SlideShare a Scribd company logo
3000 RTP System
by Cubit Pte Ltd
soroskim@cubit.com.sg
Applications
High-End RTP Production System
For 200 mm / 300 mm wafer size
For 180 nm, 130 nm, and 100 nm technology
Processes :
Implant activation
S/D
Ultra-Shallow Junction Formation
TiSi2, CoSi2 processes
Dry oxides, oxynitrides
Steam applications
STI liner oxides
Sidewall oxides
Thin gate oxides
PSG and BPSG reflow processes
Others
3000 Footprint
Process & Fac. Module
Handling Module
(dep. on config.)
Power &
Control
Rack
up to 15 m
Blower
Small Footprint: 3.2-3.6 m2
200 / 300 mm Capability
3000 Footprint With Steam Option
Steam
Module
Power &
Control
Rack
Process & Fac. Module
Handling Module
(dep. on config.)
up to 15 m
Blower
Small Footprint: 3.6-4.1 m2
200 / 300 mm Capability
3000 with Steam Option
Additional Steam Features
C
Co
oo
ol
li
in
ng
g-
-N
N2
2 r
re
ec
ci
ir
rc
cu
ul
la
at
ti
io
on
n Y
Ye
es
s
M
Mo
od
de
es
s o
of
f o
op
pe
er
ra
at
ti
io
on
n S
St
te
ea
am
m O
O2
2-
-r
ri
ic
ch
h,
, s
st
te
ea
am
m H
H2
2-
-r
ri
ic
ch
h,
, d
dr
ry
y
S
St
te
ea
am
m g
ge
en
ne
er
ra
at
to
or
r C
Ce
en
nt
tr
ro
ot
th
he
er
rm
m s
st
te
ea
am
m g
ge
en
ne
er
ra
at
to
or
r w
wi
it
th
h a
ad
dv
va
an
nc
ce
ed
d
c
co
on
nt
tr
ro
ol
ll
le
er
r:
: H
H2
2-
-r
ri
ic
ch
h,
, O
O2
2-
-r
ri
ic
ch
h,
, d
dy
yn
na
am
mi
ic
c s
sw
wi
it
tc
ch
hi
in
ng
g
b
be
et
tw
we
ee
en
n m
mo
od
de
es
s,
, S
S2
2-
-9
93
3 a
an
nd
d C
CE
E c
ce
er
rt
ti
if
fi
ie
ed
d
G
Ga
as
s d
de
el
li
iv
ve
er
ry
y i
in
nt
te
er
rf
fa
ac
ce
e M
Mu
ul
lt
ti
ip
pl
le
e g
ga
as
s l
li
in
ne
es
s,
, d
dy
yn
na
am
mi
ic
c f
fl
lo
ow
w a
an
nd
d
c
co
on
nc
ce
en
nt
tr
ra
at
ti
io
on
n c
co
on
nt
tr
ro
ol
l,
, M
MF
FC
C s
sc
ca
al
li
in
ng
g f
fo
or
r r
ra
at
ti
io
o
c
co
on
nt
tr
ro
ol
l,
, i
in
nt
te
eg
gr
ra
at
te
ed
d d
di
il
lu
ut
ti
io
on
n
G
Ga
as
s p
pa
an
ne
el
l A
Au
ux
xi
il
li
ia
ar
ry
y g
ga
as
s p
pa
an
ne
el
l t
to
o s
su
up
pp
pl
ly
y b
bu
ur
rn
ne
er
r i
in
n t
th
he
e
s
st
te
ea
am
m c
ca
ab
bi
in
ne
et
t
M
Mo
od
de
e s
sw
wi
it
tc
ch
hi
in
ng
g O
On
n-
-l
li
in
ne
e s
sw
wi
it
tc
ch
hi
in
ng
g,
, n
no
o s
so
of
ft
tw
wa
ar
re
e r
re
e-
-b
bo
oo
ot
t o
or
r
h
ha
ar
rd
dw
wa
ar
re
e m
mo
od
di
if
fi
ic
ca
at
ti
io
on
ns
s a
ar
re
e n
ne
ec
ce
es
ss
sa
ar
ry
y
U
Us
se
er
r i
in
nt
te
er
rf
fa
ac
ce
e A
Al
ll
l s
sa
af
fe
et
ty
y a
al
la
ar
rm
ms
s a
ar
re
e s
su
up
pp
po
or
rt
te
ed
d,
, r
re
ec
ci
ip
pe
es
s a
ar
re
e
u
us
se
er
r-
-f
fr
ri
ie
en
nd
dl
ly
y (
(s
st
te
ea
am
m a
an
nd
d c
co
on
nc
ce
en
nt
tr
ra
at
ti
io
on
n
p
pa
ar
ra
am
me
et
te
er
rs
s a
ar
re
e u
us
se
ed
d)
)
W
Wa
at
te
er
r-
-c
co
oo
ol
le
ed
d b
bu
ur
rn
ne
er
r Y
Ye
es
s
200mm & 300mm Production Configuration
2 x 300 mm FOUP 200 mm Open Cassettes
3000 Customer List
NEC 1
Varian 2
White Oak 4
Infineon 3
UMC ~20
TSMC 2
Macronix 2
Chartered 7
Hynix 1
Lucent 1
Hitachi 1
200mm
Infineon 6
UMC 3
TSMC 1
Trecenti 7
TI 1
300mm
Wacker 2
Mitsubishi 1
MEMC 3
LG Siltron 1
Taisil 1
Wafer Mfg.
> 70 Tools
Facts
3000 in 256 M DRAM high volume mass production for
200 mm wafers and in-pilot production on 300 mm wafers
300 mm chip production field experience since 04/98
(SC300 / Dresden, SAMSUNG / Korea)
I300I 300 mm benchmark evaluation successfully completed in
Feb. 1998, SELETE 300 mm benchmark evaluation successfully
completed in March 2000
SEMATECH benchmark evaluation on 200 mm wafers (S/D anneal),
thin oxides, and Spike Annealing in Dec. 1999
Large market penetration of 3000 worldwide
(Taiwan, USA, Europe, Singapore, Japan, Korea)
First 3000 system with Wet Oxidation option shipped by 07/00.
Backside-independent Ripple temperature measurement
down to 450 °C.
Ripple measurement proven in high volume production
Reactor Concept
Front
Back
Bottom lamps
Top lamps
Top view with 200 mm wafer
and 300 mm wafer + edge guard ring
Reactor Concept
Aluminum chamber sealed with top &
bottom quartz windows
Top side heating by 26 linear lamps
Back side heating by 26 linear lamps
Side heating by 2 x 2 linear lamps
Reactor Cross-Section
Bottom quartz plate
Gas inlet
Door slot
Bottom
lamps
Side lamps
Ring & liner tray
200 mm wafer
Quartz pads
Top quartz plate
Rotor with
wafer support
Top lamps
Wafer Rotation
Rotor
Quartz pads
(for air cushion)
Gas supply 2
(for air cushion)
300 mm wafer
Quartz plate
Gas supply 1 (for acc. /
dec.)
0 10 20 30 40 50 60 70 80 90
0
20
40
60
80
100
120
N
2
O
2
Pyro
Set
O
2
-Concentration
(ppm)
/
N
2
-Gas
Flow
(slm)
Recipe Time (s)
0
100
200
300
400
500
600
700
800
Set
/
Pyro
Temperature
(°C)
Ambient Control Using O2 Sensor
O2-sensor inlet about 1 cm from door O2-concentration < 10 ppm within less
200 mm titanium coated silicon wafer than 9 s measured by oxygen sensor
Ripple Temperature Measurement
Measurement Principle

Wafer 

Incident lamp light
 : Transmissivity
  Reflectivity
 : Absorptivity
Measurement Principle:
Separation of reflected lamp light and radiation emitted from the wafer
Emissivity calculation:  =  −  −  ( =  for T > 600 °C)
Rescaling of measured emissivity to black body intensity
Calculation of actual wafer temperature
Energy Balance:  +  +  = 1
Kirchhoff Law:  = 
Reflectivity
Transmissivity
Emissivity
Ripple Temperature Measurement
Measurement Principle
DC lamp signal with AC modulation
and phase shift
DC lamp signal with AC modulation
Reflected DC lamp signal with AC modulation
Transmitted DC lamp signal with
AC modulation and phase shift
Temperature radiation from wafer
Absolute
Temperature
I
t
I
t
I
t
I
t
t
Lamp
Pyro
Wafer
Optical System Optical System
Wafer
Pyro
Ripple Temperature Measurement
Backside Independence in Production
Backside Coated
Bare Silicon
Wafers
RTO Process:
1080 °C, 95 s, O2
From: „Evaluation of an AST 3000 RTP-Tool for Production“
Regina Hayn et al, Infineon Technologies, RTP Conference 1999, Colorado Springs, USA
Mean Oxide Thickness within +/- 3.1 Å
(including influence of backside preparation
on wafer frontside)
110,0
115,0
120,0
125,0
130,0
135,0
140,0
145,0
150,0
bare
Si
90
nm
Poly
90
nm
Poly
170
nm
WSi
170
nm
WSi
22.5
nm
Oxide
22.5
nm
Oxide
40
nm
Oxide
40
nm
Oxide
55
nm
Oxide
55
nm
Oxide
26.5
nm
Nitride
26.5
nm
Nitride
175
nm
Nitride
175
nm
Nitride
200
nm
Nitride
200
nm
Nitride
bare
Si
Wafer Backside Coating
Oxide
Thickness
(Å)
Impact of Quartz Ware Contamination
on Temperature Measurement
General
Processes like BPSG reflow or RTA of B+ or BF2
+ tend to contaminate
the quartz ware, temperature measurement devices and the process chamber.
Contamination might have a strong effect on temperature measurement.
Especially temperature measurement techniques making use of passive emissivity
compensation, rely on clean surfaces to function properly because they cannot
compensate contamination.
Therefore, the temperature measurement devices have to be changed or
cleaned frequently.
This results in high costs for quartz ware and reduced uptime.
Ripple Pyrometry
The Ripple pyrometer optic is to a large extent not affected by contamination,
because it is separated from the process environment by the quartz ware and it
actively measures optical properties of the wafer incl. optical paths between wafer
and pyrometer.
After heavy contamination, quartz ware can easily be cleaned and /or changed.
Higher uptime
Lower CoO
Better process stability
Impact of Quartz Ware Contamination
on Temperature Measurement (continued)
Coated quartz wafer, placed 3 mm above the rotor
(simulation of quartz contamination)
Wafer
Experimental Set-Up
Temperature stability within +/- 1°C
Insensitivity of Ripple Temperature Measurement
against heavy quartz contamination
-2,0
-1,0
0,0
1,0
2,0
Bare 3.3 nm
Si3N4
7.7 nm
Si3N4
56.3 nm
Si3N4
2 nm
PolySi
12.7 nm
PolySi
Coating of Quartz Wafer
Temperature
Variation
(°C)
700 °C ( Wafer HR)
1000 °C ( Wafer LR)
Impact of Quartz Ware Contamination
on Temperature Measurement (continued)
Implant conditions : As, 20 keV, 1.0·1016 cm-2
RTP process : 1000 °C, 30 s
Measurement on 4-Point-Probe : 121 sites, 3 mm edge exclusion
Uniform Lamp Correction Table Uniform LCT Optimized LCT
No rotation Rotation Rotation
Std. Dev. (1 ) = 1.1 % = 1.1 % = 0.8 %
Temp. Range = ± 2.4 °C = ± 1.8 °C = ± 1.2 °C
Inherent Uniformity (200 mm)
Process Performance (200 mm)
1050 °C, 15 s, O2
Thin Gate Oxide
Mean Thickness: 40 Å
Uniformity (1 ): 0.5 %
Repeatability (1 ): 0.4 %
Sensitivity: 0.2 Å/°C
S/D Anneal
(As, 1.0·1016 cm-2, 25 keV)
Mean RS: 110 W/Sq.
Uniformity (1 ): 0.5 %
Repeatability (1 ): 0.3 %
Sensitivity: 1.1 W/Sq.*°C
Slot 1
Slot 12
Slot 25
1000 °C, 10 s, N2+O2
Process Performance (200 mm)
Results from
2 month monitoring
RTO Process:
1080 °C, 95 s, O2
+/- 2.65 Å
all points all wafers
From: „Evaluation of an AST 3000 RTP-Tool for Production“
Regina Hayn et al, Infineon Technologies, RTP Conference 1999, Colorado Springs, USA
0
10
20
30
40
50
60
0 25 50 75 100 125
Wafer Number
Mean
R
S
(
W
/Sq.)
0,0
0,5
1,0
1,5
2,0
2,5
3,0
Post Mean
Stand.
Dev.
(1

)
(%)
Pre Stand. Dev.
Post Stand. Dev.
Pre Mean
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Process Performance (200 mm)
Low Temp. CoSi2 Formation
RTP Process: 490 °C, 30 sec, pure N2 ambient
Wafers: 15 nm Co + 8 nm Ti on bare 200 mm Si wafer
Repeatability: 1.1 %, Av. Uniformity 1.8 %
Result: Repeatability: 0.6 % (- 0.5 % added)
Av. Uniformity: 1.2 % (- 0.6 % added)
Process Performance (300 mm)
Results From a 5-Day Marathon
122
123
124
125
126
127
128
129
130
131
132
0 5 10 15 20 25
Wafer Number
Mean
Oxide
Thickness
(Å)
0,20
0,40
0,60
0,80
1,00
1,20
Std.
Dev.
1

(%)
196
198
200
202
204
206
0 5 10 15 20 25
Wafer Number
Mean
Sheet
Resistance
(
W
/Sq.)
0,2
0,6
1,0
1,4
1,8
2,2
Std.
Dev.
1

(%)
RTO: 1080 °C, 120 s
Mean Thickness: 130 Å
Uniformity (1 ): 0.3 ... 0.6 %
Repeatability (1 ): 0.3 %
TCV: 1.8 °C
Sensitivity: 1.1 Å/°C
121 Sites / 3 mm Edge Exclusion
S/D Anneal: 1060 °C, 10 s
Mean RS: 203 W/Sq.
Uniformity (1 ): 0.5 ... 0.9 %
Repeatability (1 ): 0.2 %
Sensitivity: 1.1 W/Sq.·°C
121 Sites / 3 mm Edge Exclusion
300 mm Benchmark Results
25
26
27
28
29
30
31
0 10 20 30 40 50 60 70 80 90 100 110
Wafer Number
Mean
Oxide
Thickness
(Å)
0,30
0,40
0,50
0,60
0,70
0,80
0,90
Std.
Dev.
1

(%)
47
48
49
50
51
52
0 10 20 30 40 50 60 70 80 90 100
Wafer Number
Mean
Oxide
Thickness
(Å)
0,40
0,50
0,60
0,70
0,80
0,90
Std.
Dev.
1

(%)
RTO: 1040 °C, 6 s, pure O2
Mean Thickness: 30 Å
Uniformity (1 ): 0.4 ... 0.5 %
Repeatability (1 ): 0.22 %
Thickness Range APAW: 0.85 Å
121 Sites / 3 mm Edge Exclusion
RTO: 1100 °C, 12 s, pure O2
Mean Thickness: 51 Å
Uniformity (1 ): 0.45 ... 0.55 %
Repeatability (1 ): 0.24 %
Thickness Range APAW: 1.54 Å
121 Sites / 3 mm Edge Exclusion
Process Performance (300 mm)
Bare Silicon Wafer With 500 Å Ti / RTP Process : 770 °C, 20 s
Measurement on 4-Point-Probe :121 sites, 5 mm edge exclusion
Post-map: RS mean = 2.19 W/Sq.
Std. dev = 1.40%
RS mean = 0.11 W/Sq.
Pre-map: RS mean = 19.7 W/Sq.
Std. dev = 1.95%
RS mean = 19.7 W/Sq.
Pre-map: RS mean = 19.6 W/Sq.
Std. dev = 1.95%
RS mean = 1.37 W/Sq.
Post-map: RS mean = 2.19 W/Sq.
Std. dev = 1.46%
RS mean = 0.12 W/Sq.
0 100 200 300 400 500 600 700 800 900 1000
1E17
1E18
1E19
1E20
1E21
1E22
C
B
A
Boron
concentration
(cm
-3
)
Depth (Å)
XJ
@ 5E17 cm
-3
Standard Process: 10 s soak time, 40 °C/s ramp-up rate
A: 1050°C, RD: 27 °C/s, XJ
=830 Å, Rs
=327.6 W/Sq
Spike Anneal: 0 s soak time, 240 °C/s ramp-up rate
B: 1050°C, RD: 27 °C/s, XJ
=680 Å, Rs
=345.5 W/Sq
C: 1050°C, RD: 86 °C/s, XJ
=580 Å, Rs
=357.8 W/Sq
Fast-Ramp Spike-Annealing (200 mm)
RTA Spike Anneal versus Standard RTA Process
240 °C/s ramp-up, 0 s soak time 40 °C/s ramp-up, 10 s soak time
Junction depth: 595 Å Junction depth: 830 Å
Reduction of junction depth by 235 Å
B+, 1.0·1015 cm-2, 1.0 keV
1050 °C, 60-65 ppm O2
Fast-Ramp Spike-Annealing (200 mm)
20 22 24 26 28 30 32 34 36 38 40 42 44
650
700
750
800
850
900
950
1000
1050
1100
160 °C/s
240 °C/s
Ramp-Up: 350 °C/s
Temperature
(°C)
Time (s)
Controlled ramp-up rates up to 350 °C/s
0 10 20 30 40 50 60 70 80 90 100
400
500
600
700
800
900
1000
1100
1100 °C / 60 s / lightly doped wafer
1100 °C / 10 s / heavily doped wafer
Temperature
(°C)
Time (s)
Fast Cooling-Down (200 mm)
Cooling-down rates up to 90 °C/s
Process Performance (300 mm)
Fast-Ramp Spike-Annealing for USJF
1100 °C, Spike
200 °C/sec and 300 °C/sec
Ambient 100 ppm O2 in N2
Implant: BF2
+
, 20 keV, 1.0·E15 cm-2
Spike Time : at 200 °C/sec: 1.80 sec
(1050-1100-1050 °C) at 300 °C/sec: 1.58 sec
1050 °C, Spike,
250 °C/sec
Ambient 1000 ppm O2 in N2
Implant: As
+
, 25 keV, 1.0·E16 cm-2
Uniformity (1  Std. Dev.): 0.45 %
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
0 10 20 30 40 50 60 70 80
Time (s)
Temperature
(°C)
Process Performance (200 mm)
Fast-Ramp Spike-Annealing for USJF (continued)
1050 °C, Spike, 100 ppm O2 in N2
Ramp-Up Rate: 300 °C/sec
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
0 10 20 30 40 50 60 70 80
Time (s)
Temperature
(°C)
Repeatability at 1040 °C
(1  Std. Dev):
at 300 °C/sec: 0.80 °C
Spike Time (1000-1050-1000 °C):
at 300 °C/sec: 1.42 sec
1030
1035
1040
1045
1050
1 3 5 7 9 11 13 15 17 19 21 23 25
Wafer No.
Soak
Temperature
(°C)
Process Performance (200 mm)
Fast-Ramp Spike-Annealing for USJF (continued)
Temperature Profiles
Process:
1050 °C / Spike
100 ppm O2 in N2
300 °C/s Ramp-Up / 90 °C/s Ramp-Down
40 45 50 55 60 65 70 75 80
300
400
500
600
700
800
900
1000
1100
Slot # 55
Slot # 51
Slot # 50
Slot # 41
Slot # 34
Slot # 10
Slot # 8
Temperature
(°C)
Process time (s)
Process Performance (200 mm)
Fast-Ramp Spike-Annealing for USJF (continued)
56 57 58 59 60
900
920
940
960
980
1000
1020
1040
1060
1080
1100
Slot # 55
Slot # 51
Slot # 50
Slot # 41
Slot # 34
Slot # 10
Slot # 8
Temperature
(°C)
Process time (s)
Temperature Profiles
Process:
1050 °C / Spike
100 ppm O2 in N2
300 °C/s Ramp-Up / 90 °C/s
Ramp-Down
Process Performance (200 mm)
Fast-Ramp Spike-Annealing for USJF (continued)
SIMS Profiles
Implant condition: 11B+, 1 keV, 1E15 cm-2,Tilt/Twist: 7°/35°
0 100 200 300 400 500 600 700
1E17
1E18
1E19
1E20
1E21
1E22
Slot # 53
Slot # 51
Slot # 50
Slot # 41
Slot # 34
Slot # 10
Boron
concentration
(cm
-3
)
Depth (Å)
XJ
@ 3E18 cm
-3
XJ
@ 7E17 cm
-3
Uptime Data
3000 Uptime Data from 200 mm DRAM Mass Production
June 99
July 99
Aug. 99
Sep. 99
Oct. 99
Nov. 99
Tool 1
Tool 2
90
91
92
93
94
95
96
97
98
99
100
Uptime
(%)
Average: 98.0 %
Competitive Advantage
Capability for Ultra-Shallow Junction Formation
Ramp rates > 250 °C/s without slow down before set point
True spike anneal profile
Fast cool down up to 90 °C/s, without expensive cooling gas solution
Tight ambient control (0 - 500 ppm O2 in N2)
Potential for ramp rates > 350 °C/s (400 °C/s demonstrated in App Lab)
Steam Capability
Longest steam experience from Steampulse and 2800 Pyrogenic
Steam concentrations 2-80 % - both ultra-thin and thick oxides possible
Reduced thermal budget due to high steam concentrations
Superior WiW uniformity due to ex-situ steam generation
H2-rich and O2-rich steam capability in the same chamber
Competitive Advantage (continued)
Excellent CoO: High Throughput - Small Footprint
Due to dual-arm robot, tight ambient control and fast cool-down:
TiSi2 formation (750 °C / 15 s) Throughput > 50 W/h
Implant Annealing (1050 °C / 10 s) Throughput > 50 W/h
Footprint: 3.2 - 3.6 m2 incl. maintenance space
The 3000 tools can be placed next to each other without additional
spacing for service access  more throughput per floorspace
Stand-Alone System
Cost effective separation of individual systems by process type
(no cross contamination)
Flexible capacity planning, minimizing CoO as capacity is added
Lowest cost method of having back up tool availability
Better reliability than multi-chamber cluster tool
Uptime > 95 %
Bridge Tool
Same process chamber both for 200 mm and 300 mm processing
Easy transition from 200 mm process technology into 300 mm
production
Competitive Advantage (continued)
Dual Side Heating with Linear Lamps
Reduced pattern effect and “continental drift” for smaller geometries
especially for faster ramps when compared to only top-side heating systems
Superior slip performance at higher temperatures
Ultra-high ramp-up rates of > 250 °C/s and more
Long lamp lifetime and easy & fast maintainability compared
to bulb lamp configurations
Superior inherent and dynamic uniformity due to lamp configuration and
chamber design especially for fast-ramp spike-anneals
(no need for Multi-Point Control down to 100 nm technology).
Ripple Temperature Measurement
Ripple is an absolute, active and direct temperature measurement system,
independent of wafer backside layers, bulk material, backside finishment,
backside non-uniformities. Other RTP systems are using passive
emissivity compensation
Ripple is insensitive to chamber contamination (ie. BPSG), which strongly
influences systems with only passive emissivity compensation.
Ripple allows to control spike-anneals with ramp-up rates > 250 °C/s

More Related Content

Similar to Mattson-RTP-3000.pdf

Electro-Pneumatic Transducer for Process Control
Electro-Pneumatic Transducer for Process ControlElectro-Pneumatic Transducer for Process Control
Electro-Pneumatic Transducer for Process Control
M.S. Jacobs & Associates
 
Seraphim 315w 72 Cell
Seraphim 315w 72 CellSeraphim 315w 72 Cell
Seraphim 315w 72 Cell
Optimus Energy Philippines
 
Pure ozone generator & process with POG(english)
Pure ozone generator & process with POG(english)Pure ozone generator & process with POG(english)
Pure ozone generator & process with POG(english)
ssuser65762c
 
Modulo 5 tecnologia eb
Modulo 5   tecnologia ebModulo 5   tecnologia eb
Modulo 5 tecnologia eb
Roberto Caforio
 
CRAP PRESENTATION
CRAP PRESENTATIONCRAP PRESENTATION
CRAP PRESENTATION
Chandan kumar Singh
 
Semimap Corema Presentation
Semimap Corema PresentationSemimap Corema Presentation
Semimap Corema Presentation
Larry Schott
 
SmalTec Micromachining Advancements
SmalTec Micromachining AdvancementsSmalTec Micromachining Advancements
SmalTec Micromachining Advancements
SmalTec International
 
Introduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdfIntroduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdf
ssuser50b929
 
POLY_250-260_v.1.6_EU_LOW_35mm
POLY_250-260_v.1.6_EU_LOW_35mmPOLY_250-260_v.1.6_EU_LOW_35mm
POLY_250-260_v.1.6_EU_LOW_35mm
Miranda Stephens
 
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heat
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heatPolymer Processing Cost Saving Workshop - 05 Screw design and smart heat
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heat
Invest Northern Ireland
 
Pittcon 2002
Pittcon 2002Pittcon 2002
Pittcon 2002
Neils Hansen
 
RIA45
RIA45RIA45
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
grssieee
 
AOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
AOK iR Series LED Canopy Light & Recessed Gas Station Light DatasheetAOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
AOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
Bonnie Lin
 
MONO_250-270_v.1.6_EU_LOW_35mm
MONO_250-270_v.1.6_EU_LOW_35mmMONO_250-270_v.1.6_EU_LOW_35mm
MONO_250-270_v.1.6_EU_LOW_35mm
Sindy Brown
 
Spraymet valve industry ppt
Spraymet valve  industry pptSpraymet valve  industry ppt
Spraymet valve industry ppt
Anand, P T Bindagi
 
AccuThermo AW 820 Long Time Rapid Thermal Anneal Equipment
AccuThermo AW 820 Long Time  Rapid Thermal Anneal EquipmentAccuThermo AW 820 Long Time  Rapid Thermal Anneal Equipment
AccuThermo AW 820 Long Time Rapid Thermal Anneal Equipment
Peter Chen
 
05_iR Series Datasheet
05_iR Series Datasheet05_iR Series Datasheet
05_iR Series Datasheet
Walt Wang
 
Testo 400.pptx
Testo 400.pptxTesto 400.pptx
Testo 400.pptx
RosalindaGironPrinci
 
Eta pcba coating line introduction
Eta pcba coating line introduction Eta pcba coating line introduction
Eta pcba coating line introduction
Carrie Zhang
 

Similar to Mattson-RTP-3000.pdf (20)

Electro-Pneumatic Transducer for Process Control
Electro-Pneumatic Transducer for Process ControlElectro-Pneumatic Transducer for Process Control
Electro-Pneumatic Transducer for Process Control
 
Seraphim 315w 72 Cell
Seraphim 315w 72 CellSeraphim 315w 72 Cell
Seraphim 315w 72 Cell
 
Pure ozone generator & process with POG(english)
Pure ozone generator & process with POG(english)Pure ozone generator & process with POG(english)
Pure ozone generator & process with POG(english)
 
Modulo 5 tecnologia eb
Modulo 5   tecnologia ebModulo 5   tecnologia eb
Modulo 5 tecnologia eb
 
CRAP PRESENTATION
CRAP PRESENTATIONCRAP PRESENTATION
CRAP PRESENTATION
 
Semimap Corema Presentation
Semimap Corema PresentationSemimap Corema Presentation
Semimap Corema Presentation
 
SmalTec Micromachining Advancements
SmalTec Micromachining AdvancementsSmalTec Micromachining Advancements
SmalTec Micromachining Advancements
 
Introduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdfIntroduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdf
 
POLY_250-260_v.1.6_EU_LOW_35mm
POLY_250-260_v.1.6_EU_LOW_35mmPOLY_250-260_v.1.6_EU_LOW_35mm
POLY_250-260_v.1.6_EU_LOW_35mm
 
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heat
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heatPolymer Processing Cost Saving Workshop - 05 Screw design and smart heat
Polymer Processing Cost Saving Workshop - 05 Screw design and smart heat
 
Pittcon 2002
Pittcon 2002Pittcon 2002
Pittcon 2002
 
RIA45
RIA45RIA45
RIA45
 
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
 
AOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
AOK iR Series LED Canopy Light & Recessed Gas Station Light DatasheetAOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
AOK iR Series LED Canopy Light & Recessed Gas Station Light Datasheet
 
MONO_250-270_v.1.6_EU_LOW_35mm
MONO_250-270_v.1.6_EU_LOW_35mmMONO_250-270_v.1.6_EU_LOW_35mm
MONO_250-270_v.1.6_EU_LOW_35mm
 
Spraymet valve industry ppt
Spraymet valve  industry pptSpraymet valve  industry ppt
Spraymet valve industry ppt
 
AccuThermo AW 820 Long Time Rapid Thermal Anneal Equipment
AccuThermo AW 820 Long Time  Rapid Thermal Anneal EquipmentAccuThermo AW 820 Long Time  Rapid Thermal Anneal Equipment
AccuThermo AW 820 Long Time Rapid Thermal Anneal Equipment
 
05_iR Series Datasheet
05_iR Series Datasheet05_iR Series Datasheet
05_iR Series Datasheet
 
Testo 400.pptx
Testo 400.pptxTesto 400.pptx
Testo 400.pptx
 
Eta pcba coating line introduction
Eta pcba coating line introduction Eta pcba coating line introduction
Eta pcba coating line introduction
 

Recently uploaded

Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
Aditya Rajan Patra
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 

Recently uploaded (20)

Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 

Mattson-RTP-3000.pdf

  • 1. 3000 RTP System by Cubit Pte Ltd soroskim@cubit.com.sg
  • 2. Applications High-End RTP Production System For 200 mm / 300 mm wafer size For 180 nm, 130 nm, and 100 nm technology Processes : Implant activation S/D Ultra-Shallow Junction Formation TiSi2, CoSi2 processes Dry oxides, oxynitrides Steam applications STI liner oxides Sidewall oxides Thin gate oxides PSG and BPSG reflow processes Others
  • 3. 3000 Footprint Process & Fac. Module Handling Module (dep. on config.) Power & Control Rack up to 15 m Blower Small Footprint: 3.2-3.6 m2 200 / 300 mm Capability
  • 4. 3000 Footprint With Steam Option Steam Module Power & Control Rack Process & Fac. Module Handling Module (dep. on config.) up to 15 m Blower Small Footprint: 3.6-4.1 m2 200 / 300 mm Capability
  • 5. 3000 with Steam Option Additional Steam Features C Co oo ol li in ng g- -N N2 2 r re ec ci ir rc cu ul la at ti io on n Y Ye es s M Mo od de es s o of f o op pe er ra at ti io on n S St te ea am m O O2 2- -r ri ic ch h, , s st te ea am m H H2 2- -r ri ic ch h, , d dr ry y S St te ea am m g ge en ne er ra at to or r C Ce en nt tr ro ot th he er rm m s st te ea am m g ge en ne er ra at to or r w wi it th h a ad dv va an nc ce ed d c co on nt tr ro ol ll le er r: : H H2 2- -r ri ic ch h, , O O2 2- -r ri ic ch h, , d dy yn na am mi ic c s sw wi it tc ch hi in ng g b be et tw we ee en n m mo od de es s, , S S2 2- -9 93 3 a an nd d C CE E c ce er rt ti if fi ie ed d G Ga as s d de el li iv ve er ry y i in nt te er rf fa ac ce e M Mu ul lt ti ip pl le e g ga as s l li in ne es s, , d dy yn na am mi ic c f fl lo ow w a an nd d c co on nc ce en nt tr ra at ti io on n c co on nt tr ro ol l, , M MF FC C s sc ca al li in ng g f fo or r r ra at ti io o c co on nt tr ro ol l, , i in nt te eg gr ra at te ed d d di il lu ut ti io on n G Ga as s p pa an ne el l A Au ux xi il li ia ar ry y g ga as s p pa an ne el l t to o s su up pp pl ly y b bu ur rn ne er r i in n t th he e s st te ea am m c ca ab bi in ne et t M Mo od de e s sw wi it tc ch hi in ng g O On n- -l li in ne e s sw wi it tc ch hi in ng g, , n no o s so of ft tw wa ar re e r re e- -b bo oo ot t o or r h ha ar rd dw wa ar re e m mo od di if fi ic ca at ti io on ns s a ar re e n ne ec ce es ss sa ar ry y U Us se er r i in nt te er rf fa ac ce e A Al ll l s sa af fe et ty y a al la ar rm ms s a ar re e s su up pp po or rt te ed d, , r re ec ci ip pe es s a ar re e u us se er r- -f fr ri ie en nd dl ly y ( (s st te ea am m a an nd d c co on nc ce en nt tr ra at ti io on n p pa ar ra am me et te er rs s a ar re e u us se ed d) ) W Wa at te er r- -c co oo ol le ed d b bu ur rn ne er r Y Ye es s
  • 6. 200mm & 300mm Production Configuration 2 x 300 mm FOUP 200 mm Open Cassettes
  • 7. 3000 Customer List NEC 1 Varian 2 White Oak 4 Infineon 3 UMC ~20 TSMC 2 Macronix 2 Chartered 7 Hynix 1 Lucent 1 Hitachi 1 200mm Infineon 6 UMC 3 TSMC 1 Trecenti 7 TI 1 300mm Wacker 2 Mitsubishi 1 MEMC 3 LG Siltron 1 Taisil 1 Wafer Mfg. > 70 Tools
  • 8. Facts 3000 in 256 M DRAM high volume mass production for 200 mm wafers and in-pilot production on 300 mm wafers 300 mm chip production field experience since 04/98 (SC300 / Dresden, SAMSUNG / Korea) I300I 300 mm benchmark evaluation successfully completed in Feb. 1998, SELETE 300 mm benchmark evaluation successfully completed in March 2000 SEMATECH benchmark evaluation on 200 mm wafers (S/D anneal), thin oxides, and Spike Annealing in Dec. 1999 Large market penetration of 3000 worldwide (Taiwan, USA, Europe, Singapore, Japan, Korea) First 3000 system with Wet Oxidation option shipped by 07/00. Backside-independent Ripple temperature measurement down to 450 °C. Ripple measurement proven in high volume production
  • 9. Reactor Concept Front Back Bottom lamps Top lamps Top view with 200 mm wafer and 300 mm wafer + edge guard ring
  • 10. Reactor Concept Aluminum chamber sealed with top & bottom quartz windows Top side heating by 26 linear lamps Back side heating by 26 linear lamps Side heating by 2 x 2 linear lamps
  • 11. Reactor Cross-Section Bottom quartz plate Gas inlet Door slot Bottom lamps Side lamps Ring & liner tray 200 mm wafer Quartz pads Top quartz plate Rotor with wafer support Top lamps
  • 12. Wafer Rotation Rotor Quartz pads (for air cushion) Gas supply 2 (for air cushion) 300 mm wafer Quartz plate Gas supply 1 (for acc. / dec.)
  • 13. 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 N 2 O 2 Pyro Set O 2 -Concentration (ppm) / N 2 -Gas Flow (slm) Recipe Time (s) 0 100 200 300 400 500 600 700 800 Set / Pyro Temperature (°C) Ambient Control Using O2 Sensor O2-sensor inlet about 1 cm from door O2-concentration < 10 ppm within less 200 mm titanium coated silicon wafer than 9 s measured by oxygen sensor
  • 14. Ripple Temperature Measurement Measurement Principle  Wafer   Incident lamp light  : Transmissivity   Reflectivity  : Absorptivity Measurement Principle: Separation of reflected lamp light and radiation emitted from the wafer Emissivity calculation:  =  −  −  ( =  for T > 600 °C) Rescaling of measured emissivity to black body intensity Calculation of actual wafer temperature Energy Balance:  +  +  = 1 Kirchhoff Law:  = 
  • 15. Reflectivity Transmissivity Emissivity Ripple Temperature Measurement Measurement Principle DC lamp signal with AC modulation and phase shift DC lamp signal with AC modulation Reflected DC lamp signal with AC modulation Transmitted DC lamp signal with AC modulation and phase shift Temperature radiation from wafer Absolute Temperature I t I t I t I t t Lamp Pyro Wafer Optical System Optical System Wafer Pyro
  • 16. Ripple Temperature Measurement Backside Independence in Production Backside Coated Bare Silicon Wafers RTO Process: 1080 °C, 95 s, O2 From: „Evaluation of an AST 3000 RTP-Tool for Production“ Regina Hayn et al, Infineon Technologies, RTP Conference 1999, Colorado Springs, USA Mean Oxide Thickness within +/- 3.1 Å (including influence of backside preparation on wafer frontside) 110,0 115,0 120,0 125,0 130,0 135,0 140,0 145,0 150,0 bare Si 90 nm Poly 90 nm Poly 170 nm WSi 170 nm WSi 22.5 nm Oxide 22.5 nm Oxide 40 nm Oxide 40 nm Oxide 55 nm Oxide 55 nm Oxide 26.5 nm Nitride 26.5 nm Nitride 175 nm Nitride 175 nm Nitride 200 nm Nitride 200 nm Nitride bare Si Wafer Backside Coating Oxide Thickness (Å)
  • 17. Impact of Quartz Ware Contamination on Temperature Measurement General Processes like BPSG reflow or RTA of B+ or BF2 + tend to contaminate the quartz ware, temperature measurement devices and the process chamber. Contamination might have a strong effect on temperature measurement. Especially temperature measurement techniques making use of passive emissivity compensation, rely on clean surfaces to function properly because they cannot compensate contamination. Therefore, the temperature measurement devices have to be changed or cleaned frequently. This results in high costs for quartz ware and reduced uptime. Ripple Pyrometry The Ripple pyrometer optic is to a large extent not affected by contamination, because it is separated from the process environment by the quartz ware and it actively measures optical properties of the wafer incl. optical paths between wafer and pyrometer. After heavy contamination, quartz ware can easily be cleaned and /or changed. Higher uptime Lower CoO Better process stability
  • 18. Impact of Quartz Ware Contamination on Temperature Measurement (continued) Coated quartz wafer, placed 3 mm above the rotor (simulation of quartz contamination) Wafer Experimental Set-Up
  • 19. Temperature stability within +/- 1°C Insensitivity of Ripple Temperature Measurement against heavy quartz contamination -2,0 -1,0 0,0 1,0 2,0 Bare 3.3 nm Si3N4 7.7 nm Si3N4 56.3 nm Si3N4 2 nm PolySi 12.7 nm PolySi Coating of Quartz Wafer Temperature Variation (°C) 700 °C ( Wafer HR) 1000 °C ( Wafer LR) Impact of Quartz Ware Contamination on Temperature Measurement (continued)
  • 20. Implant conditions : As, 20 keV, 1.0·1016 cm-2 RTP process : 1000 °C, 30 s Measurement on 4-Point-Probe : 121 sites, 3 mm edge exclusion Uniform Lamp Correction Table Uniform LCT Optimized LCT No rotation Rotation Rotation Std. Dev. (1 ) = 1.1 % = 1.1 % = 0.8 % Temp. Range = ± 2.4 °C = ± 1.8 °C = ± 1.2 °C Inherent Uniformity (200 mm)
  • 21. Process Performance (200 mm) 1050 °C, 15 s, O2 Thin Gate Oxide Mean Thickness: 40 Å Uniformity (1 ): 0.5 % Repeatability (1 ): 0.4 % Sensitivity: 0.2 Å/°C S/D Anneal (As, 1.0·1016 cm-2, 25 keV) Mean RS: 110 W/Sq. Uniformity (1 ): 0.5 % Repeatability (1 ): 0.3 % Sensitivity: 1.1 W/Sq.*°C Slot 1 Slot 12 Slot 25 1000 °C, 10 s, N2+O2
  • 22. Process Performance (200 mm) Results from 2 month monitoring RTO Process: 1080 °C, 95 s, O2 +/- 2.65 Å all points all wafers From: „Evaluation of an AST 3000 RTP-Tool for Production“ Regina Hayn et al, Infineon Technologies, RTP Conference 1999, Colorado Springs, USA
  • 23. 0 10 20 30 40 50 60 0 25 50 75 100 125 Wafer Number Mean R S ( W /Sq.) 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Post Mean Stand. Dev. (1  ) (%) Pre Stand. Dev. Post Stand. Dev. Pre Mean Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Process Performance (200 mm) Low Temp. CoSi2 Formation RTP Process: 490 °C, 30 sec, pure N2 ambient Wafers: 15 nm Co + 8 nm Ti on bare 200 mm Si wafer Repeatability: 1.1 %, Av. Uniformity 1.8 % Result: Repeatability: 0.6 % (- 0.5 % added) Av. Uniformity: 1.2 % (- 0.6 % added)
  • 24. Process Performance (300 mm) Results From a 5-Day Marathon 122 123 124 125 126 127 128 129 130 131 132 0 5 10 15 20 25 Wafer Number Mean Oxide Thickness (Å) 0,20 0,40 0,60 0,80 1,00 1,20 Std. Dev. 1  (%) 196 198 200 202 204 206 0 5 10 15 20 25 Wafer Number Mean Sheet Resistance ( W /Sq.) 0,2 0,6 1,0 1,4 1,8 2,2 Std. Dev. 1  (%) RTO: 1080 °C, 120 s Mean Thickness: 130 Å Uniformity (1 ): 0.3 ... 0.6 % Repeatability (1 ): 0.3 % TCV: 1.8 °C Sensitivity: 1.1 Å/°C 121 Sites / 3 mm Edge Exclusion S/D Anneal: 1060 °C, 10 s Mean RS: 203 W/Sq. Uniformity (1 ): 0.5 ... 0.9 % Repeatability (1 ): 0.2 % Sensitivity: 1.1 W/Sq.·°C 121 Sites / 3 mm Edge Exclusion
  • 25. 300 mm Benchmark Results 25 26 27 28 29 30 31 0 10 20 30 40 50 60 70 80 90 100 110 Wafer Number Mean Oxide Thickness (Å) 0,30 0,40 0,50 0,60 0,70 0,80 0,90 Std. Dev. 1  (%) 47 48 49 50 51 52 0 10 20 30 40 50 60 70 80 90 100 Wafer Number Mean Oxide Thickness (Å) 0,40 0,50 0,60 0,70 0,80 0,90 Std. Dev. 1  (%) RTO: 1040 °C, 6 s, pure O2 Mean Thickness: 30 Å Uniformity (1 ): 0.4 ... 0.5 % Repeatability (1 ): 0.22 % Thickness Range APAW: 0.85 Å 121 Sites / 3 mm Edge Exclusion RTO: 1100 °C, 12 s, pure O2 Mean Thickness: 51 Å Uniformity (1 ): 0.45 ... 0.55 % Repeatability (1 ): 0.24 % Thickness Range APAW: 1.54 Å 121 Sites / 3 mm Edge Exclusion
  • 26. Process Performance (300 mm) Bare Silicon Wafer With 500 Å Ti / RTP Process : 770 °C, 20 s Measurement on 4-Point-Probe :121 sites, 5 mm edge exclusion Post-map: RS mean = 2.19 W/Sq. Std. dev = 1.40% RS mean = 0.11 W/Sq. Pre-map: RS mean = 19.7 W/Sq. Std. dev = 1.95% RS mean = 19.7 W/Sq. Pre-map: RS mean = 19.6 W/Sq. Std. dev = 1.95% RS mean = 1.37 W/Sq. Post-map: RS mean = 2.19 W/Sq. Std. dev = 1.46% RS mean = 0.12 W/Sq.
  • 27. 0 100 200 300 400 500 600 700 800 900 1000 1E17 1E18 1E19 1E20 1E21 1E22 C B A Boron concentration (cm -3 ) Depth (Å) XJ @ 5E17 cm -3 Standard Process: 10 s soak time, 40 °C/s ramp-up rate A: 1050°C, RD: 27 °C/s, XJ =830 Å, Rs =327.6 W/Sq Spike Anneal: 0 s soak time, 240 °C/s ramp-up rate B: 1050°C, RD: 27 °C/s, XJ =680 Å, Rs =345.5 W/Sq C: 1050°C, RD: 86 °C/s, XJ =580 Å, Rs =357.8 W/Sq Fast-Ramp Spike-Annealing (200 mm) RTA Spike Anneal versus Standard RTA Process 240 °C/s ramp-up, 0 s soak time 40 °C/s ramp-up, 10 s soak time Junction depth: 595 Å Junction depth: 830 Å Reduction of junction depth by 235 Å B+, 1.0·1015 cm-2, 1.0 keV 1050 °C, 60-65 ppm O2
  • 28. Fast-Ramp Spike-Annealing (200 mm) 20 22 24 26 28 30 32 34 36 38 40 42 44 650 700 750 800 850 900 950 1000 1050 1100 160 °C/s 240 °C/s Ramp-Up: 350 °C/s Temperature (°C) Time (s) Controlled ramp-up rates up to 350 °C/s
  • 29. 0 10 20 30 40 50 60 70 80 90 100 400 500 600 700 800 900 1000 1100 1100 °C / 60 s / lightly doped wafer 1100 °C / 10 s / heavily doped wafer Temperature (°C) Time (s) Fast Cooling-Down (200 mm) Cooling-down rates up to 90 °C/s
  • 30. Process Performance (300 mm) Fast-Ramp Spike-Annealing for USJF 1100 °C, Spike 200 °C/sec and 300 °C/sec Ambient 100 ppm O2 in N2 Implant: BF2 + , 20 keV, 1.0·E15 cm-2 Spike Time : at 200 °C/sec: 1.80 sec (1050-1100-1050 °C) at 300 °C/sec: 1.58 sec 1050 °C, Spike, 250 °C/sec Ambient 1000 ppm O2 in N2 Implant: As + , 25 keV, 1.0·E16 cm-2 Uniformity (1  Std. Dev.): 0.45 % 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 0 10 20 30 40 50 60 70 80 Time (s) Temperature (°C)
  • 31. Process Performance (200 mm) Fast-Ramp Spike-Annealing for USJF (continued) 1050 °C, Spike, 100 ppm O2 in N2 Ramp-Up Rate: 300 °C/sec 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 0 10 20 30 40 50 60 70 80 Time (s) Temperature (°C) Repeatability at 1040 °C (1  Std. Dev): at 300 °C/sec: 0.80 °C Spike Time (1000-1050-1000 °C): at 300 °C/sec: 1.42 sec 1030 1035 1040 1045 1050 1 3 5 7 9 11 13 15 17 19 21 23 25 Wafer No. Soak Temperature (°C)
  • 32. Process Performance (200 mm) Fast-Ramp Spike-Annealing for USJF (continued) Temperature Profiles Process: 1050 °C / Spike 100 ppm O2 in N2 300 °C/s Ramp-Up / 90 °C/s Ramp-Down 40 45 50 55 60 65 70 75 80 300 400 500 600 700 800 900 1000 1100 Slot # 55 Slot # 51 Slot # 50 Slot # 41 Slot # 34 Slot # 10 Slot # 8 Temperature (°C) Process time (s)
  • 33. Process Performance (200 mm) Fast-Ramp Spike-Annealing for USJF (continued) 56 57 58 59 60 900 920 940 960 980 1000 1020 1040 1060 1080 1100 Slot # 55 Slot # 51 Slot # 50 Slot # 41 Slot # 34 Slot # 10 Slot # 8 Temperature (°C) Process time (s) Temperature Profiles Process: 1050 °C / Spike 100 ppm O2 in N2 300 °C/s Ramp-Up / 90 °C/s Ramp-Down
  • 34. Process Performance (200 mm) Fast-Ramp Spike-Annealing for USJF (continued) SIMS Profiles Implant condition: 11B+, 1 keV, 1E15 cm-2,Tilt/Twist: 7°/35° 0 100 200 300 400 500 600 700 1E17 1E18 1E19 1E20 1E21 1E22 Slot # 53 Slot # 51 Slot # 50 Slot # 41 Slot # 34 Slot # 10 Boron concentration (cm -3 ) Depth (Å) XJ @ 3E18 cm -3 XJ @ 7E17 cm -3
  • 35. Uptime Data 3000 Uptime Data from 200 mm DRAM Mass Production June 99 July 99 Aug. 99 Sep. 99 Oct. 99 Nov. 99 Tool 1 Tool 2 90 91 92 93 94 95 96 97 98 99 100 Uptime (%) Average: 98.0 %
  • 36. Competitive Advantage Capability for Ultra-Shallow Junction Formation Ramp rates > 250 °C/s without slow down before set point True spike anneal profile Fast cool down up to 90 °C/s, without expensive cooling gas solution Tight ambient control (0 - 500 ppm O2 in N2) Potential for ramp rates > 350 °C/s (400 °C/s demonstrated in App Lab) Steam Capability Longest steam experience from Steampulse and 2800 Pyrogenic Steam concentrations 2-80 % - both ultra-thin and thick oxides possible Reduced thermal budget due to high steam concentrations Superior WiW uniformity due to ex-situ steam generation H2-rich and O2-rich steam capability in the same chamber
  • 37. Competitive Advantage (continued) Excellent CoO: High Throughput - Small Footprint Due to dual-arm robot, tight ambient control and fast cool-down: TiSi2 formation (750 °C / 15 s) Throughput > 50 W/h Implant Annealing (1050 °C / 10 s) Throughput > 50 W/h Footprint: 3.2 - 3.6 m2 incl. maintenance space The 3000 tools can be placed next to each other without additional spacing for service access  more throughput per floorspace Stand-Alone System Cost effective separation of individual systems by process type (no cross contamination) Flexible capacity planning, minimizing CoO as capacity is added Lowest cost method of having back up tool availability Better reliability than multi-chamber cluster tool Uptime > 95 % Bridge Tool Same process chamber both for 200 mm and 300 mm processing Easy transition from 200 mm process technology into 300 mm production
  • 38. Competitive Advantage (continued) Dual Side Heating with Linear Lamps Reduced pattern effect and “continental drift” for smaller geometries especially for faster ramps when compared to only top-side heating systems Superior slip performance at higher temperatures Ultra-high ramp-up rates of > 250 °C/s and more Long lamp lifetime and easy & fast maintainability compared to bulb lamp configurations Superior inherent and dynamic uniformity due to lamp configuration and chamber design especially for fast-ramp spike-anneals (no need for Multi-Point Control down to 100 nm technology). Ripple Temperature Measurement Ripple is an absolute, active and direct temperature measurement system, independent of wafer backside layers, bulk material, backside finishment, backside non-uniformities. Other RTP systems are using passive emissivity compensation Ripple is insensitive to chamber contamination (ie. BPSG), which strongly influences systems with only passive emissivity compensation. Ripple allows to control spike-anneals with ramp-up rates > 250 °C/s