PHY 712 Spring 2019 -- Lecture 19 1
02/27/2019
PHY 712 Electrodynamics
9-9:50 AM Olin 105
Plan for Lecture 19:
Chap. 8 in Jackson – Wave Guides
1. TEM, TE, and TM modes
2. Justification for boundary conditions;
behavior of waves near conducting
surfaces
PHY 712 Spring 2019 -- Lecture 19 2
02/27/2019
4 PM in Olin 101
PHY 712 Spring 2019 -- Lecture 19 3
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 4
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 5
02/27/2019
For linear isotropic media and no sources: ;
Coulomb's law: 0
Ampere-Maxwell's law: 0
Faraday's law: 0
No magnetic monopoles:
t
t
 

 
 

  


  

D E B H
E
E
B
B
E
0
 
B
Maxwell’s equations
PHY 712 Spring 2019 -- Lecture 19 6
02/27/2019
 
0
2
2
2
2


























t
t
t
B
B
E
B
E
B



Analysis of Maxwell’s equations without sources -- continued:
0
:
monopoles
magnetic
No
0
:
law
s
Faraday'
0
:
law
s
Maxwell'
-
Ampere
0
:
law
s
Coulomb'


















B
B
E
E
B
E
t
t

 
0
2
2
2
2


























t
t
t
E
E
B
E
B
E

PHY 712 Spring 2019 -- Lecture 19 7
02/27/2019
2
2
0
0
2
2
2
2
2
2
2
2
2
2
where
0
1
0
1
n
c
c
v
t
v
t
v















E
E
B
B
Analysis of Maxwell’s equations without sources -- continued:
Both E and B fields are solutions to a wave equation:
       
t
i
i
t
i
i
e
t
e
t 
 






 r
k
r
k
E
r
E
B
r
B 0
0 ,
,
:
equation
wave
to
solutions
wave
Plane
PHY 712 Spring 2019 -- Lecture 19 8
02/27/2019
Analysis of Maxwell’s equations without sources -- continued:
       
0
0
2
2
2
0
0
where
,
,
:
equation
wave
to
solutions
wave
Plane

























 



n
c
n
v
e
t
e
t t
i
i
t
i
i
k
E
r
E
B
r
B r
k
r
k
Note: e, m, n, k can all be complex; for the moment we will
assume that they are all real (no dissipation).
0
ˆ
and
0
ˆ
:
note
also
ˆ
0
:
law
s
Faraday'
from
t;
independen
not
are
and
that
Note
0
0
0
0
0
0
0















B
k
E
k
E
k
E
k
B
B
E
B
E
c
n
t

For real
e, m, n, k
PHY 712 Spring 2019 -- Lecture 19 9
02/27/2019
Analysis of Maxwell’s equations without sources -- continued:
     
0
ˆ
and
where
,
ˆ
,
:
waves
netic
electromag
plane
of
Summary
0
0
0
2
2
2
0
0


























 

 



E
k
k
E
r
E
E
k
r
B r
k
r
k







n
c
n
v
e
t
e
c
n
t t
i
i
t
i
i
2
2
0
0
2
0
Poynting vector and energy density:
1
ˆ ˆ
2 2
1
2
avg
avg
n
c
u

 

 

E
S k E k
E
E0
B0
k
PHY 712 Spring 2019 -- Lecture 19 10
02/27/2019
Transverse electric and magnetic waves (TEM)
     
0
0
2 2
2
0
0 0
ˆ
, ,
ˆ
where and 0
i i t i i t
n
t e t e
c
n
n
v c
 
  
 
   
 

 
 
 
   
    
   
   
k r k r
k E
B r E r E
k k E
E0
B0
k
TEM modes describe
electromagnetic waves in lossless
media and vacuum
For real
e, m, n, k
PHY 712 Spring 2019 -- Lecture 19 11
02/27/2019
Effects of complex dielectric; fields near the surface on an
ideal conductor
     
   
 
t
i
c
in
I
R
t
i
i
b
b
b
R
e
e
t
c
in
n
e
t
t
t
t
t



 

























































r
k
r
k
r
k
E
r
E
k
k
E
r
E
E
H
E
F
F
E
E
H
H
E
H
E
E
H
E
J
E
D
ˆ
/
0
/
ˆ
0
2
2
2
,
ˆ
re
whe
,
:
for
form
wave
Plane
,
0
0
0
:
and
of
in terms
equations
s
Maxwell'
:
medium
isotropic
an
for
Suppose
PHY 712 Spring 2019 -- Lecture 19 12
02/27/2019
     
 
2
2 2
0
2
2
2
Plane wave form for :
ˆ
, where
0
0
i i t
R I
b
R I b
t e n in
c
t t
c
n in i c
 
 




 
  
 
 
   
 
 
 
    
k r
E
E r E k k
E
Some details:
PHY 712 Spring 2019 -- Lecture 19 13
02/27/2019
Fields near the surface on an ideal conductor -- continued
















1
2
1
For
1
1
2
1
1
2
:
system
our
For
2
/
1
2
2
/
1
2














































I
R
b
b
I
b
b
R
n
c
n
c
n
c
n
c
   
     
ˆ ˆ
/ /
0
,
1
ˆ ˆ
, , ,
i i t
t e e
n i
t t t
c
  
 
   
  

    
k r k r
E r E
H r k E r k E r
PHY 712 Spring 2019 -- Lecture 19 14
02/27/2019
Some representative values of skin depth
Ref: Lorrain2
and Corson
s (107
S/m) m/m0
d (0.001m)
at 60 Hz
d (0.001m)
at 1 MHz
Al 3.54 1 10.9 84.6
Cu 5.80 1 8.5 66.1
Fe 1.00 100 1.0 10.0
Mumetal 0.16 2000 0.4 3.0
Zn 1.86 1 15.1 117
1
2
R I
n n
c c
  

  
PHY 712 Spring 2019 -- Lecture 19 15
02/27/2019
Relative energies associated with field
2
2
2 2 2
2 2
Electric energy density:
Magnetic energy density:
Ratio inside conducting media:
2
1
b
b b b
i


    



 

E
H
E
H
2
2
2
0 0
2
2
2
0
2
0
=2
For 1 magnetic energy dominates
Note that in free space, 1
b
b
  

  






E
H
E
H

PHY 712 Spring 2019 -- Lecture 19 16
02/27/2019
Fields near the surface on an ideal conductor -- continued
 
i
c
in
n
c
n
c
n
c
I
R
I
R









1
1
limit,
In this
1
2
1
For
0
0 











   
     
ˆ ˆ
/ /
0
,
1
ˆ ˆ
, , ,
i i t
t e e
n i
t t t
c
  
 
   
 

   
k r k r
E r E
H r k E r k E r
z
r||
0
PHY 712 Spring 2019 -- Lecture 19 17
02/27/2019
Fields near the surface on an ideal conductor -- continued
   
     
ˆ ˆ
/ /
0
,
1
ˆ ˆ
, , ,
i i t
t e e
n i
t t t
c
  
 
   
 

   
k r k r
E r E
H r k E r k E r
z
r||
0
   
   
ˆ ˆ
/ /
0
Note that the field is larger than field so we can write:
,
1 ˆ
, ,
2
i i t
t e e
i
t t
  

   
 

 
k r k r
H E
H r H
E r k H r
PHY 712 Spring 2019 -- Lecture 19 18
Boundary values for ideal conductor
At the boundary of an
ideal conductor, the E
and H fields decay in the
direction normal to the
interface.
   
   
t
i
t
e
e
t t
i
i
,
ˆ
2
1
,
,
:
conductor
the
Inside
/
ˆ
0
/
ˆ
r
H
k
r
E
H
r
H r
k
r
k




 







k̂
H0
n̂
 
Ideal conductor boundary condit
0 0
ions:
S S
   
n E n H
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 19
Waveguide terminology
• TEM: transverse electric and magnetic (both E and H
fields are perpendicular to wave propagation direction)
• TM: transverse magnetic (H field is perpendicular to
wave propagation direction)
• TE: transverse electric (E field is perpendicular to wave
propagation direction)
02/27/2019
Wave guides – dielectric media with one or more metal boundary
k̂
H0
n̂
 
Ideal conductor boundary condit
0 0
ions:
S S
   
n E n H
PHY 712 Spring 2019 -- Lecture 19 20
Analysis of rectangular waveguide
Boundary conditions at surface of waveguide:
Etangential=0, Bnormal=0
z
x
y
Cross section view b
a
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 21
Analysis of rectangular waveguide
z
x
y
     
 
 
     
 
 
t
i
ikz
z
y
x
t
i
ikz
z
y
x
e
y
x
E
y
x
E
y
x
E
e
y
x
B
y
x
B
y
x
B












z
y
x
E
z
y
x
B
ˆ
,
ˆ
,
ˆ
,
ˆ
,
ˆ
,
ˆ
,
02/27/2019
Inside the dielectric medium: (assume to be real)
0 0
=0 0
t t


   
 
    
 
E B
B E
E B
PHY 712 Spring 2019 -- Lecture 19 22
Solution of Maxwell’s equations within the pipe:
2 2
2 2
2 2
Combining Faraday's Law and Ampere's Law, we find that each field
component must satisfy a two-dimensional Helmholz equation:
( , ) 0.
x
k
x y
E x y

 
 
   
 




02/27/2019
0
2 2
2 2 2
For the rectangular wave guide discussed in Section 8.4 of your
text a solution for a TE mode can hav
( , ) 0 and ( , ) cos cos ,
wit
e:
h
z z
mn
m x n y
E x y B x y B
a b
m n
k k
a b
 
 

   
     
   
 
   
   
 
   
   
 
 
PHY 712 Spring 2019 -- Lecture 19 23
Maxwell’s equations within the pipe in terms of all 6 components:
0.
0.
y
x
z
y
x
z
B
B
ikB
x y
E
E
ikE
x y


  
 


  
 
.
.
.
z
y x
z
x y
y x
z
E
ikE i B
y
E
ikE i B
x
E E
i B
x y




 


 

 
 
 
.
.
.
z
y x
z
x y
y x
z
B
ikB i E
y
B
ikB i E
x
B B
i E
x y




 


 

 
 
 
02/27/2019
For TE mode with 0
z
x y
y x
E
k
B E
k
B E





PHY 712 Spring 2019 -- Lecture 19 24
TE modes for rectangular wave guide continued:
0
0
2 2 2 2
0
2 2 2 2
( , ) 0 and ( , ) cos cos ,
cos sin ,
sin
z z
z
x y
z
y x
m x n y
E x y B x y B
a b
B
i i n m x n y
E B B
k k y b a b
m n
a b
B
i i m
E B B
k k x a
m n
a b
 
     
  
   
  
   
     
   

     
      
       
   

 
   
   
 
 

  
   
   

 
   
   
 
 
cos .
m x n y
a b
 
   
   
   
tangential
normal
0 because: ( ,0) ( , ) 0
and
Check boundary conditions:
(0, ) ( , ) 0
0
.
x x
y y
E x E x b
E y E a y
 
  

E
B
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 25
Solution for m=n=1
 
 
   
 
   


























































b
y
n
a
x
m
a
m
B
y
x
iE
b
y
n
a
x
m
b
n
B
y
x
iE
b
y
n
a
x
m
B
y
x
B
b
n
a
m
y
b
n
a
m
x
z














cos
sin
/
,
sin
cos
/
,
cos
cos
,
2
2
0
2
2
0
0
 
y
x
Bz ,
 
y
x
iEx ,
 
y
x
iEy ,
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 26
Solution for m=n=1
2 2
2 2 2
mn
m n
k k
a b
 

 
   
   
 
   
   
 
 
k
w
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 27
     
 
 
     
 
 
         
         
d
p
k
kz
y
x
B
kz
y
x
B
z
y
x
B
kz
y
x
E
kz
y
x
E
z
y
x
E
e
z
y
x
E
z
y
x
E
z
y
x
E
e
z
y
x
B
z
y
x
B
z
y
x
B
i
i
i
i
i
i
t
i
z
y
x
t
i
z
y
x

















cos
,
or
sin
,
,
,
cos
,
or
sin
,
,
,
:
general
In
ˆ
,
,
ˆ
,
,
ˆ
,
,
ˆ
,
,
ˆ
,
,
ˆ
,
,
z
y
x
E
z
y
x
B
27
Resonant cavity
z
x
y
d
z
b
y
a
x






0
0
0
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 28
02/27/2019
Resonant cavity
z
x
y
d
z
b
y
a
x






0
0
0




















































2
2
2
2
2
2
2
2
2
1
d
p
b
n
a
m
b
n
a
m
d
p
k









PHY 712 Spring 2019 -- Lecture 19 29
k
02/27/2019
Wave guides – dielectric media with one or more metal boundary
Coaxial cable
TEM modes
Simple optical pipe
TE or TM modes
Waveguide terminology
• TEM: transverse electric and magnetic (both E and H
fields are perpendicular to wave propagation direction)
• TM: transverse magnetic (H field is perpendicular to
wave propagation direction)
• TE: transverse electric (E field is perpendicular to wave
propagation direction)
E
H
k
PHY 712 Spring 2019 -- Lecture 19 30
Wave guides
Coaxial cable
TEM modes
Top view:
a
b
m e
z
0
0
for
:
medium
inside
equations
s
Maxwell'















B
E
B
E
B
E
ε
iω
i
b
a



(following problem 8.2 in
Jackson’s text)
Inside medium,
m e assumed to
be real
02/27/2019
PHY 712 Spring 2019 -- Lecture 19 31
Electromagnetic waves in a coaxial cable -- continued
ˆ
cos
ˆ
sin
ˆ
ˆ
sin
ˆ
cos
ˆ
ˆ
ˆ
for
solution
Example
0
0
y
x
φ
y
x
ρ
φ
B
ρ
E






































t
i
ikz
t
i
ikz
e
a
B
e
a
E
b
a
Top view:
a
b
m e
r
f
  z
B
E
S ˆ
2
2
1
:
)
,
(with
medium
cable
thin
vector wi
Poynting
2
2
0
*


















a
B
avg



0
0
:
Find
B
E
k


02/27/2019
PHY 712 Spring 2019 -- Lecture 19 32
Electromagnetic waves in a coaxial cable -- continued
Top view:
a
b
m e
r
f
  







  a
b
a
B
d
d avg
b
a
ln
ˆ
:
material
cable
in
power
averaged
Time
2
2
0
2
0 






z
S
02/27/2019

Lecture19:PHY 712 Electrodynamics-waveguides

  • 1.
    PHY 712 Spring2019 -- Lecture 19 1 02/27/2019 PHY 712 Electrodynamics 9-9:50 AM Olin 105 Plan for Lecture 19: Chap. 8 in Jackson – Wave Guides 1. TEM, TE, and TM modes 2. Justification for boundary conditions; behavior of waves near conducting surfaces
  • 2.
    PHY 712 Spring2019 -- Lecture 19 2 02/27/2019 4 PM in Olin 101
  • 3.
    PHY 712 Spring2019 -- Lecture 19 3 02/27/2019
  • 4.
    PHY 712 Spring2019 -- Lecture 19 4 02/27/2019
  • 5.
    PHY 712 Spring2019 -- Lecture 19 5 02/27/2019 For linear isotropic media and no sources: ; Coulomb's law: 0 Ampere-Maxwell's law: 0 Faraday's law: 0 No magnetic monopoles: t t                  D E B H E E B B E 0   B Maxwell’s equations
  • 6.
    PHY 712 Spring2019 -- Lecture 19 6 02/27/2019   0 2 2 2 2                           t t t B B E B E B    Analysis of Maxwell’s equations without sources -- continued: 0 : monopoles magnetic No 0 : law s Faraday' 0 : law s Maxwell' - Ampere 0 : law s Coulomb'                   B B E E B E t t    0 2 2 2 2                           t t t E E B E B E 
  • 7.
    PHY 712 Spring2019 -- Lecture 19 7 02/27/2019 2 2 0 0 2 2 2 2 2 2 2 2 2 2 where 0 1 0 1 n c c v t v t v                E E B B Analysis of Maxwell’s equations without sources -- continued: Both E and B fields are solutions to a wave equation:         t i i t i i e t e t           r k r k E r E B r B 0 0 , , : equation wave to solutions wave Plane
  • 8.
    PHY 712 Spring2019 -- Lecture 19 8 02/27/2019 Analysis of Maxwell’s equations without sources -- continued:         0 0 2 2 2 0 0 where , , : equation wave to solutions wave Plane                               n c n v e t e t t i i t i i k E r E B r B r k r k Note: e, m, n, k can all be complex; for the moment we will assume that they are all real (no dissipation). 0 ˆ and 0 ˆ : note also ˆ 0 : law s Faraday' from t; independen not are and that Note 0 0 0 0 0 0 0                B k E k E k E k B B E B E c n t  For real e, m, n, k
  • 9.
    PHY 712 Spring2019 -- Lecture 19 9 02/27/2019 Analysis of Maxwell’s equations without sources -- continued:       0 ˆ and where , ˆ , : waves netic electromag plane of Summary 0 0 0 2 2 2 0 0                                   E k k E r E E k r B r k r k        n c n v e t e c n t t i i t i i 2 2 0 0 2 0 Poynting vector and energy density: 1 ˆ ˆ 2 2 1 2 avg avg n c u        E S k E k E E0 B0 k
  • 10.
    PHY 712 Spring2019 -- Lecture 19 10 02/27/2019 Transverse electric and magnetic waves (TEM)       0 0 2 2 2 0 0 0 ˆ , , ˆ where and 0 i i t i i t n t e t e c n n v c                                      k r k r k E B r E r E k k E E0 B0 k TEM modes describe electromagnetic waves in lossless media and vacuum For real e, m, n, k
  • 11.
    PHY 712 Spring2019 -- Lecture 19 11 02/27/2019 Effects of complex dielectric; fields near the surface on an ideal conductor             t i c in I R t i i b b b R e e t c in n e t t t t t                                                               r k r k r k E r E k k E r E E H E F F E E H H E H E E H E J E D ˆ / 0 / ˆ 0 2 2 2 , ˆ re whe , : for form wave Plane , 0 0 0 : and of in terms equations s Maxwell' : medium isotropic an for Suppose
  • 12.
    PHY 712 Spring2019 -- Lecture 19 12 02/27/2019         2 2 2 0 2 2 2 Plane wave form for : ˆ , where 0 0 i i t R I b R I b t e n in c t t c n in i c                                 k r E E r E k k E Some details:
  • 13.
    PHY 712 Spring2019 -- Lecture 19 13 02/27/2019 Fields near the surface on an ideal conductor -- continued                 1 2 1 For 1 1 2 1 1 2 : system our For 2 / 1 2 2 / 1 2                                               I R b b I b b R n c n c n c n c           ˆ ˆ / / 0 , 1 ˆ ˆ , , , i i t t e e n i t t t c                   k r k r E r E H r k E r k E r
  • 14.
    PHY 712 Spring2019 -- Lecture 19 14 02/27/2019 Some representative values of skin depth Ref: Lorrain2 and Corson s (107 S/m) m/m0 d (0.001m) at 60 Hz d (0.001m) at 1 MHz Al 3.54 1 10.9 84.6 Cu 5.80 1 8.5 66.1 Fe 1.00 100 1.0 10.0 Mumetal 0.16 2000 0.4 3.0 Zn 1.86 1 15.1 117 1 2 R I n n c c       
  • 15.
    PHY 712 Spring2019 -- Lecture 19 15 02/27/2019 Relative energies associated with field 2 2 2 2 2 2 2 Electric energy density: Magnetic energy density: Ratio inside conducting media: 2 1 b b b b i              E H E H 2 2 2 0 0 2 2 2 0 2 0 =2 For 1 magnetic energy dominates Note that in free space, 1 b b              E H E H 
  • 16.
    PHY 712 Spring2019 -- Lecture 19 16 02/27/2019 Fields near the surface on an ideal conductor -- continued   i c in n c n c n c I R I R          1 1 limit, In this 1 2 1 For 0 0                       ˆ ˆ / / 0 , 1 ˆ ˆ , , , i i t t e e n i t t t c                 k r k r E r E H r k E r k E r z r|| 0
  • 17.
    PHY 712 Spring2019 -- Lecture 19 17 02/27/2019 Fields near the surface on an ideal conductor -- continued           ˆ ˆ / / 0 , 1 ˆ ˆ , , , i i t t e e n i t t t c                 k r k r E r E H r k E r k E r z r|| 0         ˆ ˆ / / 0 Note that the field is larger than field so we can write: , 1 ˆ , , 2 i i t t e e i t t              k r k r H E H r H E r k H r
  • 18.
    PHY 712 Spring2019 -- Lecture 19 18 Boundary values for ideal conductor At the boundary of an ideal conductor, the E and H fields decay in the direction normal to the interface.         t i t e e t t i i , ˆ 2 1 , , : conductor the Inside / ˆ 0 / ˆ r H k r E H r H r k r k              k̂ H0 n̂   Ideal conductor boundary condit 0 0 ions: S S     n E n H 02/27/2019
  • 19.
    PHY 712 Spring2019 -- Lecture 19 19 Waveguide terminology • TEM: transverse electric and magnetic (both E and H fields are perpendicular to wave propagation direction) • TM: transverse magnetic (H field is perpendicular to wave propagation direction) • TE: transverse electric (E field is perpendicular to wave propagation direction) 02/27/2019 Wave guides – dielectric media with one or more metal boundary k̂ H0 n̂   Ideal conductor boundary condit 0 0 ions: S S     n E n H
  • 20.
    PHY 712 Spring2019 -- Lecture 19 20 Analysis of rectangular waveguide Boundary conditions at surface of waveguide: Etangential=0, Bnormal=0 z x y Cross section view b a 02/27/2019
  • 21.
    PHY 712 Spring2019 -- Lecture 19 21 Analysis of rectangular waveguide z x y                     t i ikz z y x t i ikz z y x e y x E y x E y x E e y x B y x B y x B             z y x E z y x B ˆ , ˆ , ˆ , ˆ , ˆ , ˆ , 02/27/2019 Inside the dielectric medium: (assume to be real) 0 0 =0 0 t t                E B B E E B
  • 22.
    PHY 712 Spring2019 -- Lecture 19 22 Solution of Maxwell’s equations within the pipe: 2 2 2 2 2 2 Combining Faraday's Law and Ampere's Law, we find that each field component must satisfy a two-dimensional Helmholz equation: ( , ) 0. x k x y E x y                02/27/2019 0 2 2 2 2 2 For the rectangular wave guide discussed in Section 8.4 of your text a solution for a TE mode can hav ( , ) 0 and ( , ) cos cos , wit e: h z z mn m x n y E x y B x y B a b m n k k a b                                           
  • 23.
    PHY 712 Spring2019 -- Lecture 19 23 Maxwell’s equations within the pipe in terms of all 6 components: 0. 0. y x z y x z B B ikB x y E E ikE x y               . . . z y x z x y y x z E ikE i B y E ikE i B x E E i B x y                  . . . z y x z x y y x z B ikB i E y B ikB i E x B B i E x y                  02/27/2019 For TE mode with 0 z x y y x E k B E k B E     
  • 24.
    PHY 712 Spring2019 -- Lecture 19 24 TE modes for rectangular wave guide continued: 0 0 2 2 2 2 0 2 2 2 2 ( , ) 0 and ( , ) cos cos , cos sin , sin z z z x y z y x m x n y E x y B x y B a b B i i n m x n y E B B k k y b a b m n a b B i i m E B B k k x a m n a b                                                                                                     cos . m x n y a b               tangential normal 0 because: ( ,0) ( , ) 0 and Check boundary conditions: (0, ) ( , ) 0 0 . x x y y E x E x b E y E a y       E B 02/27/2019
  • 25.
    PHY 712 Spring2019 -- Lecture 19 25 Solution for m=n=1                                                                         b y n a x m a m B y x iE b y n a x m b n B y x iE b y n a x m B y x B b n a m y b n a m x z               cos sin / , sin cos / , cos cos , 2 2 0 2 2 0 0   y x Bz ,   y x iEx ,   y x iEy , 02/27/2019
  • 26.
    PHY 712 Spring2019 -- Lecture 19 26 Solution for m=n=1 2 2 2 2 2 mn m n k k a b                            k w 02/27/2019
  • 27.
    PHY 712 Spring2019 -- Lecture 19 27                                         d p k kz y x B kz y x B z y x B kz y x E kz y x E z y x E e z y x E z y x E z y x E e z y x B z y x B z y x B i i i i i i t i z y x t i z y x                  cos , or sin , , , cos , or sin , , , : general In ˆ , , ˆ , , ˆ , , ˆ , , ˆ , , ˆ , , z y x E z y x B 27 Resonant cavity z x y d z b y a x       0 0 0 02/27/2019
  • 28.
    PHY 712 Spring2019 -- Lecture 19 28 02/27/2019 Resonant cavity z x y d z b y a x       0 0 0                                                     2 2 2 2 2 2 2 2 2 1 d p b n a m b n a m d p k         
  • 29.
    PHY 712 Spring2019 -- Lecture 19 29 k 02/27/2019 Wave guides – dielectric media with one or more metal boundary Coaxial cable TEM modes Simple optical pipe TE or TM modes Waveguide terminology • TEM: transverse electric and magnetic (both E and H fields are perpendicular to wave propagation direction) • TM: transverse magnetic (H field is perpendicular to wave propagation direction) • TE: transverse electric (E field is perpendicular to wave propagation direction) E H k
  • 30.
    PHY 712 Spring2019 -- Lecture 19 30 Wave guides Coaxial cable TEM modes Top view: a b m e z 0 0 for : medium inside equations s Maxwell'                B E B E B E ε iω i b a    (following problem 8.2 in Jackson’s text) Inside medium, m e assumed to be real 02/27/2019
  • 31.
    PHY 712 Spring2019 -- Lecture 19 31 Electromagnetic waves in a coaxial cable -- continued ˆ cos ˆ sin ˆ ˆ sin ˆ cos ˆ ˆ ˆ for solution Example 0 0 y x φ y x ρ φ B ρ E                                       t i ikz t i ikz e a B e a E b a Top view: a b m e r f   z B E S ˆ 2 2 1 : ) , (with medium cable thin vector wi Poynting 2 2 0 *                   a B avg    0 0 : Find B E k   02/27/2019
  • 32.
    PHY 712 Spring2019 -- Lecture 19 32 Electromagnetic waves in a coaxial cable -- continued Top view: a b m e r f             a b a B d d avg b a ln ˆ : material cable in power averaged Time 2 2 0 2 0        z S 02/27/2019