0 50 100 150 200 Higgs mass Mh in GeV Top mass M t in GeV Instability Non-perturbativity Stability Meta-stability latexit sha1_base64=DlHlwCsSaOcMjT50pC72fY6m5ZI=AAACUnicbVJbS8MwGM3mbc5b1UdfgkPYUEc7hvoiDH3xcYK7wNqNNM26sPRCkgqj9DcK4os/xBcf1LTbQDs/CJzvfNecxA4ZFVLX3wvFtfWNza3Sdnlnd2//QDs86oog4ph0cMAC3reRIIz6pCOpZKQfcoI8m5GePb1P471nwgUN/Cc5C4nlIdenY4qRVNRIo92q2Z7QGryFl6YXDRswdYemg1yX8BTDcxib2aABd20rNup6Zhd6HiQmU4MdlMBqvklt2BhplWUiXAXLrhWwsPZIezWdAEce8SVmSIiBoYfSihGXFDOSlM1IkBDhKXLJQEEfeURYcbZpAs8U48BxwNXxJczY3xUx8oSYebbK9JCciHwsJf+LDSI5vrFi6oeRJD6eDxpHDMoApvpCh3KCJZspgDCnaleIJ4gjLNUrlJUIRv7Kq6DbqBtX9eZjs9K6W8hRAifgFFSBAa5BCzyANugADF7AB/gC34W3wmdR/ZJ5arGwqDkGf6y4+wMgLq4j/latexit V ( ) = µ2 † + ( † )2 latexit sha1_base64=F+2k6ATD6pvRrGmPi8//VSZKJC8=AAACK3icbVBJSwMxGM241rqNevQSLIIHKTOlqBeh1EuPFewCnWHIpGkbmmTGJCOUYf6PF/+KBz244NX/YbqBtj4IPN77trwwZlRpx/mwVlbX1jc2c1v57Z3dvX374LCpokRi0sARi2Q7RIowKkhDU81IO5YE8ZCRVji8GfutByIVjcSdHsXE56gvaI9ipI0U2FUe1OA19NS91Gkp9SYTO7If+qlbdCY4dxZJ5jGzoYsymHkiCezC3IDLZD6lAGaoB/aL141wwonQmCGlOq4Taz9FUlPMSJb3EkVihIeoTzqGCsSJ8tPJZRk8NUoX9iJpntBwov7uSBFXasRDU8mRHqhFbyz+53US3bvyUyriRBOBp4t6CYM6guPgYJdKgjUbGYKwpOZWiAdIIqxNvHkTgrv45WXSLBXdi2L5tlyoVGdx5MAxOAFnwAWXoAJqoA4aAINH8AzewLv1ZL1an9bXtHTFmvUcgT+wvn8AVYOjdg==/latexit mH = p 2 ⌫ Vanishing quartic coupling at the Planck scale? Potential not bounded? … but interpretation more sensitive to precision on top quark mass Running of the Higgs self coupling, assuming SM only at high scale arXiv:1205.6497 Eur. Phys. J. C78, 675 (2018) 170 172 174 176 178 180 182 [GeV] t m 0 1 2 3 4 5 6 7 8 9 10 2 χ ∆ σ 1 σ 2 σ 3 measurements t SM fit w/o m measurements H and M t SM fit w/o m ATLAS [ATLAS-CONF-2017-071] CMS [PRD 93, 072004 (2016)] D0 [PRD 95, 112004 (2017)] CDF [CDF 11080 (2014)] 80.34 80.36 80.38 80.4 80.42 [GeV] W M 0 1 2 3 4 5 6 7 8 9 10 2 χ ∆ σ 1 σ 2 σ 3 measurements W SM fit w/o M measurements H and M W SM fit w/o M LEP [arXiv:1302.3415] Tevatron [arXiv:1204.0042] ATLAS [EPJC 78, 110 (2018)] … but current mH precision has little impact λ
  • 88.
    H𝜏𝜏 CP properties ofHiggs-τ coupling with Hà𝜏𝜏 Marco Delmastro Twelve years with the Higgs boson 88 latexit sha1_base64=7qYs1If7rGSo9H9Gy/3oD4IEcHk=AAACfXicbZHLahsxFIY101vq3txmmc2hJpD0YmZK2nRTCOnGiy5SqJOAZYYzssYWljRC0hSM8Fv0ybrrq2TTasaGpkkPCH59/zlI+lUaKZzPsl9JeufuvfsPdh72Hj1+8vRZ//mLc1c3lvExq2VtL0t0XArNx154yS+N5ahKyS/K5efWv/jOrRO1/uZXhk8VzrWoBEMfUdH/QRX6BUMZvqyLMKIem3at4RO8pZVFFlTRgUB1pHSJxmBHgEpe+QOgrHZAzUJsKNASbehGuv1roE7oaw1/fRB0jkph8R42jhXzhT+EUdEfZMOsK7gt8q0YkG2dFf2fdFazRnHtmUTnJnlm/DSg9YJJvu7RxnGDbIlzPolSo+JuGrr01rAfyQyq2salPXT0+kRA5dxKlbGzzcrd9Fr4P2/S+OrjNAhtGs812xxUNRJ8De1XwExYzrxcRYHMinhXYAuMmfv4Yb0YQn7zybfF+bth/mF49PVocHK6jWOH7JGX5IDk5JickBE5I2PCyFUCyWHyKvmd7qdv0uGmNU22M7vkn0qP/wA8AcIv/latexit LH⌧⌧ = m⌧ ⌫ ⌧ (cos ⌧ ¯ ⌧⌧ + sin ⌧ ¯ ⌧i 5⌧) H Effective Lagrangian forYukawa coupling to tau leptons parameterized by CP-Even and CP-odd components 0 60 120 180 240 300 360 (degrees) CP φ 0.02 0.04 0.06 0.08 0.1 a.u. even CP odd CP mix CP Z 13 TeV Simulation CMS - π + π → - τ + τ 33 GeV τ T p τ τ H α 2 α𝐻ττ (CMS) = φτ (ATLAS) Eur. Phys. J. C 83 (2023) 563 JHEP 06 (2022) 012 bin CP * ϕ 1 − 10 1 10 2 10 3 10 Events Data (best-fit) τ τ → H (best-fit) τ τ → Z ) ° = 0 τ φ ( τ τ → H τ Misidentified ) ° = 90 τ φ ( τ τ → H Other backgrounds Uncertainty ATLAS -1 = 13 TeV, 139 fb s High had τ had τ Boost_0 Boost_1 VBF_0 VBF_1 0 5 10 15 20 25 30 bin CP * ϕ 0 1 2 Data / Pred. ⇡ ⇡+ n⇤ n⇤+ '⇤ CP Uses either the impact parameter direction for single- prong taus ( ± ) or momentum for τ → ± ρ ντ (also for 3-prong decays with ρ →
  • 89.
    CP properties ofHiggs-τ coupling with Hà𝜏𝜏 Marco Delmastro Twelve years with the Higgs boson 89 80 − 60 − 40 − 20 − 0 20 40 60 80 [degrees] τ φ 0 1 2 3 4 5 6 7 ln(L) ∆ - (68% CL) ° 16 ± = 9 obs. τ φ Observed: (68% CL) ° 28 ± = 0 exp. τ φ Expected: σ 1 σ 2 σ 3 ATLAS -1 = 13 TeV, 139 fb s °90 °45 0 45 90 aHtt(degrees) 0 2 4 6 8 10 12 ° 2D log L CMS 137 fb°1 (13 TeV) 68.3% 95.5% 99.7% Observed: âHtt obs. = °1 ± 19 ±(68.3% CL) Expected: âHtt exp. = 0 ± 21 ±(68.3% CL) Observed: âHtt obs. = °1 ± 19 ±(68.3% CL) Expected: âHtt exp. = 0 ± 21 ±(68.3% CL) Eur. Phys. J. C 83 (2023) 563 α𝐻ττ(CMS) = φτ (ATLAS) φ𝜏 = -1 ± 19° (21° exp) pure CP-odd coupling excluded at 3 σ φ𝜏 = 9 ± 16° (28° exp) pure CP-odd coupling excluded at 3.4 σ JHEP 06 (2022) 012
  • 90.
    Hà𝜏𝜏 decay CP MarcoDelmastro Twelve years with the Higgs boson 90 ⇡ ⇡+ n⇤ n⇤+ '⇤ CP ⇢ ⇢+ ⇡0 ⇡ ⇡0 ⇡+ '⇤ CP ⇡ ⇢+ n⇤ ⇡0 ⇡+ '⇤ CP Impact parameter directional distance of closest approach of charged particle’s track to reconstructed PV of the event 4-vectors boosted to the rest frame of visible di-𝜏 Zero Momentum Frame (e.g. two decay charged particles) impact parameter ρ decay plane impact parameter + ρ decay plane
  • 91.
    1 − 0.8 − 0.6 −0.4 − 0.2 − 0 0.2 0.4 0.6 0.8 1 ggH a3 f 0 1 2 3 4 5 6 7 8 9 10 ln L ∆ 2 − + 4l τ τ Observed Expected 68% CL 95% CL CMS (13 TeV) -1 138 fb CP properties of Higgs-gluon coupling with ggF+VBF Marco Delmastro Twelve years with the Higgs boson 91 Hgg ATLAS: ∆Φjj ggF+VBF HàWW* CMS: ∆Φjj or MELA discriminant ggF+VBF Hà𝜏𝜏 arXiv:2109.13808 arXiv:2205.05120 0 500 1000 1500 2000 2500 3000 3500 Events / Bin Observation ggH SM H (125)x50 ggH PS H (125)x50 bkg. τ τ mis-ID h τ → jet Other Uncertainty (13 TeV) -1 138 fb CMS h τ h τ VBF Category 0 0.2 0.4 0.6 0.8 1 ggH 0- D 0.8 1 1.2 Obs. / Exp. 0 2 4 6 jj Φ ∆ 0.05 0.1 0.15 Event fraction CP even CP odd CP mixed ATLAS Simulation ν µ ν e → WW* → = 13 TeV, ggF H s | 3.0 jj η ∆ | 2 4 6 8 weights / bin Σ Observed Total unc. VBF ggF Other Higgs W + jets Z + jets Diboson , Wt t t -1 = 13 TeV, 36.1 fb s ν µ ν e → WW* → H VBF SR ATLAS 0 π π 2 jj Φ ∆ 0.6 0.8 1 1.2 1.4 Data / pred. 8 − 6 − 4 − 2 − 0 2 4 6 8 ) α tan( 0 0.2 0.4 0.6 0.8 1 1.2 NLL ∆ 2 σ 1 -1 =13 TeV, 36.1 fb s ν µ ν e → * WW → H = 1 gg κ fixed to SM, VBF µ ATLAS Expected Observed CP-even CP-odd interference ggF vs VBF ggF CP-even vs ggF CP-odd Hà𝜏𝜏 (combined with Hà4l) fa3 ggH parameterizes fraction of CP-odd BSM point-like Hgg coupling α parameterizes CP- even/CP-odd mixture on Hgg coupling shape only consistent with SM consistent with SM Study ggF+2 jets events: jet kinematics sensitive to Hgg coupling CP properties HàWW*
  • 92.
    H V V HVV 1 − 0.5 − 00.5 1 dec CP D 0 50 100 Events / bin Total =0.5 a3 VBF+VH f CMS (13 TeV) -1 137 fb 0.7 bkg 4l, Untagged, D → HVV, H 0 0.2 0.4 0.6 0.8 1 VH+dec 0- D 0 2 4 6 8 Events / bin CMS (13 TeV) -1 137 fb 0.2 bkg 4l, VH-hadronic, D → HVV, H CP properties of HVV coupling (mult. prod. + Hà4l) Marco Delmastro Twelve years with the Higgs boson 92 HVV couplings parameterized by tensor structures in scattering amplitude fa3 parameterizes fractional contribution of CP-odd HZZ coupling Multiple analyses constraining HVV couplings with ggH, VBF, VH, ttH, tH production and H→ττ, H→4l, H→γγ decay H q q q q V V HVV Phys. Rev. D 104, 052004 (2021) V V H q q HVV 0 0.2 0.4 0.6 0.8 1 VBF+dec 0- D 0 5 10 15 Events / bin CMS (13 TeV) -1 137 fb 0.2 bkg 4l, VBF-2jet, D → HVV, H SM a3 a2 f =1 =1 Λ1 f ZZ/Zγ* Z+X data HVV, H → 4ℓ Total VBF+VH CMS Zγ Λ1 f =1 f =1
  • 93.
    CP properties ofHVV coupling (mult. prod. + Hà4l; offshell) Marco Delmastro Twelve years with the Higgs boson 93 2 − 1.5 − 1 − 0.5 − 0 0.5 1 1.5 2 3 − 10 × a3 f 0 2 4 6 8 10 12 14 16 18 20 ln L ∆ 2 − + 4l τ τ Approach 2, Observed Expected 68% CL 95% CL CMS (13 TeV) -1 138 fb 0.005 − 0 0.005 a3 f 0 2 4 6 8 10 12 14 16 lnL ∆ -2 =4.1 MeV H Γ (u) H Γ On-shell 4l Observed Expected CMS (13 TeV) -1 140 fb ≤ 68% CL 95% CL Constraint from combined analyses Other anomalous HVV fixed to 0 𝑓a3 = 0.20 ⨉ 10-3 + 0.26 -0.16 Constraints from Hà4l onshell + off-shell Other anomalous couplings floated in fits 𝑓a3 = 0.024 ⨉ 10-3 + 0.32 -0.064 consistent with SM consistent with SM Phys. Rev. D 104, 052004 (2021) arXiv:2202.06923
  • 94.
    CP properties ofHVV coupling with VBF Marco Delmastro Twelve years with the Higgs boson 94 SM Lagrangian augmented with CP-odd dim-6 operators involving Higgs and EW gauge fields in EFT formalism 2 dedicated BDT’s (VBF vs ggF,VBF vs yy) Approach pursued with various decay modes, here most recent ATLAS Hà𝛄𝛄, then combined with 36 fb-1 Hà𝜏𝜏 Reference Optimal Observable V V V H V q̄ q q̄ q HVV latexit sha1_base64=/Jv6BXMQsA/o+NcH/q5rLeyeQZA=AAACG3icbVDNS8MwHE3n15xfVY9egkPwNNox1Isw9LKDhwnuA9Za0jTdwtK0JKkwSv8PL/4rXjwo4knw4H9jtvWgmw8Cj/feL8nv+QmjUlnWt1FaWV1b3yhvVra2d3b3zP2DroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88fXU7z0QIWnM79QkIW6EhpyGFCOlJc+sO4qygGRBDi+hEwqEM4en9/U8c270LQHSFGIvaxW5Xp57ZtWqWTPAZWIXpAoKtD3z0wlinEaEK8yQlAPbSpSbIaEoZiSvOKkkCcJjNCQDTTmKiHSz2W45PNFKAMNY6MMVnKm/JzIUSTmJfJ2MkBrJRW8q/ucNUhVeuBnlSaoIx/OHwpRBFcNpUTCggmDFJpogLKj+K8QjpAtSus6KLsFeXHmZdOs1+6zWuG1Um1dFHWVwBI7BKbDBOWiCFmiDDsDgETyDV/BmPBkvxrvxMY+WjGLmEPyB8fUDcWOhsg==/latexit ˜ d = ⌫2 ⇤2 cHW̃ latexit sha1_base64=M4uFoFBqhyBqorQ5jE3gGro1dPg=AAACCHicbVDLSsNAFJ3UV62vqEsXDhbBVUmkqBuh1E2XFewD2hAmk2k7dPJg5kYoIUs3/oobF4q49RPc+TdO2yxq64ELh3Pu5d57vFhwBZb1YxTW1jc2t4rbpZ3dvf0D8/CoraJEUtaikYhk1yOKCR6yFnAQrBtLRgJPsI43vpv6nUcmFY/CB5jEzAnIMOQDTgloyTVPqZs2+sCFz9JOluFbvCDUs8w1y1bFmgGvEjsnZZSj6ZrffT+iScBCoIIo1bOtGJyUSOBUsKzUTxSLCR2TIetpGpKAKSedPZLhc634eBBJXSHgmbo4kZJAqUng6c6AwEgte1PxP6+XwODGSXkYJ8BCOl80SASGCE9TwT6XjIKYaEKo5PpWTEdEEgo6u5IOwV5+eZW0Lyv2VaV6Xy3X6nkcRXSCztAFstE1qqEGaqIWougJvaA39G48G6/Gh/E5by0Y+cwx+gPj6xe9yZnQ/latexit cHW̃ = cHB̃ latexit sha1_base64=EoJZ2cSx2/uIewql05kDoW66u/8=AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkqBuh1E2XFewD2hAmk0k7dPJgZiKEUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3Hi/hTCrL+jZKG5tb2zvl3cre/sHhkXl80pNxKgjtkpjHYuBhSTmLaFcxxekgERSHHqd9b3o39/uPVEgWRw8qS6gT4nHEAkaw0pJrVombt/sjxbhP89Zshm6R5Zo1q24tgNaJXZAaFOi45tfIj0ka0kgRjqUc2lainBwLxQins8oolTTBZIrHdKhphEMqnXxx/Ayda8VHQSx0RQot1N8TOQ6lzEJPd4ZYTeSqNxf/84apCm6cnEVJqmhElouClCMVo3kSyGeCEsUzTTARTN+KyAQLTJTOq6JDsFdfXie9y7p9VW/cN2rNVhFHGU7hDC7AhmtoQhs60AUCGTzDK7wZT8aL8W58LFtLRjFThT8wPn8ApueUIA==/latexit cHW B̃ = 0 0.3 − 0.2 − 0.1 − 0 0.1 0.2 0.3 0.4 VBF/ggF BDT 0 0.05 0.1 0.15 0.2 0.25 Fraction of events ATLAS Preliminary -1 = 13 TeV, 139 fb s 0.4 − 0.3 − 0.2 − 0.1 − 0 0.1 0.2 0.3 0.4 0.5 VBF/Continuum BDT 0 0.05 0.1 0.15 0.2 0.25 Fraction of events Data sidebands SM VBF SM ggF Continuum background 6 − 4 − 2 − 0 2 4 6 10 20 30 40 50 60 70 80 ln(1+S/B) weighted events / 1.0 Data VBF (SM) Total bkg. Syst. Uncer. ATLAS Preliminary -1 = 13 TeV, 139 fb s [118, 132] GeV ∈ γ γ m TT + TL + LT 110 120 130 140 150 160 [GeV] γ γ m 0 10 20 30 40 50 ln(1 + S/B) weighted events / 2.5 GeV Data Sig. + bkg. Total bkg. Continuum bkg. 6 − 4 − 2 − 0 2 4 6 OO 5 10 Data - bkg. VBF (SM) =0.06) d ~ VBF ( =-0.06) d ~ VBF ( CERN-EP-2022-134
  • 95.
    68% (exp.) 95%(exp.) 68% (obs.) 95% (obs.) ˜ d (inter. only) [-0.027, 0.027] [-0.055, 0.055] [-0.011, 0.036] [-0.032, 0.059] ˜ d (inter.+quad.) [-0.028, 0.028] [-0.061, 0.060] [-0.010, 0.040] [-0.034, 0.071] ˜ d from H ! ⌧⌧ [-0.038, 0.036] - [-0.090, 0.035] - Combined ˜ d [-0.022, 0.021] [-0.046, 0.045] [-0.012, 0.030] [-0.034, 0.057] cHW̃ (inter. only) [-0.48, 0.48] [-0.94, 0.94] [-0.16, 0.64] [-0.53, 1.02] cHW̃ (inter.+quad.) [-0.48, 0.48] [-0.95, 0.95] [-0.15, 0.67] [-0.55, 1.07] CP properties of HVV coupling with VBF Marco Delmastro Twelve years with the Higgs boson 95 most stringent constraints on CP-properties of HVV coupling to date 1 − 0.5 − 0 0.5 1 W ~ H c 0 1 2 3 4 5 6 7 8 9 NLL ∆ × 2 Exp. stat. + syst. Obs. stat. + syst. 68% CL 95% CL ATLAS Preliminary -1 = 13 TeV, 139 fb s γ γ → VBF H latexit sha1_base64=/Jv6BXMQsA/o+NcH/q5rLeyeQZA=AAACG3icbVDNS8MwHE3n15xfVY9egkPwNNox1Isw9LKDhwnuA9Za0jTdwtK0JKkwSv8PL/4rXjwo4knw4H9jtvWgmw8Cj/feL8nv+QmjUlnWt1FaWV1b3yhvVra2d3b3zP2DroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88fXU7z0QIWnM79QkIW6EhpyGFCOlJc+sO4qygGRBDi+hEwqEM4en9/U8c270LQHSFGIvaxW5Xp57ZtWqWTPAZWIXpAoKtD3z0wlinEaEK8yQlAPbSpSbIaEoZiSvOKkkCcJjNCQDTTmKiHSz2W45PNFKAMNY6MMVnKm/JzIUSTmJfJ2MkBrJRW8q/ucNUhVeuBnlSaoIx/OHwpRBFcNpUTCggmDFJpogLKj+K8QjpAtSus6KLsFeXHmZdOs1+6zWuG1Um1dFHWVwBI7BKbDBOWiCFmiDDsDgETyDV/BmPBkvxrvxMY+WjGLmEPyB8fUDcWOhsg==/latexit ˜ d = ⌫2 ⇤2 cHW̃ 0.15 − 0.1 − 0.05 − 0 0.05 0.1 0.15 d ~ 0 5 10 15 20 25 NLL ∆ × 2 Exp. Comb Obs. Comb γ γ → Exp. H γ γ → Obs. H τ τ → Exp. H τ τ → Obs. H 68% CL 95% CL ATLAS Preliminary -1 = 13 TeV, 36 - 139 fb s CERN-EP-2022-134
  • 96.
    Other information aboutthe Higgs width? • Part of Higgs width could be due to decays to undetectable particles (Hàinvisible) ü Limits from direct searches in Hà invisible, explicitly requiring MET in the event Marco Delmastro Twelve years with the Higgs boson 96 ATLAS: BR(H à inv) 0.11 (exp. 0.11) @ 95% CL CMS: BR(H à inv) 0.17 (exp. 0.11) @ 95% CL ATLAS-CONF-2020-052 Run 2 ttH Run 2 VBF Run 2 Combined Run 1 Combined Run 1+2 Combined 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 inv → H B 95% CL upper limit on Observed Expected σ 1 ± σ 2 ± Observed Expected σ 1 ± σ 2 ± Observed Expected σ 1 ± σ 2 ± Observed Expected σ 1 ± σ 2 ± Observed Expected σ 1 ± σ 2 ± ATLAS Preliminary -1 = 7 TeV, 4.7 fb s -1 = 8 TeV, 20.3 fb s -1 = 13 TeV, 139 fb s H 𝜒 𝜒 H 𝜒 𝜒 Nucleon 1 10 2 10 3 10 [GeV] WIMP m 49 − 10 47 − 10 45 − 10 43 − 10 41 − 10 ] 2 [cm -nucleon WIMP σ 49 − 10 47 − 10 45 − 10 43 − 10 41 − 10 Preliminary ATLAS -1 TeV, 4.7 fb = 7 s -1 TeV, 20.3 fb = 8 s -1 TeV, 139 fb = 13 s Higgs Portal Other experiments Scalar WIMP DarkSide-50 Majorana WIMP LUX PandaX-II Xenon1T 0.09 inv → H B All limits at 90% CL Limits on BR(H-inv) can be recast in term of limit on Dark Matter production CMS-PAS-HIG-20-003
  • 97.
    STXS at work:H → ZZ* 1 − 0 1 2 3 4 5 6 7 SM ) B ⋅ σ /( B ⋅ σ ttH -Lep VH qq2Hqq-BSM qq2Hqq-VBF VH qq2Hqq- -High H T p gg2H- j gg2H-2 -High H T p - j gg2H-1 -Med H T p - j gg2H-1 -Low H T p - j gg2H-1 -High H T p - j gg2H-0 -Low H T p - j gg2H-0 ATLAS 4l → ZZ* → H -1 = 13 TeV, 139 fb s | 2.5 H Reduced Stage 1.1 - |y [fb] B ⋅ σ [fb] SM ) B ⋅ σ ( -value = 77% p 17 − 26 + 25 18 − 28 + 22 4.8 − 7.9 + 0.5 52 − 64 + 150 35 ± 21 16 − 21 + 38 75 ± 40 12 − 16 + 9 50 ± 170 80 ± 50 110 ± 630 55 ± 170 1.3 − 1.0 + 15.4 0.4 ± 16.4 0.18 ± 4.20 3.5 − 2.4 + 107.6 0.6 − 0.4 + 13.8 4 ± 15 27 ± 127 4 ± 20 18 ± 119 25 ± 172 40 ± 550 25 ± 176 1 1.2 1.4 1.6 1.8 SM N/N tXX ZZ-2j ZZ-1j ZZ-0j Observed: Stat+Sys SM Prediction Observed: Stat-Only [fb] B ⋅ σ [fb] SM ) B ⋅ σ ( -value = 77% p 17 − 26 + 25 18 − 28 + 22 4.8 − 7.9 + 0.5 52 − 64 + 150 35 ± 21 16 − 21 + 38 75 ± 40 12 − 16 + 9 50 ± 170 80 ± 50 110 ± 630 55 ± 170 1.3 − 1.0 + 15.4 0.4 ± 16.4 0.18 ± 4.20 3.5 − 2.4 + 107.6 0.6 − 0.4 + 13.8 4 ± 15 27 ± 127 4 ± 20 18 ± 119 25 ± 172 40 ± 550 25 ± 176 Marco Delmastro Twelve years with the Higgs boson 97 Eur. Phys. J. C 81 (2021) 488 Eur. Phys. J. C 80 (2020) 957
  • 98.
    STXS at work:H → WW* • Precision measurements have become a possible also for those channels where reconstructing the final state is not possible, e.g. HàWW* (neutrinos, missing transverse energy)! Marco Delmastro Twelve years with the Higgs boson 98 arXiv:2207.00338 1 − 0 1 2 3 4 5 6 7 8 SM ) * WW → H B ⋅ σ / ( * WW → H B ⋅ σ 0.44 − 0.49 + 1.17 , 0.40 − 0.45 + 0.17 − 0.20 + ( ) 0.05 ± 200 GeV ≥ H T p 350 GeV, ≥ jj m , j -2 qqH EW 0.36 − 0.40 + 1.14 , 0.34 − 0.37 + 0.14 − 0.15 + ( ) 0.08 ± 200 GeV H T p 1500 GeV, ≥ jj m , j -2 qqH EW 0.45 − 0.52 + 1.18 , 0.41 − 0.45 + 0.19 − 0.25 + ( ) 0.07 ± 200 GeV H T p 1500 GeV, jj m ≤ , 1000 j -2 qqH EW 0.58 − 0.63 + 0.56 , 0.48 − 0.53 + 0.34 − 0.35 + ( ) 0.07 ± 200 GeV H T p 1000 GeV, jj m ≤ , 700 j -2 qqH EW 0.57 − 0.57 + 0.05 , 0.38 − 0.42 + 0.41 − 0.39 + ( ) 0.07 ± 200 GeV H T p 700 GeV, jj m ≤ , 350 j -2 qqH EW 0.83 − 0.87 + 2.11 , 0.66 − 0.68 + 0.51 − 0.55 + ( ) 0.26 ± 200 GeV ≥ H T p , ggH 0.87 − 0.89 + 1.59 , 0.44 − 0.44 + 0.76 − 0.78 + ( ) 0.22 ± 200 GeV H T p , j -2 ggH 0.77 − 0.80 + 1.46 , 0.62 − 0.63 + 0.47 − 0.49 + ( ) 0.19 ± 200 GeV H T p ≤ , 120 j -1 ggH 0.48 − 0.48 + 0.58 , 0.32 − 0.32 + 0.36 − 0.36 + ( ) 0.15 ± 120 GeV H T p ≤ , 60 j -1 ggH 0.59 − 0.57 + 0.82 , 0.30 − 0.30 + 0.51 − 0.49 + ( ) 0.14 ± 60 GeV H T p , j -1 ggH 0.16 − 0.16 + 1.21 , 0.08 − 0.08 + 0.13 − 0.14 + ( ) 0.07 ± 200 GeV H T p , j -0 ggH Total ( Stat. Syst. ) SM Unc. Total Statistical Unc. Systematic Unc. SM Prediction ATLAS 1 − = 13 TeV, 139 fb s ν µ ν e → * WW → H -value = 53% p 500 1000 1500 2000 2500 3000 3500 4000 Events / 10 GeV Data Uncertainty ggF H VBF H H Other Wt / t t WW * γ Z/ Mis-Id ) V ( VV Other ATLAS -1 = 13 TeV, 139 fb s ν µ ν e → WW* → H =0 jet N ggF SR, 0.6 0.8 1 1.2 1.4 Data / Pred. 50 100 150 200 250 [GeV] T m 0 100 200 300 400 500 600 Bkg. − Total
  • 99.
    H → 𝛄𝛄and H → ZZ*: differential and fiducial cross-sections Marco Delmastro Twelve years with the Higgs boson 99 0 10 20 30 40 50 [pb] σ ATLAS Preliminary -1 = 13 TeV, 139 fb s γ γ Æ H *, ZZ Æ H * ZZ Æ H γ γ Æ H Combination Systematic Uncertainty Total Uncertainty XH =1.47, + K MG5 FxFx XH =1, + K STWZ,BLPTW XH =1, + K GoSam XH =1, + K Sherpa+MCFM+OpenLoops XH =1.1, + K NNLOPS tH + H b b + H t t =VBF+VH+ XH =0 jets N =1 jets N =2 jets N 3 ≥ jets N jets N 0.5 1 1.5 Theory/Data 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 )[pb/GeV] H T p /d( σ d ATLAS Preliminary -1 = 13 TeV, 139 fb s γ γ Æ H *, ZZ Æ H * ZZ Æ H γ γ Æ H Combination Systematic Uncertainty Total Uncertainty XH =1.47, + K MG5 FxFx XH =1.14, + K ResBos2 XH =1, + K SCETlib XH =1, + K RadiSH XH =1.1, + K NNLOPS tH + H b b + H t t =VBF+VH+ XH 0 10 20 30 45 60 80 120 200 300 650 1000 [GeV] H T p 0.5 1 1.5 2 Theory/Data ATLAS-CONF-2022-002
  • 100.
    H → 𝛄𝛄and H → ZZ*: inclusive cross-sections Marco Delmastro Twelve years with the Higgs boson 100 7 8 9 10 11 12 13 14 [TeV] s 0 10 20 30 40 50 60 70 80 90 100 [pb] H → pp σ ATLAS = 125.09 GeV) H m , H → pp ( σ SM QCD scale uncertainty ) s α PDF+ ⊕ (scale Total uncertainty γ γ → H l 4 → * ZZ → H l 4 → H + γ γ → H Combined -1 = 7 TeV, 4.5 fb s -1 = 8 TeV, 20.3 fb s -1 = 13 TeV, 139 fb s -1 = 13.6 TeV, 29.0-31.4 fb s Eur. Phys. J. C 84 (2024) 78
  • 101.
    [GeV] T H p 500 1000 1500 (SM) σ / σ 0 20 40 60 80 95%C.L. Upper Limit Fit ATLAS -1 = 13 TeV, 136 fb s Reaching the highest pT H with Hàbb • Jets substructure with 1 or 2 b-tags • Fiducial cross-section (mostly ggF) • Can be recasted as STXS • Highest pT H most sensitive to BSM effects Marco Delmastro Twelve years with the Higgs boson 101 0.2 0.4 0.6 0.8 1 1.2 3 10 × Events / 10 GeV Data =18) µ ( 4 T H, p Z W Top Multijet Signal + Background ATLAS -1 = 13 TeV, 136 fb s TeV 1 T SRL, p 0 100 Data-Multijet σ 1 ± Multijet 80 100 120 140 160 180 200 Jet mass [GeV] 50 − 0 50 Data-bkg σ 1 ± Multijet, Top, W Z arXiv:2111.08340 pT H 1TeV 800 GeV pT H 1.2 TeV JHEP12(2020)085
  • 102.
    Other rare Higgsdecays within reach? Marco Delmastro Twelve years with the Higgs boson 102 Imma Riu @ LHCP 2021
  • 103.
    [GeV] γ Z m 40 50 60 70 80 weights / GeV ∑ Data Sig+Bkg Fit Bkg ATLAS -1 = 13TeV, 139 fb s All categories ) weighted sum 68 B / 68 S ln(1+ 115 120 125 130 135 140 145 [GeV] γ Z m 4 − 2 − 0 2 4 w - Bkg ∑ Other rare Higgs decays within reach? • SU(2)L symmetry relates the HWW, HZZ, Hyy and HZy interactions ü If New Physics respects SU(2)L, effect correlated in all four channels ü Important to observed and measure also HàZy Marco Delmastro Twelve years with the Higgs boson 103 µ = 2.4 ± 0.9 Significance: 2.7 σ (1.2 expected) µ = 2.0 ± 0.9 Significance: 2.2 σ (1.2 expected) JHEP 05 (2023) 233 Phys. Lett. B 809 (2020) 135754 Phys. Rev. Lett. 132 (2024) 021803 µ = 2.2 ± 0.7 Significance: 3.4 σ
  • 104.
    How well shouldwe know the Higgs couplings? Marco Delmastro Twelve years with the Higgs boson 104 Sally Dawson
  • 105.
    More tools athand! Constraining κλ with single-Higgs Marco Delmastro Twelve years with the Higgs boson 105 • Single Higgs boson productions and decays as well as kinematics sensitive to the self-coupling through EW corrections arXiv:2211.01216
  • 106.
    4 - 2 - 02 4 6 8 10 12 b κ 10 - 0 10 20 30 40 c κ ATLAS Preliminary γ γ Æ H , ZZ* Æ H -1 = 13 TeV, 139 fb s 68% CL 95% CL Standard Model ZZ* Æ H Obs. γ γ Æ H Obs. Obs. Combination Direct Hàcc search is not the only tool… • Charm quark contributes to ggF loop, modification to Higgs-charm coupling can alter pT H • Analogous effect on quark-initiated production of the Higgs boson • Shape of differential pTH cross-section can be interpreted in term of Higgs-charm coupling Marco Delmastro Twelve years with the Higgs boson 106 ATLAS-CONF-2022-002 arXiv:1606.09253 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 )[pb/GeV] H T p /d( σ d ATLAS Preliminary -1 = 13 TeV, 139 fb s γ γ Æ H *, ZZ Æ H * ZZ Æ H γ γ Æ H Combination Systematic Uncertainty Total Uncertainty XH =1.47, + K MG5 FxFx XH =1.14, + K ResBos2 XH =1, + K SCETlib XH =1, + K RadiSH XH =1.1, + K NNLOPS tH + H b b + H t t =VBF+VH+ XH 0 10 20 30 45 60 80 120 200 300 650 1000 [GeV] H T p 0.5 1 1.5 2 Theory/Data
  • 107.
    Is it theStandard Model Higgs potential? • How the Higgs potential is realized in Nature can provide important answers to many open points in our understanding of Nature… ü e.g. BSM scenarios of Higgs sector, electroweak phase transition in the SM, baryogenesis… Marco Delmastro Twelve years with the Higgs boson 107 modified Higgs self- coupling needed for strong 1st order transition in electroweak symmetry breaking which allows baryogenesis Different models predicts different potential shape Evolution of Higgs potential could explain matter/antimatter asymmetry via electroweak baryogenesis arXiv:1511.03969 Phys. Rev. D 101, 075023 (2020)
  • 108.
    Higgs at FC-ee MarcoDelmastro Twelve years with the Higgs boson 108 L = 5 ab-1 ZH = 106 VBF = 2x104 L = 1.5 ab-1 ZH = 2.5x105 VBF = 5x104