at ics
      ath  em
     M      it y
     ectr ic
in El                    EM S
                              4
                    US G O
                     ZAD
              By: HA
    Mat
                                             hem
                                Elec               atics
                                      trica               in El
                                     Calc l Engin               ectr
                                                                     onic
                                    Com    ulus       eerin                s
                                           plex  (sing       g usu
                                   Diff e              le         a
                                          renti Analysi and mul lly includ


                   n
                                  and                               tivar
                                        parti al Equa s,                  iablee




                cs
                                  Prob         al), L    tions
           tic s i               Tran ability. F inear A (both
                                usua sforms a ourier A lgebra ordinar
                                                                               ),


        t ro ni                engi lly inclu re also nalysis and              y
                                     neer        d         s
                          Of th             ing ped in el ubjects and Z-
                                ese s              rogr ectric which
                             Diff e   ubje              ams.      al         are
      ema

                                    renti    cts, C
                             prer         al        alcu
                            requ equisite equation lus and
   Ele c

                                             s
                           engi ired in m for the s are us
                           Mec neering ost ele Physics ually
                          Sem hanics, E progra ctrical course
M ath



                         Anal iconduc lectromms (mai                       s
                         Circ ysis has tor Phys agnetis nly
                        is ne uit Analy direct a ics). Co m &
                       cour eded fo sis, whi pplicati mplex
                       Tran ses, as a r all Sig le Fouri ons in
                            sform re Li           n          e
                                   .          near als & Sy r Analys
                                                     Alge stems is
                                                          bra a
                                                                nd Z
                                                                      -
 Num
                                   Who bers can tak

                    ath s
                                  Dec le numbers: e different fo


                     on
                                  Frac imals: 0.80, 1 1, 20, 300, 4, rms:
                                        tions           .25, 0         000,
                                 Perc
              d ucti                          : 1/2
                                                   , 1/4      .75, 1
                                                                    .15
                                                                            5,000
             n ’s M
                                 You’ entages: 80% , 5⁄8, 4⁄3
                                    num’ll need t                , 125
                                                                       %, 2
                                   back    bers         o be                50%
                                                   from         able             , 500
                                  num again,               one        to co           %
                                         b er f       beca form             nver
       I ntro

                                 work            o                     to        t
                                          and rms areuse all of anothethese
     tr ic ia



                               You’             elec
                                                       trica part of e these r and
                               basi    ll a ls                l calc     le
                                      c a lg   o ne
                                                     ed t o          ulati ctrical
                              f ea r                                      ons.
                             throu    of al ebra. M be ab
                                             g           a          l
                            there     gh th ebra, buny peope to do s
                                     ’s no e mater t as you le have ome
Ele c




                                            thing         ia          w        a
                                                     to f e l here yo ork
                                                            ar.        u’ll s
                                                                              ee
 Whol
                                  e
                          exac numbe

              ERS
                                tly w        rs ar
                         impl         ha t t       e
                               ies. T       he te
         UM B           don’          hes e       rm
                              t con
                       fract        tain numbers
                             ions,       any
                      perc          d
                            enta ecimals
                                  ges.         , or
    LE N

                     na m              Anot
                           e f or             h er
                    is “in        whol
                           tege        e nu
                                 rs.”        mb e
                                                   rs
WHO
 The d

        LS
                  used ecimal m
                        t            e
    IMA          othe o display thod is
                      r tha
                num          n wh number
                     b er s       ole       s
               perc        , frac
DEC

                    enta         tions
              0.80,       ges s        , or
                    1.25,        uc h a
             on.            1.732       s,
                                  , and
                                         so
     A fra
                      num ction re
                      addi ber. If yopresent
                     dividng, subt u use a s part of
                    fract ing, youracting, calcula a whole




        NS
                    To chion to a need t multiplytor for
                   whol ange a decimalo conver ing, or
                  (the e numb fraction or who t the
   CT IO         (the top num er, divid to a decle numb
                       botto     b
                                   mb e
                                            e
                                              e de
                                                     im
                             m nuer) by th the num al or r.
                                                      e
                                                              e
                                        r).        nom rator
                                                      inato
               Exam                                         r
                      ples
             1⁄6 =
FRA

                    one
           2⁄5 =        divid
                               ed b
                   two d            y s ix
          3⁄6 =         ivide
                               d by        = 0.1
                  three                           66
         5⁄4 =         divid
                              ed b
                                     five =
                                              0.40
                five
        7⁄2 =        divid
                            ed b
                                    y si x
                                           = 0.5
               seve              y fou           0
                     n div             r=1
                           ided              .25
                                 by tw
                                        o=3
                                               .50
 When
                     to be a numbe
                                          r
                    mult changed needs


         IE R
                          iplyi
                   perc         ng it by
                         enta          by a
    TIP L         perc         ge, th
                        enta          e
                 m ul t       ge is
                       iplie         calle
                             r. Th
                is to
                       conv        e firs d a
MUL

               perc          ert th      t s t ep
                      enta
              then          ge to e
                     mult          a de
             origi         iply         cima
                    n al n       the            l,
            deci           um b
                  ma l
                        value er by the
                               .
WITH
                                                            WITH
               E
           MPL
       EXA




                                                              MUL
                                                              MULT
                                   t
                            r ren
                      v ercu er or
                  An o     ak
          tion: ircuit bred no less
      ues (c
   Q ce               size    he          s
    devi ) must becent of t e load i




                                                                 EX A
                                                                 EXAM
                    r
     fuse 125 pe load. If de  th vice
      than inuous rcur rent no               –
       cont , the ove be sized Figure 1




                                                                  TIPLI
        80A ave to              .
        will hler than




                                                                    IPLIE
         smal
          2




                                                                      MPLE
                                         0A
                                  (b) 8 125A
                                     (d)
                ) 75A100A




                                                                        PLE
             (a c )




                                                                        ER
                 (




                                                                          R
                                   A
                              ) 100
                      e r : (c
                  Answ
                                                 e nt t
                                                        o
                                           5  perc
                                     r t 12
                            1: C onve25
                      Step cimal: 1.
                      a de
                                                       of
                                                value00A
                                              he = 1
                                       iply t
                                2: Mult d by 1.25
                          Step 0A loa
                         the  8
      Squa
                                         re R
                               Der i          oot
                               the    ving
                                             th e
                              root opposite square
                             itself of 36 is of squa root of a
                            beca , gives t a numbering a n numbe
                            writt use six, he prod r that, wumber. Tr (√ n) i




            T
                                   en as       m            uc          he          h       s
                                          62) eultiplied t 36. The n multi e square


        ROO
                           Bec                    qual                               p
                          use tause it’s                  s theby itself √36 equ lied by
                                 he sq diffic                    num        (w        al
                                       uare       ult to              ber 3 hich ca s six,
                         √ 3: F                root          d                6.        n be
                        ente    ollow
                                       in             key oo this m
                              r
                       key = the nu g your c                   f you anual
                                                                     r cal      ly
                               1.73 mber 3 alcula                          culat , just
                     √ 1,0            2.           , then tor’s i                 or.
                                                              pres     nstru
                    squa 00: ente
   AR E
                           re ro       r the                       s the ction
                                  ot ke       num                         squa s,
                   If yo                  y=3         ber 1                      re ro
                          ur ca                 1.62          ,000                     ot
                  key,           lcula                 .           , then
                  purpdon’t wo tor do                                       pres
                 num oses in rry abo esn’t ha                                     s the
                3. Th  ber y usin               ut it.       ve a
                               ou         g th         Fo         squ
SQU



                1.732e squareneed to is textb r all prac are root
                       .            root      k            oo          t ic
              To ad                       of 3 now the k, the on al
                                                equa          s           l
              by a d, subt                               ls apquare ro y
                                                                prox       o
              valuesquare ract, mu                                    imat t of is
                     and root va ltiply,                                    ely
                           then          lue, d or div
                                   perf
                                         orm etermin ide a nu
                                               the m e the mbe
                                                        ath f                 r
                                                               unct decimal
                                                                    ion.
 Intro
                            duct
                    math        ion t
                                       o Ca
                          calc
                   01/16 ulus.do lculus
 TO C C TION              /200
                   This b 2             c

         UL US    to pr brief Se
                 very ovide th ction se
                        brie       e rea eks o
               conc          f and
                                      gene
                                          der w nly
                                                 i
               all abept of w               ral th a
     ALC
    OD U


                       ou t .     hat c
             T he
                     stud
                                        alcul
                                              us is
             custo        y
             parts    mari of calcu
                           ly di
                   :            videlus is
INTR




            Diffe                      d int
                   re nt                     o two
          Inte
                gral
                         ial c
                               alcu
                       calc           lus,
                              ul us        an d,
                                    .
L
                                         GRA
               L                    INTE
        N TI A
    FERE US
DI F U L                                              st
                                                              of
                                                         udy and
     C                                          The ration as
CAL




                                                                        AND CALCU
                                                                        AND CALCU
                                                                        DIFF
                                                                        DIFF
                 s             s is
                                                 integ es, such
           ntia  l ca thelculurate of
                                     w it h
                                                  its us lculating d
    iff ereed with ariable
oncern f one v r.
  D                                                in ca bounde
                                                          s
c        ge o anothe                                area rves,




                                                                             EREN
                                                                             EREN
                                                                             INTE
 chanect to




                                                                             INTE
                                  s is                    u
  res p
                  t ia l
                            lculuollowing
                          ca e f                     by c es
          ferened by th
      D if l if i
    xemp s:                                         volumded by
    e stion
     que                    be
                                     y of    r
                               st wa of a ca t?       boun ces, and
                                     d
                 is thehe spee ot objec                surfa ions to




                                                                                 GRA
                                                                                  GRA
              t
            ha ing t




                                                                                  TIAL
                                                                                  TIAL
      Wcrib oling of a h e of
       d es co                        ng                solut ential
                                               r              r
        or the
                      oes
                               e chatransisto on
                             th f a         up           diffe tions.
             ow d urrent ot depend
         utput c circui input
           H                                              equa




                                                                                      L
                                                                                      L
       o      fier    the
         mplihange of




                                                                                       S
                                                                                       S
       a c
        the ent?
         curr
EXA
    M PL E
          S

Jugaad - Group H

  • 1.
    at ics ath em M it y ectr ic in El EM S 4 US G O ZAD By: HA
  • 2.
    Mat hem Elec atics trica in El Calc l Engin ectr onic Com ulus eerin s plex (sing g usu Diff e le a renti Analysi and mul lly includ n and tivar parti al Equa s, iablee cs Prob al), L tions tic s i Tran ability. F inear A (both usua sforms a ourier A lgebra ordinar ), t ro ni engi lly inclu re also nalysis and y neer d s Of th ing ped in el ubjects and Z- ese s rogr ectric which Diff e ubje ams. al are ema renti cts, C prer al alcu requ equisite equation lus and Ele c s engi ired in m for the s are us Mec neering ost ele Physics ually Sem hanics, E progra ctrical course M ath Anal iconduc lectromms (mai s Circ ysis has tor Phys agnetis nly is ne uit Analy direct a ics). Co m & cour eded fo sis, whi pplicati mplex Tran ses, as a r all Sig le Fouri ons in sform re Li n e . near als & Sy r Analys Alge stems is bra a nd Z -
  • 3.
     Num  Who bers can tak ath s  Dec le numbers: e different fo on  Frac imals: 0.80, 1 1, 20, 300, 4, rms: tions .25, 0 000,  Perc d ucti : 1/2 , 1/4 .75, 1 .15 5,000 n ’s M  You’ entages: 80% , 5⁄8, 4⁄3 num’ll need t , 125 %, 2 back bers o be 50% from able , 500 num again, one to co % b er f beca form nver I ntro work o to t and rms areuse all of anothethese tr ic ia  You’ elec trica part of e these r and basi ll a ls l calc le c a lg o ne ed t o ulati ctrical f ea r ons. throu of al ebra. M be ab g a l there gh th ebra, buny peope to do s ’s no e mater t as you le have ome Ele c thing ia w a to f e l here yo ork ar. u’ll s ee
  • 4.
     Whol e exac numbe ERS tly w rs ar impl ha t t e ies. T he te UM B don’ hes e rm t con fract tain numbers ions, any perc d enta ecimals ges. , or LE N na m Anot e f or h er is “in whol tege e nu rs.” mb e rs WHO
  • 5.
     The d LS used ecimal m t e IMA othe o display thod is r tha num n wh number b er s ole s perc , frac DEC enta tions 0.80, ges s , or 1.25, uc h a on. 1.732 s, , and so
  • 6.
    A fra num ction re addi ber. If yopresent dividng, subt u use a s part of fract ing, youracting, calcula a whole NS To chion to a need t multiplytor for whol ange a decimalo conver ing, or (the e numb fraction or who t the CT IO (the top num er, divid to a decle numb botto b mb e e e de im m nuer) by th the num al or r. e e r). nom rator  inato Exam r  ples 1⁄6 = FRA one  2⁄5 = divid ed b two d y s ix  3⁄6 = ivide d by = 0.1 three 66  5⁄4 = divid ed b five = 0.40 five  7⁄2 = divid ed b y si x = 0.5 seve y fou 0 n div r=1 ided .25 by tw o=3 .50
  • 7.
     When to be a numbe r mult changed needs IE R iplyi perc ng it by enta by a TIP L perc ge, th enta e m ul t ge is iplie calle r. Th is to conv e firs d a MUL perc ert th t s t ep enta then ge to e mult a de origi iply cima n al n the l, deci um b ma l value er by the .
  • 8.
    WITH WITH E MPL EXA MUL MULT t r ren v ercu er or An o ak tion: ircuit bred no less ues (c  Q ce size he s devi ) must becent of t e load i EX A EXAM r fuse 125 pe load. If de th vice than inuous rcur rent no – cont , the ove be sized Figure 1 TIPLI 80A ave to . will hler than IPLIE smal 2 MPLE 0A (b) 8 125A (d) ) 75A100A PLE (a c ) ER  ( R A ) 100 e r : (c Answ  e nt t o 5 perc r t 12 1: C onve25 Step cimal: 1.  a de of value00A he = 1 iply t 2: Mult d by 1.25 Step 0A loa  the 8
  • 9.
    Squa re R  Der i oot the ving th e root opposite square itself of 36 is of squa root of a beca , gives t a numbering a n numbe writt use six, he prod r that, wumber. Tr (√ n) i T en as m uc he h s  62) eultiplied t 36. The n multi e square ROO Bec qual p use tause it’s s theby itself √36 equ lied by he sq diffic num (w al  uare ult to ber 3 hich ca s six, √ 3: F root d 6. n be ente ollow in key oo this m r key = the nu g your c f you anual r cal ly  1.73 mber 3 alcula culat , just √ 1,0 2. , then tor’s i or. pres nstru squa 00: ente AR E re ro r the s the ction  ot ke num squa s, If yo y=3 ber 1 re ro ur ca 1.62 ,000 ot key, lcula . , then purpdon’t wo tor do pres num oses in rry abo esn’t ha s the 3. Th ber y usin ut it. ve a ou g th Fo squ SQU 1.732e squareneed to is textb r all prac are root . root k oo t ic  To ad of 3 now the k, the on al equa s l by a d, subt ls apquare ro y prox o valuesquare ract, mu imat t of is and root va ltiply, ely then lue, d or div perf orm etermin ide a nu the m e the mbe ath f r unct decimal ion.
  • 10.
     Intro duct  math ion t o Ca calc  01/16 ulus.do lculus TO C C TION /200  This b 2 c UL US to pr brief Se very ovide th ction se brie e rea eks o  conc f and gene der w nly i all abept of w ral th a ALC OD U ou t . hat c T he stud alcul us is custo y parts mari of calcu ly di  : videlus is INTR Diffe d int re nt o two  Inte gral ial c alcu calc lus, ul us an d, .
  • 11.
    L GRA L INTE N TI A FERE US DI F U L st of udy and C  The ration as CAL AND CALCU AND CALCU DIFF DIFF s s is integ es, such ntia l ca thelculurate of w it h its us lculating d iff ereed with ariable oncern f one v r. D in ca bounde s c ge o anothe area rves, EREN EREN INTE chanect to INTE s is u res p t ia l lculuollowing ca e f by c es ferened by th D if l if i xemp s: volumded by e stion que be y of r st wa of a ca t? boun ces, and d is thehe spee ot objec surfa ions to GRA GRA t ha ing t TIAL TIAL Wcrib oling of a h e of d es co ng solut ential r r or the oes e chatransisto on th f a up diffe tions. ow d urrent ot depend utput c circui input H equa L L o fier the mplihange of S S a c the ent? curr
  • 12.
    EXA M PL E S