SlideShare a Scribd company logo
1 of 10
Download to read offline
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. 1 (Mar – Apr. 2015), PP 65-74
www.iosrjournals.org
DOI: 10.9790/0661-17216574 www.iosrjournals.org 65 | Page
Car Dynamics using Quarter Model and Passive Suspension,
Part VI: Sprung-mass Step Response
Galal Ali Hassaan
(Emeritus Professor, Department of Mechanical Design & Production Engineering, Faculty of
Engineering/Cairo University, Giza, Egypt)
Abstract: The objective of the paper is to investigate the step response of a 2 DOF quarter-car model with
passive suspension. The mathematical models of the sprung-mass displacement and acceleration as response to
the step road disturbance are derived. The step response of the system is plotted using MATLAB for a 100 mm
step amplitude. The effect of the suspension parameters on the step response of the sprung-mass is investigated
in terms of motion displacement and acceleration. The maximum percentage overshoot and settling time of the
step response are evaluated as time-based characteristics of the dynamic system for a specific range of the
suspension parameters. The maximum acceleration of the sprung-mass due to the step road disturbance did not
conform with the ride comfort requirements according to ISO 2631-1 standard .
Keywords: Car dynamics; quarter car model; passive suspension; step response, sprung-mass acceleration
I. Introduction
Car dynamics can be studied in various ways including time response to speed humps, frequency
response and step response. The latest is borrowed from automatic control engineering to investigate the
dynamic system in the time domain using the most known input type. This type of input is used by a large
number of researchers dealing with car dynamics.
Masi (2001) used computer simulation to examine the effect of control methods on the performance of
semiactive dampers in controlling the dynamics of a quarter-car model. One of the inputs he used was a step
input of 12.7 mm amplitude [1]. Askerda et. al. (2003) developed a methodology for analyzing the impact of
data errors on control system dependability. Their applied their technique on a car slip-control brake-system.
They used a step input command signal in terms of the normalized car-slip [2]. Toshio and Atsushi (2004)
presented the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy
reasoning and disturbance observer. They used a step input of 1 V amplitude to the actuator [3]. Sakman, Guclu
and Yagiz (2005) investigated the performance of fuzzy logic controlled active suspension on a nonlinear model
with 4 DOF. They demonstrated the effectiveness of the fuzzy logic controller for active suspension systems.
They used a half-car model with 4 DOF. They used a step road surface input of 35 mm amplitude resulting in
chassis maximum acceleration of about 3.5 m/s2
[4].
Faheem, Alam and Thomson (2006) investigated the response of quarter and half-car models to road
excitation. They studied the time response to a step road input and the frequency response of the sprung and
unsprung masses [5]. Maila and Priyandoko (2007) presented the design of a control technique for active
suspension system of a quarter-car model using adaptive fuzzy logic and active force control. They tested their
control strategy using a 50 mm step road input resulting in a 75 mm maximum sprung-mass displacement and
20 m/s2 maximum acceleration using passive elements. The active force control techniques reduced the
maximum acceleration to about 10 m/s2
[6]. Hanafi (2009) designed a fuzzy logic control system for a quarter-
car model. He used a step road disturbance of 100 mm amplitude [7]. Alexandru and Alexandru (2010)
presented a virtual prototype of an automobile suspension system with force generator actuator. They used a
quarter-car model and a step input of 100 mm amplitude. The time response of the sprung-mass exhibited an
overshoots and undershoots [8].
Unaune, Pawar and Mohite (2011) simulated the time response of a quarter-car model to a step input
with passive elements suspension. They investigated the effect of mass ratio, stiffness ratio and damping
coefficient ratio on the sprung-mass dynamics. They didn’t show the amplitude of the step input used in the
simulation [9]. Fayyad (2012) presented a control system for active suspension system to improve ride comfort
even at resonance. He used a step road input of 80 mm amplitude to a quarter-car model. The passive elements
resulted in a sprung-mass overshoot of 59 % while with the active control it was 22.5 %. The maximum
acceleration to the step input used was 17 m/s2 with passive elements and 1.3 m/s2
with active suspension [10].
Chikhale and Deshmukh (2013) performed a vibration analysis of a quarter-car model to a step input using
MATLAB and MSc. ADAMS. They used the system state space representation in deriving the mathematical
model of the system. They used a step input of 25 mm amplitude. The sprung-mass had 62 % overshoot in its
displacement response to the step input [11]. Faruk, Bature, Babani and Dankadai (2014) used PID conventional
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 66 | Page
controller and integrated fuzzy logic control schemes for good driving comfort and effective isolation of road
disturbance. They simulated the quarter-car step input response for a 1 m step amplitude !!. The time response
without control had a 75 % overshoot reduced to zero with PID and fuzzy controllers [12]. Patole and Swant
(2015) studied the efforts of researchers about nonlinearity of passive suspension parameters. They referred to
ride comfort through vibration amplitude and ride comfort level for model inputs including a step type [13].
II. The Quarter-Car Model
Researchers use quarter car model in studying the vehicle dynamics. This model depending on the
degree of simplification used by the researcher may be considered as a single (1DOF), two (2DOF) or three
degree of freedom (3DOF) [14,15,16]. A quarter-car model with 2 DOF will be considered in this work because
of the complexity of its mathematical model if 3 DOF one is considered. The line diagram of the 2 DOF quarter-
car model is shown in Fig.1 [17].
Fig. 1 2 DOF quarter-car model [17].
The model of Fig.1 consists of:
- One tire and wheel and its attachments having the parameters: mass (m1), damping coefficient (c1) and stiffness
(k1).
- Sprung mass which is one quarter of the car chassis having the parameters: mass (m2), damping coefficient (c2)
and stiffness (k2).
- c2 and k2 are the suspension parameters.
III. Model Parameters
The 2 DOF quarter-car model parameters used in this analysis work are given in Table 1. The suspension
parameters k2 and c2 are set in the range given in the table to investigate their effect on the step response of the
vehicle. The tire and wheel parameters (m1, k1 and c1) and sprung mass (m2) are borrowed from reference [17].
Table 1 2 DOF model parameters
Parameters Description Value
k1 (N/m) Tire stiffness 135000
c1 (Ns/m) Tire damping coefficient 1400
m1 (kg) Un-sprung mass 49.8
k2 (N/m) Suspension stiffness 1000 – 3000
c2 (Ns/m) Suspension damping coefficient 1000 – 4000
m2 (kg) Sprung mass 466.5
IV. Sprung-Mass Displacement
The mathematical model of the 3 DOF quarter-car model is defined by three differential equations obtained
by applying Newton's third law to the free body diagram of the three lumped masses of Fig.1. The dynamic motions
of the system are: x1, x2 and x3. The irregularities of the road is defined by the dynamic motion y which is assumed
sinusoidal. Of course, the irregularities are random. The frequency contents of this irregularity can be defined using
FFT (fast Fourier transform). Thus, the sinusoidal input motion y represents one component in this transform. All the
parameters of the system are passive and assumed having the constant values presented in section 3. The differential
equations are written in standard form as follows:
For the tire and wheel mass, m1:
m1x1'' + (c1+c2)x1' – c2x2' + (k1+k2)x1 – k2x2 = c1y' +k1y (1)
For the sprung mass, m2:
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 67 | Page
m2x2'' - c2x1' + c2x2' - k2x1 + k2x2 = 0 (2)
The Laplace transform of Eqs.1 and 2 gives:
[m1s2
+ (c1+c2)s + k1+k2]X1(s) – (c2s+k2)X2(s) = (c1s+k1)Y(s) (3)
And (m2s2
+c2s+k2)X2(s) – (c2s+k2)X1(s) = 0 (4)
Where X1(s) and X2(s) are the Laplace transform of the motions x1 and x2 respectively, and s is the Laplace
operator.
Solving Eqs.3 and 4 for X2(s)/Y(s) gives:
X2(s)/Y(s) = (c1s+k1)(c2s+k2) / {[m1s2
+ (c1+c2)s + k1+k2] (m2s2
+c2s+k2) – (c2s+k2)2
} (5)
Eq.5 is the transfer function of the dynamic system. Writing Eq.5 in a standard form gives:
X2(s)/Y(s) = N1(s) / D1(s) (6)
Where: N1(s) = c1c2s2
+ (c1k2+c2k1)s + k1k2
and D1(s) = m1m2s4
+ [m1c2+m2(c1+c2)]s3
+ [m1k2+c2(c1+c2)+m2(k1+k2)-c2
2
]s2
+ [k2(c1+c2)+c2(k1+k2)-2c2k2]s + [k2(k1+k2)-k2
2
]
V. Sprung-Mass Acceleration
- In the derivation of the sprung mass displacement, the variables x’’, x’ , x and y are used.
- For sake of the mathematical model of the sprung mass acceleration, the acceleration variables a1, a2, velocity
variables v1, v2 and displacement variables x1, x2 will be used.
- The differential equations of the dynamic system (Eqs.1 and 2) in terms of the acceleration, velocity and
displacement variables will take the form:
m1a1 + (c1+c2)v1 – c2v2 + (k1+k2)x1 – k2x2 = c1y’ + k1y (7)
And m2a2 - c2v1 + c2v2 – k2x1 + k2x2 = 0 (8)
- The acceleration, velocity and displacement variables are related through:
a1 = v1’ (9)
a2 = v2’ (10)
v1 = x1’ (11)
v2 = x2’ (12)
- Taking the Laplace transform of Eqs.7 through 12 gives the Laplace transform ratio A2(s)/Y(s) as:
A2(s)/Y(s) = N2(s) / D2(s) (13)
Where: N2(s) = c1c2s4
+ (k1c2 + k2c1) s3
+ k1k2s2
(14)
D2(s) = m1m2s4
+ [m2(c1+c2) + m1c2] s3
+ [m2(k1+k2) + c2(c1 + c2) + m1k2 – c2
2
] s2
+ [c2(k1+k2) + k2(c1+c2) – 2k2c2] s + k2(k1+k2) – k2
2
(15)
VI. Sprung-Mass Step Displacement Response
The sprung mass displacement is evaluated using the transfer function of the spring-mass displacement
relative to the ground motion (Eq.6). MATLAB command 'step' is used for this purpose for an input step of 100 mm
amplitude [18]. The dynamics of the quarter-car model is evaluated in response to a step road input for suspension
parameters in the range:
1000 ≤ c2 ≤ 4000 Ns/m , 1000 ≤ k2 ≤ 3000 N/m (16)
The step response of the sprung mass for the suspension parameters in the range of Eq.16 is shown in
Figs.2 through 6.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 68 | Page
Fig.2 Sprung-mass step response for k2 = 1000 N/m.
Fig.3 Sprung-mass step response for k2 = 1500 N/m.
Fig.4 Sprung-mass step response for k2 = 2000 N/m.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 69 | Page
Fig.5 Sprung-mass step response for k2 = 2500 N/m.
Fig.6 Sprung-mass step response for k2 = 3000 N/m.
- The step response of the sprung-mass exhibits an overshoot and undershoot depending of the level of the
suspension damping coefficient.
- The maximum overshoot and maximum undershoot decreases as the damping coefficient increases.
- All the step response curves of the sprung-mass displacement intersect in more than one point.
- The effect of the suspension parameters c2 and k2 on the maximum percentage overshoot of the sprung-mass
step response is shown graphically in Fig.7.
Fig.7 Sprung-mass maximum displacement overshoot.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 70 | Page
- The maximum percentage overshoot decreases as the suspension damping coefficient increases and the
suspension stiffness decreases.
- The settling time of the sprung-mass displacement is shown in Fig.8.
Fig.8 Sprung-mass displacement settling time .
- The settling time decreases as the suspension damping coefficient increases.
- The effect of the suspension stiffness is not uniform.
- versed between the first and second intersections.
VII. Sprung-Mass Step Acceleration Response
- The step response of the sprung-mass acceleration is simulated using Eq.13 and the 'step' command of
MATLAB.
- The step response in terms of the sprung-mass acceleration is in Figs.9-13 for suspension stiffness of 1000,
1500, 2000, 2500 and 3000 N/m respectively.
Fig.9 Sprung-mass step response (acceleration) for k2 = 1000 N/m.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 71 | Page
Fig.10 Sprung-mass step response (acceleration) for k2 = 1500 N/m.
Fig.11 Sprung-mass step response (acceleration) for k2 = 2000 N/m.
Fig.12 Sprung-mass step response (acceleration) for k2 = 2500 N/m.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 72 | Page
Fig.13 Sprung-mass step response (acceleration) for k2 = 3000 N/m.
- The sprung-mass acceleration exhibits overshoot and undershoot characteristics relative to the zero acceleration
line.
- The effect of the suspension parameters on the maximum acceleration of the sprung-mass is shown in Fig.14.
Fig.14 Maximum acceleration of the sprung-mass due to the step input.
- The maximum acceleration of the sprung mass increases with increased damping.
- The maximum acceleration increases almost linearly with the suspension damping coefficient.
- The suspension stiffness has almost no effect on the maximum acceleration of the sprung-mass.
- Fig.15 shows the effect of the suspension parameters on the acceleration response settling time as evaluated by
MATLAB.
Fig.15 Settling time of the sprung-mass due to the step input.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 73 | Page
- The settling time increases to a maximum and then decreases again.
- For all values of the suspension stiffness, the settling time is maximum at a damping coefficient of about 2000
Ns/m.
- All the characteristic curves of the settling time intersect at a damping coefficient of about 1700 Ns/m.
VIII. Conclusion
- The dynamic model of the 2 DOF quarter-car dynamic system was derived assuming passive parameters for
all dampers and springs in the system.
- The step response of the system was presented in terms of the suspension parameters (damping coefficient
and stiffness).
- Using MATLAB, the step response of the sprung-mass was presented for suspension parameters of damping
coefficient in the range 1000 to 4000 Ns/m and stiffness in the range 1000 to 3000 N/m.
- The maximum overshoot of the sprung-mass displacement has decreased from 20.30 to 2.73 % when the
damping coefficient of the suspension increased from 1000 to 4000 Ns/m at 1000 N/m suspension stiffness.
- The settling time of the sprung-mass displacement has decreased from 2.95 to 0.248 s when the damping
coefficient of the suspension increased from 1000 to 4000 Ns/m at 1000 N/m suspension stiffness.
- The suspension stiffness did not affect the maximum acceleration of the sprung-mass during the step
response.
- With suspension damping coefficient of ≤ 1700 Ns/m, increasing the suspension stiffness decreased the
settling time of the sprung-mass acceleration. With damping coefficient > 1700 Ns/m, this action was
reversed.
- The sprung-mass settling time of its acceleration step response was increased with increased suspension
damping coefficient up to 2000 Ns/m after which it started decreasing with less rate.
- The maximum acceleration due to the 100 mm step road disturbance was completely extremely
uncomfortable according to ISO 2631-1 [19].
- Such sudden road disturbance has to be avoided because of its harmful effect on passengers and vehicles.
- The alternative is using more smooth speed control humps such as simple harmonic motion hump [15] or
polynomial hump [20].
References
[1]. J. Masi, Effect of control techniques on the performance of semiactive dampers, M. Sc. Thesis, Faculty of Virginia Polytechnic
Institute and State University, December 2001.
[2]. O. Askerdal, M. Gafvert M. Hiller and N. Suri, Analyzing the impact of data errors in safety critical control systems, IEICE
Transaction on Information and Systems, E86-D, No.12, 2623-2633, 2003.
[3]. Y. Toshio and T. Atsushi, Pneumatic active suspension system for a one wheel car model using fuzzy reasoning and disturbance
observer, Journal of Zhejiang University Science, 5 (9), 1060-1068, 2004.
[4]. L. Sakman, R. Guclu and N. Yagiz, Fuzzy logic control of vehicle suspension with dry friction nonlinearity, Sadhana, 30 (5), 649-
659, 2005.
[5]. A. Faheem, F. Alam and V. Thomas, The suspension dynamic for a quarter-car model and half-car model, 3rd BSME-ASME
International Conference on Thermal Engineering, 20-22 December, Dhaka, 2006.
[6]. M. Maila and G. Priyandoko, Simulation of a suspension system with adaptive fuzzy active force control, International Journal of
Simulation Modeling, 6 (1), 25-36, 2007.
[7]. D. Hanafi, The quarter car fuzzy controller design based on model from intelligent system identification, IEEE Symposium on
Industrial Electronics and Application, Kuala Lumpur , Malaysia, October 4-6, 930-933, 2009.
[8]. C. Alexandru and P. Alexandru, The virtual prototype of a mechatronic suspension system with active force control, WSEAS
Transactions on Systems, 9 (9), 927-936, 2010.
[9]. D. Unaune, M. Pawar and S. Mohite, Ride analysis of quarter vehicle model, Proceedings of the First International Conference on
Modern Trends in Industrial Engineering, Surat, Gujarat, India, November, 17-19, 2011.
[10]. S. Fayyad, Constructing control system for active suspension system, Contemporary Engineering Sciences, 5 (6), 189-200, 2012.
[11]. S. Chikhale and S. Deshm, Comparative analysis of vehicle suspension system in matlab-simulink and MSc-ADAMS with the help
of quarter-car model, International Journal of Innovations Research in Science, 2 (10), 5452-5459, 2013.
[12]. M. Faruk, A. Bature, S. Batani and N. Dankadai, Conventional and intelligent controller for quadratic car suspension system,
International Journal of Technical Research and Applications. 2, Special Issue, 24-27, 2014.
[13]. S. Patole and S. Swant, An overview of disarray inside performance analysis of half car model passive vehicle dynamic system
subjected to different road profiles with wheel base delay and nonlinear parameters, International Journal of Innovative Research in
Advanced Engineering, 2 (1), 63-66, 2015.
[14]. G. Litak, M. Borowiec, M. Ali, L. Saha and M. Friswell, Pulsive feedback control of a quarter car model forced by a road profile, Chaos
Solutions and Fractals, 33, 1672-1676, 2007.
[15]. G. A. Hassaan, Car dynamics using quarter model and passive suspension, Part II: A novel simple harmonic hump, Journal of
Mechanical and Civil Engineering, 12(1), 93-100, 2015.
[16]. G. A. Hassaan, Car dynamics using quarter model and passive suspension, Part V: Frequency response considering driver-seat,
International Journal of Applied Sciences and Engineering Research, 2(1), Accepted for Publication, 2015.
[17]. A. Florin, M. Joan-Cosmin and P. Lilian, Passive suspension modeling using MATLAB, quarter-car model, input signal step type,
New Technologies and Products in Machine Manufacturing, January, 258-263, 2013.
[18]. C. Houpis and S. Sheldon, Linear control systems analysis and design with MATLAB, CRC Press, 2013.
[19]. Y. Marjanen, Validation and improvement of the ISO 2631-1 standard method for evaluating discomfort from whole-body vibration
in a multi-axis environment, Ph. D. Thesis, Loughborough University, UK, January 2010.
Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass ….
DOI: 10.9790/0661-17216574 www.iosrjournals.org 74 | Page
[20]. G. A. Hassaan, Dynamics using quarter model and passive suspension, Part III: A novel polynomial hump, Journal of Mechanical
and Civil Engineering, 12(1), Version III, 51-57, 2015.
Biography
Galal Ali Hassaan
 Emeritus Professor of System Dynamics and Automatic Control.
 Has got his B.Sc. and M.Sc. from Cairo University in 1970 and 1974.
 Has got his Ph.D. in 1979 from Bradford University, UK under the
supervision of Late Prof. John Parnaby.
 Now with the Faculty of Engineering, Cairo University, EGYPT.
 Research on Automatic Control, Mechanical Vibrations , Mechanism
Synthesis and History of Mechanical Engineering.
 Published 10’s of research papers in international journal and conferences.
 Author of books on Experimental Systems Control, Experimental Vibrations
and Evolution of Mechanical Engineering.
 Reviewer and member of editorial boards of some international journals.

More Related Content

What's hot

Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...IJERA Editor
 
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...IOSR Journals
 
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)IOSR Journals
 
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...Improvement of vehicle ride comfort using geneticalgorithm optimization and p...
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...ahmedgeweda
 
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...yarmohammadisadegh
 
On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach IJECEIAES
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond Brunkow
 
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILLADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILLtoukaigi
 
SLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network TopologySLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network Topologytoukaigi
 
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage TechnicalOptimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage TechnicalTELKOMNIKA JOURNAL
 
Mechatronics design of ball and beam system education and research
Mechatronics design of ball and beam system education and researchMechatronics design of ball and beam system education and research
Mechatronics design of ball and beam system education and researchAlexander Decker
 
Robotics of Quadruped Robot
Robotics of Quadruped RobotRobotics of Quadruped Robot
Robotics of Quadruped Robot홍배 김
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqreSAT Publishing House
 
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...IJRES Journal
 
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLMODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLJournal For Research
 
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODEL
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODELREVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODEL
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODELBashir Abdu
 

What's hot (18)

Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
 
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
 
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
 
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...Improvement of vehicle ride comfort using geneticalgorithm optimization and p...
Improvement of vehicle ride comfort using geneticalgorithm optimization and p...
 
Ball and beam
Ball and beamBall and beam
Ball and beam
 
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...
Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Be...
 
On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
 
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILLADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
 
SLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network TopologySLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network Topology
 
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage TechnicalOptimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical
Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical
 
Mechatronics design of ball and beam system education and research
Mechatronics design of ball and beam system education and researchMechatronics design of ball and beam system education and research
Mechatronics design of ball and beam system education and research
 
Robotics of Quadruped Robot
Robotics of Quadruped RobotRobotics of Quadruped Robot
Robotics of Quadruped Robot
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...
Study on Vibration Reduction Effect of the Rail Vehicle with Axle Dynamic Vib...
 
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLMODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
 
Review of Optimal speed models
Review of Optimal speed modelsReview of Optimal speed models
Review of Optimal speed models
 
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODEL
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODELREVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODEL
REVIEW OF OPTIMAL SPEED TRAFFIC FLOW MODEL
 

Viewers also liked

Finite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesFinite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesIOSR Journals
 
FTIR study of second group iodate crystals grown by gel method
FTIR study of second group iodate crystals grown by gel methodFTIR study of second group iodate crystals grown by gel method
FTIR study of second group iodate crystals grown by gel methodIOSR Journals
 
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...IOSR Journals
 
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...IOSR Journals
 
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, Nigeria
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, NigeriaPorosity Estimation Using Wire-Line Log to Depth in Niger Delta, Nigeria
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, NigeriaIOSR Journals
 
An Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsAn Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsIOSR Journals
 
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...IOSR Journals
 
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...IOSR Journals
 
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...IOSR Journals
 
Determination of volatile organic compounds in surface water and sediment usi...
Determination of volatile organic compounds in surface water and sediment usi...Determination of volatile organic compounds in surface water and sediment usi...
Determination of volatile organic compounds in surface water and sediment usi...IOSR Journals
 
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...IOSR Journals
 
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...IOSR Journals
 
Case Study of Tolled Road Project
Case Study of Tolled Road ProjectCase Study of Tolled Road Project
Case Study of Tolled Road ProjectIOSR Journals
 
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...IOSR Journals
 
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...IOSR Journals
 
Canny Edge Detection Algorithm on FPGA
Canny Edge Detection Algorithm on FPGA Canny Edge Detection Algorithm on FPGA
Canny Edge Detection Algorithm on FPGA IOSR Journals
 
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...IOSR Journals
 
E- Shopping -A Changing Shopping Trend
E- Shopping -A Changing Shopping TrendE- Shopping -A Changing Shopping Trend
E- Shopping -A Changing Shopping TrendIOSR Journals
 

Viewers also liked (20)

Finite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesFinite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite Plates
 
FTIR study of second group iodate crystals grown by gel method
FTIR study of second group iodate crystals grown by gel methodFTIR study of second group iodate crystals grown by gel method
FTIR study of second group iodate crystals grown by gel method
 
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...
Cryptanalysis of Efficient Unlinkable Secret Handshakes for Anonymous Communi...
 
H1803014347
H1803014347H1803014347
H1803014347
 
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...
Institutional Transformation Aimed To Support the Farmers Empowerment Strateg...
 
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, Nigeria
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, NigeriaPorosity Estimation Using Wire-Line Log to Depth in Niger Delta, Nigeria
Porosity Estimation Using Wire-Line Log to Depth in Niger Delta, Nigeria
 
An Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsAn Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology Projects
 
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
 
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
 
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...
Effect of Notch Angle on the Fracture Toughness of Al7075 T6 Alloy- An Experi...
 
Determination of volatile organic compounds in surface water and sediment usi...
Determination of volatile organic compounds in surface water and sediment usi...Determination of volatile organic compounds in surface water and sediment usi...
Determination of volatile organic compounds in surface water and sediment usi...
 
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...
A Retrospective Study of Malaria Cases Reported in a Decade at Tertiary Level...
 
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...
Spectroscopic, Thermal, Magnetic and conductimetric studies on some 7-hydroxy...
 
Case Study of Tolled Road Project
Case Study of Tolled Road ProjectCase Study of Tolled Road Project
Case Study of Tolled Road Project
 
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
 
I012415358
I012415358I012415358
I012415358
 
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
 
Canny Edge Detection Algorithm on FPGA
Canny Edge Detection Algorithm on FPGA Canny Edge Detection Algorithm on FPGA
Canny Edge Detection Algorithm on FPGA
 
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...
FEA Simulation for Vibration Control of Shaft System by Magnetic Piezoelectri...
 
E- Shopping -A Changing Shopping Trend
E- Shopping -A Changing Shopping TrendE- Shopping -A Changing Shopping Trend
E- Shopping -A Changing Shopping Trend
 

Similar to Car Dynamics Using Quarter Model and Passive Suspension

Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...
Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...
Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...IOSR Journals
 
Fuzzy controlled nonlinear Semi-active suspension systems
Fuzzy controlled nonlinear Semi-active suspension systemsFuzzy controlled nonlinear Semi-active suspension systems
Fuzzy controlled nonlinear Semi-active suspension systemsijceronline
 
The active suspension system with hydraulic actuator for half car model analy...
The active suspension system with hydraulic actuator for half car model analy...The active suspension system with hydraulic actuator for half car model analy...
The active suspension system with hydraulic actuator for half car model analy...eSAT Publishing House
 
REVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODELREVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODELGyambar Adamu
 
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car ModelMathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Modelijsrd.com
 
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...Fuzzy rules incorporated skyhook theory based vehicular suspension design for...
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...IJERA Editor
 
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMINTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMijcax
 
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMINTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMijcax
 
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...ijmech
 
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLERPNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLERTushar Tambe
 
Observer-based controller design and simulation for an active suspension system
Observer-based controller design and simulation for an active suspension systemObserver-based controller design and simulation for an active suspension system
Observer-based controller design and simulation for an active suspension systemTom Hemans
 
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...Star Web Maker Services Pvt. Ltd.
 
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...IDES Editor
 
Integrated inerter design and application
Integrated inerter design and applicationIntegrated inerter design and application
Integrated inerter design and applicationijcax
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
An efficient sensitivity analysis method for modified geometry of Macpherson ...
An efficient sensitivity analysis method for modified geometry of Macpherson ...An efficient sensitivity analysis method for modified geometry of Macpherson ...
An efficient sensitivity analysis method for modified geometry of Macpherson ...yarmohammadisadegh
 

Similar to Car Dynamics Using Quarter Model and Passive Suspension (20)

M0121293100
M0121293100M0121293100
M0121293100
 
I012135157
I012135157I012135157
I012135157
 
Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...
Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...
Car Dynamics Using Quarter Model and Passive Suspension, Part III: A Novel Po...
 
D04452233
D04452233D04452233
D04452233
 
Fuzzy controlled nonlinear Semi-active suspension systems
Fuzzy controlled nonlinear Semi-active suspension systemsFuzzy controlled nonlinear Semi-active suspension systems
Fuzzy controlled nonlinear Semi-active suspension systems
 
The active suspension system with hydraulic actuator for half car model analy...
The active suspension system with hydraulic actuator for half car model analy...The active suspension system with hydraulic actuator for half car model analy...
The active suspension system with hydraulic actuator for half car model analy...
 
REVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODELREVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODEL
 
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car ModelMathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
 
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...Fuzzy rules incorporated skyhook theory based vehicular suspension design for...
Fuzzy rules incorporated skyhook theory based vehicular suspension design for...
 
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMINTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
 
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEMINTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
INTEGRATED INERTER DESIGN AND APPLICATION TO OPTIMAL VEHICLE SUSPENSION SYSTEM
 
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...
SIMULTANEOUS OPTIMIZATION OF SEMIACTIVE QUARTER CAR SUSPENSION PARAMETERS USI...
 
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLERPNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
 
Suspension system
Suspension systemSuspension system
Suspension system
 
Observer-based controller design and simulation for an active suspension system
Observer-based controller design and simulation for an active suspension systemObserver-based controller design and simulation for an active suspension system
Observer-based controller design and simulation for an active suspension system
 
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...
IJREI- Vibration Analysis and Response Characteristics of a Half Car Model Su...
 
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...
Optimization of a Passive Vehicle Suspension System for Ride Comfort Enhancem...
 
Integrated inerter design and application
Integrated inerter design and applicationIntegrated inerter design and application
Integrated inerter design and application
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
An efficient sensitivity analysis method for modified geometry of Macpherson ...
An efficient sensitivity analysis method for modified geometry of Macpherson ...An efficient sensitivity analysis method for modified geometry of Macpherson ...
An efficient sensitivity analysis method for modified geometry of Macpherson ...
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 

Recently uploaded (20)

APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 

Car Dynamics Using Quarter Model and Passive Suspension

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. 1 (Mar – Apr. 2015), PP 65-74 www.iosrjournals.org DOI: 10.9790/0661-17216574 www.iosrjournals.org 65 | Page Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass Step Response Galal Ali Hassaan (Emeritus Professor, Department of Mechanical Design & Production Engineering, Faculty of Engineering/Cairo University, Giza, Egypt) Abstract: The objective of the paper is to investigate the step response of a 2 DOF quarter-car model with passive suspension. The mathematical models of the sprung-mass displacement and acceleration as response to the step road disturbance are derived. The step response of the system is plotted using MATLAB for a 100 mm step amplitude. The effect of the suspension parameters on the step response of the sprung-mass is investigated in terms of motion displacement and acceleration. The maximum percentage overshoot and settling time of the step response are evaluated as time-based characteristics of the dynamic system for a specific range of the suspension parameters. The maximum acceleration of the sprung-mass due to the step road disturbance did not conform with the ride comfort requirements according to ISO 2631-1 standard . Keywords: Car dynamics; quarter car model; passive suspension; step response, sprung-mass acceleration I. Introduction Car dynamics can be studied in various ways including time response to speed humps, frequency response and step response. The latest is borrowed from automatic control engineering to investigate the dynamic system in the time domain using the most known input type. This type of input is used by a large number of researchers dealing with car dynamics. Masi (2001) used computer simulation to examine the effect of control methods on the performance of semiactive dampers in controlling the dynamics of a quarter-car model. One of the inputs he used was a step input of 12.7 mm amplitude [1]. Askerda et. al. (2003) developed a methodology for analyzing the impact of data errors on control system dependability. Their applied their technique on a car slip-control brake-system. They used a step input command signal in terms of the normalized car-slip [2]. Toshio and Atsushi (2004) presented the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and disturbance observer. They used a step input of 1 V amplitude to the actuator [3]. Sakman, Guclu and Yagiz (2005) investigated the performance of fuzzy logic controlled active suspension on a nonlinear model with 4 DOF. They demonstrated the effectiveness of the fuzzy logic controller for active suspension systems. They used a half-car model with 4 DOF. They used a step road surface input of 35 mm amplitude resulting in chassis maximum acceleration of about 3.5 m/s2 [4]. Faheem, Alam and Thomson (2006) investigated the response of quarter and half-car models to road excitation. They studied the time response to a step road input and the frequency response of the sprung and unsprung masses [5]. Maila and Priyandoko (2007) presented the design of a control technique for active suspension system of a quarter-car model using adaptive fuzzy logic and active force control. They tested their control strategy using a 50 mm step road input resulting in a 75 mm maximum sprung-mass displacement and 20 m/s2 maximum acceleration using passive elements. The active force control techniques reduced the maximum acceleration to about 10 m/s2 [6]. Hanafi (2009) designed a fuzzy logic control system for a quarter- car model. He used a step road disturbance of 100 mm amplitude [7]. Alexandru and Alexandru (2010) presented a virtual prototype of an automobile suspension system with force generator actuator. They used a quarter-car model and a step input of 100 mm amplitude. The time response of the sprung-mass exhibited an overshoots and undershoots [8]. Unaune, Pawar and Mohite (2011) simulated the time response of a quarter-car model to a step input with passive elements suspension. They investigated the effect of mass ratio, stiffness ratio and damping coefficient ratio on the sprung-mass dynamics. They didn’t show the amplitude of the step input used in the simulation [9]. Fayyad (2012) presented a control system for active suspension system to improve ride comfort even at resonance. He used a step road input of 80 mm amplitude to a quarter-car model. The passive elements resulted in a sprung-mass overshoot of 59 % while with the active control it was 22.5 %. The maximum acceleration to the step input used was 17 m/s2 with passive elements and 1.3 m/s2 with active suspension [10]. Chikhale and Deshmukh (2013) performed a vibration analysis of a quarter-car model to a step input using MATLAB and MSc. ADAMS. They used the system state space representation in deriving the mathematical model of the system. They used a step input of 25 mm amplitude. The sprung-mass had 62 % overshoot in its displacement response to the step input [11]. Faruk, Bature, Babani and Dankadai (2014) used PID conventional
  • 2. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 66 | Page controller and integrated fuzzy logic control schemes for good driving comfort and effective isolation of road disturbance. They simulated the quarter-car step input response for a 1 m step amplitude !!. The time response without control had a 75 % overshoot reduced to zero with PID and fuzzy controllers [12]. Patole and Swant (2015) studied the efforts of researchers about nonlinearity of passive suspension parameters. They referred to ride comfort through vibration amplitude and ride comfort level for model inputs including a step type [13]. II. The Quarter-Car Model Researchers use quarter car model in studying the vehicle dynamics. This model depending on the degree of simplification used by the researcher may be considered as a single (1DOF), two (2DOF) or three degree of freedom (3DOF) [14,15,16]. A quarter-car model with 2 DOF will be considered in this work because of the complexity of its mathematical model if 3 DOF one is considered. The line diagram of the 2 DOF quarter- car model is shown in Fig.1 [17]. Fig. 1 2 DOF quarter-car model [17]. The model of Fig.1 consists of: - One tire and wheel and its attachments having the parameters: mass (m1), damping coefficient (c1) and stiffness (k1). - Sprung mass which is one quarter of the car chassis having the parameters: mass (m2), damping coefficient (c2) and stiffness (k2). - c2 and k2 are the suspension parameters. III. Model Parameters The 2 DOF quarter-car model parameters used in this analysis work are given in Table 1. The suspension parameters k2 and c2 are set in the range given in the table to investigate their effect on the step response of the vehicle. The tire and wheel parameters (m1, k1 and c1) and sprung mass (m2) are borrowed from reference [17]. Table 1 2 DOF model parameters Parameters Description Value k1 (N/m) Tire stiffness 135000 c1 (Ns/m) Tire damping coefficient 1400 m1 (kg) Un-sprung mass 49.8 k2 (N/m) Suspension stiffness 1000 – 3000 c2 (Ns/m) Suspension damping coefficient 1000 – 4000 m2 (kg) Sprung mass 466.5 IV. Sprung-Mass Displacement The mathematical model of the 3 DOF quarter-car model is defined by three differential equations obtained by applying Newton's third law to the free body diagram of the three lumped masses of Fig.1. The dynamic motions of the system are: x1, x2 and x3. The irregularities of the road is defined by the dynamic motion y which is assumed sinusoidal. Of course, the irregularities are random. The frequency contents of this irregularity can be defined using FFT (fast Fourier transform). Thus, the sinusoidal input motion y represents one component in this transform. All the parameters of the system are passive and assumed having the constant values presented in section 3. The differential equations are written in standard form as follows: For the tire and wheel mass, m1: m1x1'' + (c1+c2)x1' – c2x2' + (k1+k2)x1 – k2x2 = c1y' +k1y (1) For the sprung mass, m2:
  • 3. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 67 | Page m2x2'' - c2x1' + c2x2' - k2x1 + k2x2 = 0 (2) The Laplace transform of Eqs.1 and 2 gives: [m1s2 + (c1+c2)s + k1+k2]X1(s) – (c2s+k2)X2(s) = (c1s+k1)Y(s) (3) And (m2s2 +c2s+k2)X2(s) – (c2s+k2)X1(s) = 0 (4) Where X1(s) and X2(s) are the Laplace transform of the motions x1 and x2 respectively, and s is the Laplace operator. Solving Eqs.3 and 4 for X2(s)/Y(s) gives: X2(s)/Y(s) = (c1s+k1)(c2s+k2) / {[m1s2 + (c1+c2)s + k1+k2] (m2s2 +c2s+k2) – (c2s+k2)2 } (5) Eq.5 is the transfer function of the dynamic system. Writing Eq.5 in a standard form gives: X2(s)/Y(s) = N1(s) / D1(s) (6) Where: N1(s) = c1c2s2 + (c1k2+c2k1)s + k1k2 and D1(s) = m1m2s4 + [m1c2+m2(c1+c2)]s3 + [m1k2+c2(c1+c2)+m2(k1+k2)-c2 2 ]s2 + [k2(c1+c2)+c2(k1+k2)-2c2k2]s + [k2(k1+k2)-k2 2 ] V. Sprung-Mass Acceleration - In the derivation of the sprung mass displacement, the variables x’’, x’ , x and y are used. - For sake of the mathematical model of the sprung mass acceleration, the acceleration variables a1, a2, velocity variables v1, v2 and displacement variables x1, x2 will be used. - The differential equations of the dynamic system (Eqs.1 and 2) in terms of the acceleration, velocity and displacement variables will take the form: m1a1 + (c1+c2)v1 – c2v2 + (k1+k2)x1 – k2x2 = c1y’ + k1y (7) And m2a2 - c2v1 + c2v2 – k2x1 + k2x2 = 0 (8) - The acceleration, velocity and displacement variables are related through: a1 = v1’ (9) a2 = v2’ (10) v1 = x1’ (11) v2 = x2’ (12) - Taking the Laplace transform of Eqs.7 through 12 gives the Laplace transform ratio A2(s)/Y(s) as: A2(s)/Y(s) = N2(s) / D2(s) (13) Where: N2(s) = c1c2s4 + (k1c2 + k2c1) s3 + k1k2s2 (14) D2(s) = m1m2s4 + [m2(c1+c2) + m1c2] s3 + [m2(k1+k2) + c2(c1 + c2) + m1k2 – c2 2 ] s2 + [c2(k1+k2) + k2(c1+c2) – 2k2c2] s + k2(k1+k2) – k2 2 (15) VI. Sprung-Mass Step Displacement Response The sprung mass displacement is evaluated using the transfer function of the spring-mass displacement relative to the ground motion (Eq.6). MATLAB command 'step' is used for this purpose for an input step of 100 mm amplitude [18]. The dynamics of the quarter-car model is evaluated in response to a step road input for suspension parameters in the range: 1000 ≤ c2 ≤ 4000 Ns/m , 1000 ≤ k2 ≤ 3000 N/m (16) The step response of the sprung mass for the suspension parameters in the range of Eq.16 is shown in Figs.2 through 6.
  • 4. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 68 | Page Fig.2 Sprung-mass step response for k2 = 1000 N/m. Fig.3 Sprung-mass step response for k2 = 1500 N/m. Fig.4 Sprung-mass step response for k2 = 2000 N/m.
  • 5. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 69 | Page Fig.5 Sprung-mass step response for k2 = 2500 N/m. Fig.6 Sprung-mass step response for k2 = 3000 N/m. - The step response of the sprung-mass exhibits an overshoot and undershoot depending of the level of the suspension damping coefficient. - The maximum overshoot and maximum undershoot decreases as the damping coefficient increases. - All the step response curves of the sprung-mass displacement intersect in more than one point. - The effect of the suspension parameters c2 and k2 on the maximum percentage overshoot of the sprung-mass step response is shown graphically in Fig.7. Fig.7 Sprung-mass maximum displacement overshoot.
  • 6. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 70 | Page - The maximum percentage overshoot decreases as the suspension damping coefficient increases and the suspension stiffness decreases. - The settling time of the sprung-mass displacement is shown in Fig.8. Fig.8 Sprung-mass displacement settling time . - The settling time decreases as the suspension damping coefficient increases. - The effect of the suspension stiffness is not uniform. - versed between the first and second intersections. VII. Sprung-Mass Step Acceleration Response - The step response of the sprung-mass acceleration is simulated using Eq.13 and the 'step' command of MATLAB. - The step response in terms of the sprung-mass acceleration is in Figs.9-13 for suspension stiffness of 1000, 1500, 2000, 2500 and 3000 N/m respectively. Fig.9 Sprung-mass step response (acceleration) for k2 = 1000 N/m.
  • 7. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 71 | Page Fig.10 Sprung-mass step response (acceleration) for k2 = 1500 N/m. Fig.11 Sprung-mass step response (acceleration) for k2 = 2000 N/m. Fig.12 Sprung-mass step response (acceleration) for k2 = 2500 N/m.
  • 8. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 72 | Page Fig.13 Sprung-mass step response (acceleration) for k2 = 3000 N/m. - The sprung-mass acceleration exhibits overshoot and undershoot characteristics relative to the zero acceleration line. - The effect of the suspension parameters on the maximum acceleration of the sprung-mass is shown in Fig.14. Fig.14 Maximum acceleration of the sprung-mass due to the step input. - The maximum acceleration of the sprung mass increases with increased damping. - The maximum acceleration increases almost linearly with the suspension damping coefficient. - The suspension stiffness has almost no effect on the maximum acceleration of the sprung-mass. - Fig.15 shows the effect of the suspension parameters on the acceleration response settling time as evaluated by MATLAB. Fig.15 Settling time of the sprung-mass due to the step input.
  • 9. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 73 | Page - The settling time increases to a maximum and then decreases again. - For all values of the suspension stiffness, the settling time is maximum at a damping coefficient of about 2000 Ns/m. - All the characteristic curves of the settling time intersect at a damping coefficient of about 1700 Ns/m. VIII. Conclusion - The dynamic model of the 2 DOF quarter-car dynamic system was derived assuming passive parameters for all dampers and springs in the system. - The step response of the system was presented in terms of the suspension parameters (damping coefficient and stiffness). - Using MATLAB, the step response of the sprung-mass was presented for suspension parameters of damping coefficient in the range 1000 to 4000 Ns/m and stiffness in the range 1000 to 3000 N/m. - The maximum overshoot of the sprung-mass displacement has decreased from 20.30 to 2.73 % when the damping coefficient of the suspension increased from 1000 to 4000 Ns/m at 1000 N/m suspension stiffness. - The settling time of the sprung-mass displacement has decreased from 2.95 to 0.248 s when the damping coefficient of the suspension increased from 1000 to 4000 Ns/m at 1000 N/m suspension stiffness. - The suspension stiffness did not affect the maximum acceleration of the sprung-mass during the step response. - With suspension damping coefficient of ≤ 1700 Ns/m, increasing the suspension stiffness decreased the settling time of the sprung-mass acceleration. With damping coefficient > 1700 Ns/m, this action was reversed. - The sprung-mass settling time of its acceleration step response was increased with increased suspension damping coefficient up to 2000 Ns/m after which it started decreasing with less rate. - The maximum acceleration due to the 100 mm step road disturbance was completely extremely uncomfortable according to ISO 2631-1 [19]. - Such sudden road disturbance has to be avoided because of its harmful effect on passengers and vehicles. - The alternative is using more smooth speed control humps such as simple harmonic motion hump [15] or polynomial hump [20]. References [1]. J. Masi, Effect of control techniques on the performance of semiactive dampers, M. Sc. Thesis, Faculty of Virginia Polytechnic Institute and State University, December 2001. [2]. O. Askerdal, M. Gafvert M. Hiller and N. Suri, Analyzing the impact of data errors in safety critical control systems, IEICE Transaction on Information and Systems, E86-D, No.12, 2623-2633, 2003. [3]. Y. Toshio and T. Atsushi, Pneumatic active suspension system for a one wheel car model using fuzzy reasoning and disturbance observer, Journal of Zhejiang University Science, 5 (9), 1060-1068, 2004. [4]. L. Sakman, R. Guclu and N. Yagiz, Fuzzy logic control of vehicle suspension with dry friction nonlinearity, Sadhana, 30 (5), 649- 659, 2005. [5]. A. Faheem, F. Alam and V. Thomas, The suspension dynamic for a quarter-car model and half-car model, 3rd BSME-ASME International Conference on Thermal Engineering, 20-22 December, Dhaka, 2006. [6]. M. Maila and G. Priyandoko, Simulation of a suspension system with adaptive fuzzy active force control, International Journal of Simulation Modeling, 6 (1), 25-36, 2007. [7]. D. Hanafi, The quarter car fuzzy controller design based on model from intelligent system identification, IEEE Symposium on Industrial Electronics and Application, Kuala Lumpur , Malaysia, October 4-6, 930-933, 2009. [8]. C. Alexandru and P. Alexandru, The virtual prototype of a mechatronic suspension system with active force control, WSEAS Transactions on Systems, 9 (9), 927-936, 2010. [9]. D. Unaune, M. Pawar and S. Mohite, Ride analysis of quarter vehicle model, Proceedings of the First International Conference on Modern Trends in Industrial Engineering, Surat, Gujarat, India, November, 17-19, 2011. [10]. S. Fayyad, Constructing control system for active suspension system, Contemporary Engineering Sciences, 5 (6), 189-200, 2012. [11]. S. Chikhale and S. Deshm, Comparative analysis of vehicle suspension system in matlab-simulink and MSc-ADAMS with the help of quarter-car model, International Journal of Innovations Research in Science, 2 (10), 5452-5459, 2013. [12]. M. Faruk, A. Bature, S. Batani and N. Dankadai, Conventional and intelligent controller for quadratic car suspension system, International Journal of Technical Research and Applications. 2, Special Issue, 24-27, 2014. [13]. S. Patole and S. Swant, An overview of disarray inside performance analysis of half car model passive vehicle dynamic system subjected to different road profiles with wheel base delay and nonlinear parameters, International Journal of Innovative Research in Advanced Engineering, 2 (1), 63-66, 2015. [14]. G. Litak, M. Borowiec, M. Ali, L. Saha and M. Friswell, Pulsive feedback control of a quarter car model forced by a road profile, Chaos Solutions and Fractals, 33, 1672-1676, 2007. [15]. G. A. Hassaan, Car dynamics using quarter model and passive suspension, Part II: A novel simple harmonic hump, Journal of Mechanical and Civil Engineering, 12(1), 93-100, 2015. [16]. G. A. Hassaan, Car dynamics using quarter model and passive suspension, Part V: Frequency response considering driver-seat, International Journal of Applied Sciences and Engineering Research, 2(1), Accepted for Publication, 2015. [17]. A. Florin, M. Joan-Cosmin and P. Lilian, Passive suspension modeling using MATLAB, quarter-car model, input signal step type, New Technologies and Products in Machine Manufacturing, January, 258-263, 2013. [18]. C. Houpis and S. Sheldon, Linear control systems analysis and design with MATLAB, CRC Press, 2013. [19]. Y. Marjanen, Validation and improvement of the ISO 2631-1 standard method for evaluating discomfort from whole-body vibration in a multi-axis environment, Ph. D. Thesis, Loughborough University, UK, January 2010.
  • 10. Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass …. DOI: 10.9790/0661-17216574 www.iosrjournals.org 74 | Page [20]. G. A. Hassaan, Dynamics using quarter model and passive suspension, Part III: A novel polynomial hump, Journal of Mechanical and Civil Engineering, 12(1), Version III, 51-57, 2015. Biography Galal Ali Hassaan  Emeritus Professor of System Dynamics and Automatic Control.  Has got his B.Sc. and M.Sc. from Cairo University in 1970 and 1974.  Has got his Ph.D. in 1979 from Bradford University, UK under the supervision of Late Prof. John Parnaby.  Now with the Faculty of Engineering, Cairo University, EGYPT.  Research on Automatic Control, Mechanical Vibrations , Mechanism Synthesis and History of Mechanical Engineering.  Published 10’s of research papers in international journal and conferences.  Author of books on Experimental Systems Control, Experimental Vibrations and Evolution of Mechanical Engineering.  Reviewer and member of editorial boards of some international journals.