SlideShare a Scribd company logo
Definisi integral dan differensial
Kalkulus
Daftar isi
• 1 Sejarah
o 1.1 Perkembangan
o 1.2 Pengaruh penting
• 2 Prinsip-prinsip
o 2.1 Limit dan kecil tak terhingga
o 2.2 Turunan
o 2.3 Integral
o 2.4 Teorema dasar
• 3 Aplikasi
• 4 Referesi
o 4.1 Sumber
o 4.2 Daftar Pustaka
Sejarah
Sir Isaac Newton adalah salah seorang penemu dan kontributor kalkulus yang terkenal.
Perkembangan
Sejarah kalkulus
Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan,
dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi
tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari
kalkulus integral bisa ditelusuri kembali pada Papirus Moskow Mesir (c. 1800 SM) di mana orang Mesir
menghitung volume dari frustrum piramid[1]
. Archimedes mengembangkan pemikiran ini lebih jauh dan
menciptakan heuristik yang menyerupai kalkulus integral.[2]
Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499
dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar.[3]
Persamaan ini kemudian
mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang
sangat kecil takterhingga dan menjelaskan bentuk awal dari "Teorema Rolle".[4]
Sekitar tahun 1000, matematikawan
Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat
empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus
umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral.[5]
Pada abad ke-12,
seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam
kalkulus diferensial. [6]
Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari Mazhab
Harjanto Sutedjo hal 1
Definisi integral dan differensial
astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor[7]
, yang dituliskan dalam teks
Yuktibhasa.[8][9][10]
Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti
Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis dan Isaac Barrow memberikan terobosan dalam
kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.
Gottfried Wilhelm Leibniz pada awalnya dituduh menjiplak dari hasil kerja Sir Isaac Newton yang tidak
dipublikasikan, namun sekarang dianggap sebagai kontributor kalkulus yang hasil kerjanya dilakukan secara
terpisah.
Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang
ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton
mengaplikasikan kalkulus secara umum ke bidang fisika sementara Leibniz mengembangkan notasi-notasi kalkulus
yang banyak digunakan sekarang.
Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara
matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton
menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton
menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan
Newton kepada beberapa anggota dari Royal Society.
Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari
integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam
mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika
ini sebagai kalkulus, sedangkan Newton menamakannya "The science of fluxions".
Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.
Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia
terus memberikan kontribusi terhadap perkembangan kalkulus.[11]
Pengaruh penting
Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq,
Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan
Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan
pengaruh yang kuat terhadap perkembangan fisika.
Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan
optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja,
dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.
Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak.
Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian
bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa
contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga,
yang kemudian berhasil memecahkan paradoks tersebut.
Harjanto Sutedjo hal 2
Definisi integral dan differensial
Prinsip-prinsip
Limit dan kecil tak terhingga
Kalkulus pada umumnya dikembangkan dengan memanipulasi sejumlah kuantitas yang sangat kecil. Objek ini, yang
dapat diperlakukan sebagai angka, adalah sangat kecil. Setiap perkalian dengan kecil takterhingga (infinitesimal)
tetaplah kecil takterhingga, dengan kata lain kecil takterhingga tidak memenuhi properti Archimedes. Dari sudut
pandang ini, kalkulus adalah sekumpulan teknik untuk memanipulasi kecil takterhingga.
Pada abad ke-19, konsep kecil takterhingga digantikan oleh konsep limit. Limit menjelaskan nilai suatu fungsi pada
nilai input tertentu dengan hasil dari input terdekat. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik
memanipulasi limit-limit tertentu.
Turunan
Garis singgung pada (x, f(x)). Turunan f'(x) dari sebuah kurva pada sebuah titik adalah kemiringan dari garis
singgung yang menyinggung kurva pada titik tersebut.
Kalkulus diferensial adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari turunan atau kemiringan dari
sebuah grafik.
Konsep turunan secara fundamental lebih maju dan rumit daripada konsep yang ditemukan di aljabar. Dalam aljabar,
seorang murid mempelajari sebuah fungsi dengan input sebuat angka dan output sebuah angka. Tetapi input dari
turunan adalah sebuah fungsi dan outputnya juga adalah sebuah fungsi.
Untuk memahami turunan, seorang murid harus mempelajari notasi matematika. Dalam notasi matematika, salah
satu simbol yang umumnya dipakai untuk menyatakan turunan dari sebuah fungsi adalah apostrofi. Maka turunan
dari f adalah f'.
.
Jika input dari sebuah fungsi adalah waktu, maka turunan dari fungsi itu adalah laju perubahan di mana fungsi
tersebut berubah.
Jika fungsi tersebut adalah fungsi linear, maka fungsi tersebut dapat ditulis dengan y=mx+b, di mana:
Harjanto Sutedjo hal 3
Definisi integral dan differensial
.
Ini memberikan nilai dari kemiringan suatu garis lurus. Jika sebuah fungsi bukanlah garis lurus, maka perubahan y
dibagi terhadap perubahan x bervariasi, dan kita dapat menggunakan kalkulus untuk menentukan nilai pada titik
tertentu. Kemiringan dari suatu fungsi dapat diekspresikan:
di mana koordinat dari titik pertama adalah (x, f(x)) dan h adalah jarak horizontal antara dua titik.
Untuk menentukan kemiringan dari sebuat kurva, kita menggunakan limit:
Garis singgung sebagai limit dari garis sekan. Turunan dari kurva f′(x) di suatu titik adalah kemiringan dari garis
singgung terhadap kurva di titik tersebut. Kemiringan ini ditentukan dengan memakai nilai limit dari kemiringan
garis sekan.
Sebagai contoh, untuk menemukan gradien dari fungsi f(x) = x2
pada titik (3,9):
Harjanto Sutedjo hal 4
Definisi integral dan differensial
Integral
Kalkulus integral adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari dua konsep yang saling
berhubungan, integral taktentu dan integral tertentu. Proses pencarian nilai dari sebuah integral dinamakan
pengintegralan (integration). Dengan kata lain, kalkulus integral mempelajari dua operator linear yang saling
berhubungan.
Integral taktentu adalah antiturunan, yakni kebalikan dari turunan. F adalah integral taktentu dari f ketika f adalah
turunan dari F.
Integral tertentu memasukkan sebuah fungsi dengan outputnya adalah sebuah angka, yang mana memberikan luas
antar grafik yang dimasukkan dengan sumbu x.
Contohnya adalah jarak yang ditempuh dengan lama waktu tertentu
Jika kecepatannya adalah konstan, perhitungan bisa dilakukan dengan perkalian, namun jika kecepatan berubah,
maka diperlukan sebuah metode yang lebih canggih. Salah satu metode tersebut adalah memperkirakan jarak
tempuh dengan memecahkan lama waktu menjadi banyak interval waktu yang singkat, kemudian dikalikan dengan
lama waktu tiap interval dengan salah satu kecepatan di interval tersebut, dan kemudian menambahkan total
keseluruhan jarak yang didapat. Konsep dasarnya adalah, jika interval waktu sangat singkat, maka kecepatan dalam
interval tersebut tidak berubah banyak. Namun, penjumlahan Riemann hanya memberikan nilai perkiraan. Kita
harus mengambil sebuah limit untuk mengdapatkan hasil yang tepat.
Integral dapat dianggap sebagai pencarian luas daerah di bawah kurva f(x), antara dua titik a dan b.
Jika f(x) pada diagram di samping mewakili kecepatan yang berubah-ubah, jarak yang ditempuh antara dua waktu a
dan b adalah luas daerah S yang diarsir.
Untuk memperkirakan luas, metode intuitif adalah dengan membagi jarak antar a dan b menjadi beberapa segmen
yang sama besar, panjang setiap segmen disimbolkan Δx. Untuk setiap segmel, kita dapat memilih satu nilai dari
fungsi f(x). Nilai tersebut misalkan adalah h. Maka luas daerah persegi panjangan dengan lebar Δx dan tinggi h
memberikan nilai jarak yang ditempuh di segmen tersebut. Dengan menjumlahkan luas setiap segmen tersebut,
maka didapatkan perkiraan jarak tempuh antara a dan b. Nilai Δx yang lebih kecil akan memberikan perkiraan yang
lebih baik, dan mendapatkan nilai yang tepat ketika kita menngambil limit Δx mendekati nol.
Simbol dari integral adalah , berupa S yang dipanjangkan (singkatan dari "sum"). Integral tertentu ditulis sebagai
Harjanto Sutedjo hal 5
Definisi integral dan differensial
dan dibaca "Integral dari a ke b dari f(x) terhadap x."
Integral tak tentu, atau anti derivatif, ditulis:
.
Oleh karena turunan dari fungsi y = x2
+ C adalah y ' = 2x (di mana C adalah konstanta),
.
Teorema dasar
Teorema dasar kalkulus menyatakan bahwa turunan dan integral adalah dua operasi yang saling berlawanan. Lebih
tepatnya, teorema ini menghubungkan nilai dari anti derivatif dengan integral tertentu. Karena lebih mudah
menghitung sebuah anti derivatif daripada mengaplikasikan definisi dari integral, teorema dasar kalkulus
memberikan cara yang praktis dalam menghitung integral tertentu.
Teorema dasar kalkulus menyatakan: Jika sebuah fungsi f adalah kontiniu pada interval [a,b] dan jika F adalah
fungsi yang mana turunannya adalah f pada interval (a,b), maka
Lebih lanjut, untuk setiap x di interval (a,b),
Aplikasi
Kalkulus digunakan di setiap cabang sains fisik, sains komputer, statistik, teknik, ekonomi, bisnis, kedokteran,
kependudukan, dan di bidang-bidang lainnya.
Setiap konsep di mekanika klasik saling berhubungan melalui kalkulus. Massa dari sebuah benda dengan massa
jenis yang tidak diketahui, momen inersia dari suatu objek, dan total energi dari sebuah objek dapat ditentukan
dengan menggunakan kalkulus. Dalam subdisiplin listrik dan magnetisme, kalkulus dapat digunakan untuk mencari
total fluks dari sebuah medan elektromagnetik . Contoh historik lainnya adalah penggunaan kalkulus di hukum
gerak Newton, diekspresikan dengan laju perubahan yang merujuk pada turunan: Laju perubahan momentum dari
sebuah benda adalah sama dengan resultan gaya yang bekerja bada benda tersebut dengan arah yang sama.
Bahkan rumus umum dari hukum ke-dua Newton: Gaya = Massa × Percepatan, mengandung diferensial kalkulus
karena percepatan bisa diekspresikan sebagai turunan dari kecepatan. Teori elektromagnetik Maxwell dan teori
relativitas Einstein juga diekspresikan dengan diferensial kalkulus.
Harjanto Sutedjo hal 6
Definisi integral dan differensial
Referesi Sumber DAFTAR PUSTAKA
1. ^ Helmer Aslaksen. Why Calculus? National University of Singapore. See
2. ^ Archimedes, Method, in The Works of Archimedes ISBN 978-0-521-66160-7
3. ^ Aryabhata the Elder
4. ^ Ian G. Pearce. Bhaskaracharya II.
5. ^ Victor J. Katz (1995). "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3), pp. 163-174.
6. ^ J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", Journal of the American
Oriental Society 110 (2), pp. 304-309.
7. ^ Madhava. Biography of Madhava. School of Mathematics and Statistics University of St Andrews, Scotland. Diakses
pada 13 September 2006
8. ^ An overview of Indian mathematics. Indian Maths. School of Mathematics and Statistics University of St Andrews,
Scotland. Diakses pada 7 Juli 2006
9. ^ Science and technology in free India. Government of Kerala — Kerala Call, September 2004.
Prof.C.G.Ramachandran Nair. Diakses pada 9 Juli 2006
10. ^ Charles Whish (1835). Transactions of the Royal Asiatic Society of Great Britain and Ireland.
11. ^ UNESCO-World Data on Education [isapi.dll?clientID=137079235&infobase=iwde.nfo&softpage=PL frame]
Daftar Pustaka
• Donald A. McQuarrie (2003). Mathematical Methods for Scientists and Engineers, University Science Books. ISBN
978-1-891389-24-5
• James Stewart (2002). Calculus: Early Transcendentals, 5th ed., Brooks Cole. ISBN 978-0-534-39321-2
Buku Online
• Crowell, B., (2003). "Calculus" Light and Matter, Fullerton. Retrieved 6th
May 2007 from
http://www.lightandmatter.com/calc/calc.pdf
• Garrett, P., (2006). "Notes on first year calculus" University of Minnesota. Retrieved 6th
May 2007 from
http://www.math.umn.edu/~garrett/calculus/first_year/notes.pdf
• Faraz, H., (2006). "Understanding Calculus" Retrieved Retrieved 6th
May 2007 from Understanding Calculus, URL
http://www.understandingcalculus.com/ (HTML only)
• Keisler, H. J., (2000). "Elementary Calculus: An Approach Using Infinitesimals" Retrieved 6th
May 2007 from
http://www.math.wisc.edu/~keisler/keislercalc1.pdf
• Mauch, S. (2004). "Sean's Applied Math Book" California Institute of Technology. Retrieved 6th
May 2007 from
http://www.cacr.caltech.edu/~sean/applied_math.pdf
• Sloughter, Dan., (2000) "Difference Equations to Differential Equations: An introduction to calculus". Retrieved 6th
May 2007 from http://math.furman.edu/~dcs/book/
• Stroyan, K.D., (2004). "A brief introduction to infinitesimal calculus" University of Iowa. Retrieved 6th
May 2007 from
http://www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm (HTML only)
• Strang, G. (1991) "Calculus" Massachusetts Institute of Technology. Retrieved 6th
May 2007 from
http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm.
Harjanto Sutedjo hal 7

More Related Content

What's hot (9)

Sejarah perkembangan kalkulus dan konsep konsep keterkaitan
Sejarah perkembangan kalkulus dan konsep konsep keterkaitanSejarah perkembangan kalkulus dan konsep konsep keterkaitan
Sejarah perkembangan kalkulus dan konsep konsep keterkaitan
 
Makalah kelompok 4 filsafat
Makalah kelompok 4 filsafatMakalah kelompok 4 filsafat
Makalah kelompok 4 filsafat
 
Publikasi
PublikasiPublikasi
Publikasi
 
Lisa
LisaLisa
Lisa
 
Sejarah penemuan integral dan diferensial
Sejarah penemuan integral dan diferensialSejarah penemuan integral dan diferensial
Sejarah penemuan integral dan diferensial
 
Sejarah kalkulus
Sejarah kalkulusSejarah kalkulus
Sejarah kalkulus
 
Tajuk 1 sejarah perkembangan matematik
Tajuk 1 sejarah perkembangan matematikTajuk 1 sejarah perkembangan matematik
Tajuk 1 sejarah perkembangan matematik
 
Sejarah & Perkembangan Matematik (MTE 3102)
Sejarah & Perkembangan Matematik (MTE 3102)Sejarah & Perkembangan Matematik (MTE 3102)
Sejarah & Perkembangan Matematik (MTE 3102)
 
Perkembangan sejarah matematika
Perkembangan sejarah matematikaPerkembangan sejarah matematika
Perkembangan sejarah matematika
 

Similar to Kalkulus differensial integral

Tokoh tokoh trigonometri
Tokoh tokoh trigonometriTokoh tokoh trigonometri
Tokoh tokoh trigonometri
Nurrida02
 
Perkembangan pi
Perkembangan piPerkembangan pi
Perkembangan pi
mut4676
 

Similar to Kalkulus differensial integral (20)

Sejarah Kalkulus
Sejarah KalkulusSejarah Kalkulus
Sejarah Kalkulus
 
Makalah Integral.docx
Makalah Integral.docxMakalah Integral.docx
Makalah Integral.docx
 
Makalah kalkulus dan ontologi matematika
Makalah kalkulus dan ontologi matematika Makalah kalkulus dan ontologi matematika
Makalah kalkulus dan ontologi matematika
 
Biografi leibniz
Biografi leibnizBiografi leibniz
Biografi leibniz
 
Lisa
LisaLisa
Lisa
 
Penerapan integral dalam bidang ilmu
Penerapan integral dalam bidang ilmuPenerapan integral dalam bidang ilmu
Penerapan integral dalam bidang ilmu
 
Sejarah matematika
Sejarah matematikaSejarah matematika
Sejarah matematika
 
KALKULUS_1.ppt
KALKULUS_1.pptKALKULUS_1.ppt
KALKULUS_1.ppt
 
Integral.docx
Integral.docxIntegral.docx
Integral.docx
 
Integral.pdf
Integral.pdfIntegral.pdf
Integral.pdf
 
CJR mekanika.pptx
CJR mekanika.pptxCJR mekanika.pptx
CJR mekanika.pptx
 
Sejarah aljabar
Sejarah aljabarSejarah aljabar
Sejarah aljabar
 
Tokoh tokoh trigonometri
Tokoh tokoh trigonometriTokoh tokoh trigonometri
Tokoh tokoh trigonometri
 
Teori relativitas einstein
Teori relativitas einsteinTeori relativitas einstein
Teori relativitas einstein
 
Sejarah Matematika
Sejarah MatematikaSejarah Matematika
Sejarah Matematika
 
Menguak penemu rumus determinan
Menguak penemu rumus determinanMenguak penemu rumus determinan
Menguak penemu rumus determinan
 
Perkembangan pi
Perkembangan piPerkembangan pi
Perkembangan pi
 
Resume geometri euclid
Resume geometri euclidResume geometri euclid
Resume geometri euclid
 
Paper turunan
Paper turunanPaper turunan
Paper turunan
 
siapakah pi??
siapakah pi??siapakah pi??
siapakah pi??
 

Kalkulus differensial integral

  • 1. Definisi integral dan differensial Kalkulus Daftar isi • 1 Sejarah o 1.1 Perkembangan o 1.2 Pengaruh penting • 2 Prinsip-prinsip o 2.1 Limit dan kecil tak terhingga o 2.2 Turunan o 2.3 Integral o 2.4 Teorema dasar • 3 Aplikasi • 4 Referesi o 4.1 Sumber o 4.2 Daftar Pustaka Sejarah Sir Isaac Newton adalah salah seorang penemu dan kontributor kalkulus yang terkenal. Perkembangan Sejarah kalkulus Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskow Mesir (c. 1800 SM) di mana orang Mesir menghitung volume dari frustrum piramid[1] . Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.[2] Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar.[3] Persamaan ini kemudian mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari "Teorema Rolle".[4] Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral.[5] Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. [6] Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari Mazhab Harjanto Sutedjo hal 1
  • 2. Definisi integral dan differensial astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor[7] , yang dituliskan dalam teks Yuktibhasa.[8][9][10] Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis dan Isaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668. Gottfried Wilhelm Leibniz pada awalnya dituduh menjiplak dari hasil kerja Sir Isaac Newton yang tidak dipublikasikan, namun sekarang dianggap sebagai kontributor kalkulus yang hasil kerjanya dilakukan secara terpisah. Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisika sementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang. Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society. Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya "The science of fluxions". Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus. Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.[11] Pengaruh penting Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika. Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier. Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut. Harjanto Sutedjo hal 2
  • 3. Definisi integral dan differensial Prinsip-prinsip Limit dan kecil tak terhingga Kalkulus pada umumnya dikembangkan dengan memanipulasi sejumlah kuantitas yang sangat kecil. Objek ini, yang dapat diperlakukan sebagai angka, adalah sangat kecil. Setiap perkalian dengan kecil takterhingga (infinitesimal) tetaplah kecil takterhingga, dengan kata lain kecil takterhingga tidak memenuhi properti Archimedes. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik untuk memanipulasi kecil takterhingga. Pada abad ke-19, konsep kecil takterhingga digantikan oleh konsep limit. Limit menjelaskan nilai suatu fungsi pada nilai input tertentu dengan hasil dari input terdekat. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik memanipulasi limit-limit tertentu. Turunan Garis singgung pada (x, f(x)). Turunan f'(x) dari sebuah kurva pada sebuah titik adalah kemiringan dari garis singgung yang menyinggung kurva pada titik tersebut. Kalkulus diferensial adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari turunan atau kemiringan dari sebuah grafik. Konsep turunan secara fundamental lebih maju dan rumit daripada konsep yang ditemukan di aljabar. Dalam aljabar, seorang murid mempelajari sebuah fungsi dengan input sebuat angka dan output sebuah angka. Tetapi input dari turunan adalah sebuah fungsi dan outputnya juga adalah sebuah fungsi. Untuk memahami turunan, seorang murid harus mempelajari notasi matematika. Dalam notasi matematika, salah satu simbol yang umumnya dipakai untuk menyatakan turunan dari sebuah fungsi adalah apostrofi. Maka turunan dari f adalah f'. . Jika input dari sebuah fungsi adalah waktu, maka turunan dari fungsi itu adalah laju perubahan di mana fungsi tersebut berubah. Jika fungsi tersebut adalah fungsi linear, maka fungsi tersebut dapat ditulis dengan y=mx+b, di mana: Harjanto Sutedjo hal 3
  • 4. Definisi integral dan differensial . Ini memberikan nilai dari kemiringan suatu garis lurus. Jika sebuah fungsi bukanlah garis lurus, maka perubahan y dibagi terhadap perubahan x bervariasi, dan kita dapat menggunakan kalkulus untuk menentukan nilai pada titik tertentu. Kemiringan dari suatu fungsi dapat diekspresikan: di mana koordinat dari titik pertama adalah (x, f(x)) dan h adalah jarak horizontal antara dua titik. Untuk menentukan kemiringan dari sebuat kurva, kita menggunakan limit: Garis singgung sebagai limit dari garis sekan. Turunan dari kurva f′(x) di suatu titik adalah kemiringan dari garis singgung terhadap kurva di titik tersebut. Kemiringan ini ditentukan dengan memakai nilai limit dari kemiringan garis sekan. Sebagai contoh, untuk menemukan gradien dari fungsi f(x) = x2 pada titik (3,9): Harjanto Sutedjo hal 4
  • 5. Definisi integral dan differensial Integral Kalkulus integral adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari dua konsep yang saling berhubungan, integral taktentu dan integral tertentu. Proses pencarian nilai dari sebuah integral dinamakan pengintegralan (integration). Dengan kata lain, kalkulus integral mempelajari dua operator linear yang saling berhubungan. Integral taktentu adalah antiturunan, yakni kebalikan dari turunan. F adalah integral taktentu dari f ketika f adalah turunan dari F. Integral tertentu memasukkan sebuah fungsi dengan outputnya adalah sebuah angka, yang mana memberikan luas antar grafik yang dimasukkan dengan sumbu x. Contohnya adalah jarak yang ditempuh dengan lama waktu tertentu Jika kecepatannya adalah konstan, perhitungan bisa dilakukan dengan perkalian, namun jika kecepatan berubah, maka diperlukan sebuah metode yang lebih canggih. Salah satu metode tersebut adalah memperkirakan jarak tempuh dengan memecahkan lama waktu menjadi banyak interval waktu yang singkat, kemudian dikalikan dengan lama waktu tiap interval dengan salah satu kecepatan di interval tersebut, dan kemudian menambahkan total keseluruhan jarak yang didapat. Konsep dasarnya adalah, jika interval waktu sangat singkat, maka kecepatan dalam interval tersebut tidak berubah banyak. Namun, penjumlahan Riemann hanya memberikan nilai perkiraan. Kita harus mengambil sebuah limit untuk mengdapatkan hasil yang tepat. Integral dapat dianggap sebagai pencarian luas daerah di bawah kurva f(x), antara dua titik a dan b. Jika f(x) pada diagram di samping mewakili kecepatan yang berubah-ubah, jarak yang ditempuh antara dua waktu a dan b adalah luas daerah S yang diarsir. Untuk memperkirakan luas, metode intuitif adalah dengan membagi jarak antar a dan b menjadi beberapa segmen yang sama besar, panjang setiap segmen disimbolkan Δx. Untuk setiap segmel, kita dapat memilih satu nilai dari fungsi f(x). Nilai tersebut misalkan adalah h. Maka luas daerah persegi panjangan dengan lebar Δx dan tinggi h memberikan nilai jarak yang ditempuh di segmen tersebut. Dengan menjumlahkan luas setiap segmen tersebut, maka didapatkan perkiraan jarak tempuh antara a dan b. Nilai Δx yang lebih kecil akan memberikan perkiraan yang lebih baik, dan mendapatkan nilai yang tepat ketika kita menngambil limit Δx mendekati nol. Simbol dari integral adalah , berupa S yang dipanjangkan (singkatan dari "sum"). Integral tertentu ditulis sebagai Harjanto Sutedjo hal 5
  • 6. Definisi integral dan differensial dan dibaca "Integral dari a ke b dari f(x) terhadap x." Integral tak tentu, atau anti derivatif, ditulis: . Oleh karena turunan dari fungsi y = x2 + C adalah y ' = 2x (di mana C adalah konstanta), . Teorema dasar Teorema dasar kalkulus menyatakan bahwa turunan dan integral adalah dua operasi yang saling berlawanan. Lebih tepatnya, teorema ini menghubungkan nilai dari anti derivatif dengan integral tertentu. Karena lebih mudah menghitung sebuah anti derivatif daripada mengaplikasikan definisi dari integral, teorema dasar kalkulus memberikan cara yang praktis dalam menghitung integral tertentu. Teorema dasar kalkulus menyatakan: Jika sebuah fungsi f adalah kontiniu pada interval [a,b] dan jika F adalah fungsi yang mana turunannya adalah f pada interval (a,b), maka Lebih lanjut, untuk setiap x di interval (a,b), Aplikasi Kalkulus digunakan di setiap cabang sains fisik, sains komputer, statistik, teknik, ekonomi, bisnis, kedokteran, kependudukan, dan di bidang-bidang lainnya. Setiap konsep di mekanika klasik saling berhubungan melalui kalkulus. Massa dari sebuah benda dengan massa jenis yang tidak diketahui, momen inersia dari suatu objek, dan total energi dari sebuah objek dapat ditentukan dengan menggunakan kalkulus. Dalam subdisiplin listrik dan magnetisme, kalkulus dapat digunakan untuk mencari total fluks dari sebuah medan elektromagnetik . Contoh historik lainnya adalah penggunaan kalkulus di hukum gerak Newton, diekspresikan dengan laju perubahan yang merujuk pada turunan: Laju perubahan momentum dari sebuah benda adalah sama dengan resultan gaya yang bekerja bada benda tersebut dengan arah yang sama. Bahkan rumus umum dari hukum ke-dua Newton: Gaya = Massa × Percepatan, mengandung diferensial kalkulus karena percepatan bisa diekspresikan sebagai turunan dari kecepatan. Teori elektromagnetik Maxwell dan teori relativitas Einstein juga diekspresikan dengan diferensial kalkulus. Harjanto Sutedjo hal 6
  • 7. Definisi integral dan differensial Referesi Sumber DAFTAR PUSTAKA 1. ^ Helmer Aslaksen. Why Calculus? National University of Singapore. See 2. ^ Archimedes, Method, in The Works of Archimedes ISBN 978-0-521-66160-7 3. ^ Aryabhata the Elder 4. ^ Ian G. Pearce. Bhaskaracharya II. 5. ^ Victor J. Katz (1995). "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3), pp. 163-174. 6. ^ J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", Journal of the American Oriental Society 110 (2), pp. 304-309. 7. ^ Madhava. Biography of Madhava. School of Mathematics and Statistics University of St Andrews, Scotland. Diakses pada 13 September 2006 8. ^ An overview of Indian mathematics. Indian Maths. School of Mathematics and Statistics University of St Andrews, Scotland. Diakses pada 7 Juli 2006 9. ^ Science and technology in free India. Government of Kerala — Kerala Call, September 2004. Prof.C.G.Ramachandran Nair. Diakses pada 9 Juli 2006 10. ^ Charles Whish (1835). Transactions of the Royal Asiatic Society of Great Britain and Ireland. 11. ^ UNESCO-World Data on Education [isapi.dll?clientID=137079235&infobase=iwde.nfo&softpage=PL frame] Daftar Pustaka • Donald A. McQuarrie (2003). Mathematical Methods for Scientists and Engineers, University Science Books. ISBN 978-1-891389-24-5 • James Stewart (2002). Calculus: Early Transcendentals, 5th ed., Brooks Cole. ISBN 978-0-534-39321-2 Buku Online • Crowell, B., (2003). "Calculus" Light and Matter, Fullerton. Retrieved 6th May 2007 from http://www.lightandmatter.com/calc/calc.pdf • Garrett, P., (2006). "Notes on first year calculus" University of Minnesota. Retrieved 6th May 2007 from http://www.math.umn.edu/~garrett/calculus/first_year/notes.pdf • Faraz, H., (2006). "Understanding Calculus" Retrieved Retrieved 6th May 2007 from Understanding Calculus, URL http://www.understandingcalculus.com/ (HTML only) • Keisler, H. J., (2000). "Elementary Calculus: An Approach Using Infinitesimals" Retrieved 6th May 2007 from http://www.math.wisc.edu/~keisler/keislercalc1.pdf • Mauch, S. (2004). "Sean's Applied Math Book" California Institute of Technology. Retrieved 6th May 2007 from http://www.cacr.caltech.edu/~sean/applied_math.pdf • Sloughter, Dan., (2000) "Difference Equations to Differential Equations: An introduction to calculus". Retrieved 6th May 2007 from http://math.furman.edu/~dcs/book/ • Stroyan, K.D., (2004). "A brief introduction to infinitesimal calculus" University of Iowa. Retrieved 6th May 2007 from http://www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm (HTML only) • Strang, G. (1991) "Calculus" Massachusetts Institute of Technology. Retrieved 6th May 2007 from http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm. Harjanto Sutedjo hal 7