การใช้เทคโนโลยีสารสนเทศเพื่อการบริหารจัดการทางการพยาบาล
คณะพยาบาลศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ร่วมกับกรมแพทย์ทหารเรือ
นพ.นวนรรน ธีระอัมพรพันธุ์
June 21, 2019
www.SlideShare.net/Nawanan
2003 M.D. (First-Class Honors)
2011 Ph.D. (Health Informatics), Univ. of Minnesota
Assistant Dean for Informatics
Lecturer, Section for Clinical Epidemiology & Biostatistics
Faculty of Medicine Ramathibodi Hospital
Mahidol University
Interests: Health IT for Quality of Care, Social Media
IT Management, Security & Privacy
nawanan.the@mahidol.ac.th
SlideShare.net/Nawanan
นวนรรน ธีระอัมพรพันธุ์ (Nawanan Theera-Ampornpunt)
Line ID: NawananT
Introduction
▪ The Road to Digital Health Transformation
▪ What is a “Smart Hospital”?
▪ Toward a “Smart” Hospital
Outline
What words come to mind when you hear...
Digital Health
Transformation
https://medium.com/@marwantarek/it-is-the-perfect-storm-ai-cloud-bots-iot-etc-4b7cbb0481bc
http://www.ibtimes.com/google-deepminds-alphago-program-defeats-human-go-champion-first-time-ever-2283700
http://deepmind.com/ http://socialmediab2b.com
An Era of Smart Machines
englishmoviez.com
Rise of the Machines?
Digitizing Healthcare?
http://www.bloomberg.com/bw/stories/2005-03-27/cover-image-the-digital-hospital
“Big data is like teenage sex:
everyone talks about it,
nobody really knows how to do it,
everyone thinks everyone else is doing it,
so everyone claims they are doing it...”
-- Dan Ariely @danariely (2013)
Substitute “Big data” with “AI”, “Blockchain”, “IoT”
of your choice.
-- Nawanan Theera-Ampornpunt (2018)
Hype vs. Hope
Jeremy Kemp via http://en.wikipedia.org/wiki/Hype_cycle
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
Gartner Hype Cycle 2017
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
“Smart” Machines?
https://www.bbc.com/news/business-47514289
https://www.standardmedia
.co.ke/article/2001318679/e
thiopian-airlines-crash-
investigators-reach-
conclusion
A Real-Life Personal Story of
My Failure (as a Doctor and as
a Son) in Misdiagnosing
My Mom
Would AI Help?
Digitization 
Digital Transformation
• Nothing is certain in medicine &
health care
• Large variations exist in patient
presentations, clinical course,
underlying genetic codes, patient &
provider behaviors, biological
responses & social contexts
Why Clinical Judgment Is Still Necessary?
• Most diseases are not diagnosed by
diagnostic criteria, but by patterns of
clinical presentation and perceived
likelihood of different diseases given
available information (differential
diagnoses)
• Human is good at pattern
recognition, while machine is good at
logic & computations
Why Clinical Judgment Is Still Necessary?
• Machines are (at best) as good as
the input data
–Not everything can be digitized or
digitally acquired
–Not everything digitized is accurate
(“Garbage In, Garbage Out”)
• Experience, context & human touch
matters
Why Clinical Judgment Is Still Necessary?
Health &
Health Information
Let’s take a look at
these pictures...
Image Source: https://en.wikipedia.org/wiki/Industrial_robot (KUKA Roboter GmbH)
“Smart” Manufacturing
Image Sources: http://isarapost.net/home/?p=17760
http://www.telecomjournalthailand.com/ตอบโจทย์โมเดลทางธุรกิจ/
“Smart” Banking
ER - Image Source: nj.com
Healthcare (On TV)
(At an undisclosed hospital)
Healthcare (Reality)
• Life-or-Death
• Difficult to automate human decisions
– Nature of business
– Many & varied stakeholders
– Evolving standards of care
• Fragmented, poorly-coordinated systems
• Large, ever-growing & changing body of
knowledge
• High volume, low resources, little time
Why Healthcare Isn’t (Yet) “Smart”?
But...Are We That Different?
Input Process Output
Transfer
Banking
Value-Add
- Security
- Convenience
- Customer Service
Location A Location B
Input Process Output
Assembling
Manufacturing
Raw Materials Finished
Goods
Value-Add
- Innovation
- Design
- QC
But...Are We That Different?
Input Process Output
Patient Care
Health care
Sick Patient Well Patient
Value-Add
- Technology & medications
- Clinical knowledge & skilled providers
- Quality of care; process improvement
- Customer service
- Information
But...Are We That Different?
• Large variations & contextual dependence
Input Process Output
Patient
Presentation
Decision-
Making
Biological
Responses
Standardizing Healthcare
“To computerize
the hospital”
“To go paperless”
“To become a
Digital Hospital”
“To Have
EHRs”
Why Adopting Health IT?
• “Don’t implement technology just for
technology’s sake.”
• “Don’t make use of excellent technology.
Make excellent use of technology.”
(Tangwongsan, Supachai. Personal communication, 2005.)
• “Health care IT is not a panacea for all that ails
medicine.” (Hersh, 2004)
Some “Smart” Quotes
Being Smart #1:
Stop Your
“Drooling Reflex”!!
Being Smart #2:
Focus on Information &
Process Improvement,
Not Technology
If not “Digital Hospital”
or “Paperless Hospital”
Then What Should We
Aspire to Be?
“Smart Hospital”
So How is
a “Smart Hospital”
Different from a Digital or
Paperless Hospital?
Smart Healthcare For Policymakers?
Image Source: http://healthdata.moph.go.th/kpi/2557/ProvinceKpiTopicListAll.php?provincecode=99
Smart Healthcare For Health Promoters?
Image Source: http://www.hiso.or.th/hiso/picture/reportHealth/ThaiHealth2014/thai2014_3.pdf
Smart Healthcare For Clinicians?
Image Source: http://www.medscape.com/viewarticle/780298
Smart Healthcare For Patients & Consumers?
Image Source: Agence France-Presse/Getty Images
So What Exactly Is Smart Healthcare?
Image Source: http://cdn2.hubspot.net/hub/134568/file-1208368053-jpg/6-blind-men-hans.jpg
✓The Road to Digital Health Transformation
▪ What is a “Smart Hospital”?
▪ Toward a “Smart” Hospital
Outline
https://www.youtube.com/watch?v=gxz9ZVvduGc
Connecting People to a Healthy Future With
Personalized Care – Kaiser Permanente
Back to
something simple...
To treat & to care
for their patients
to their best
abilities, given
limited time &
resources
Image Source: http://en.wikipedia.org/wiki/File:Newborn_Examination_1967.jpg (Nevit Dilmen)
What Clinicians Want?
Why Aren’t We Talk About These Words?
http://hcca-act.blogspot.com/2011/07/reflections-on-patient-centred-care.html
The Goal of Health Care
The answer is already obvious...
“Health”
“Care”
• Safe
• Timely
• Effective
• Patient-Centered
• Efficient
• Equitable
Institute of Medicine, Committee on Quality of Health Care in America. Crossing the quality
chasm: a new health system for the 21st century. Washington, DC: National Academy
Press; 2001. 337 p.
High Quality Care
Information Is Everywhere in Healthcare
Shortliffe EH. Biomedical informatics in the education of physicians. JAMA.
2010 Sep 15;304(11):1227-8.
“Information” in Medicine
50
50
WHO (2009)
Components of Health Systems
51
51
WHO (2009)
WHO Health System Framework
• Safe
–Drug allergies
–Medication Reconciliation
• Timely
–Complete information at point of care
• Effective
–Better clinical decision-making
Image Source: http://www.flickr.com/photos/childrensalliance/3191862260/
Being Smart in Healthcare
• Efficient
–Faster care
–Time & cost savings
–Reducing unnecessary tests
• Equitable
–Access to providers & knowledge
• Patient-Centered
–Empowerment & better self-care
Being Smart in Healthcare
(IOM, 2001)(IOM, 2000) (IOM, 2011)
Landmark Institute of Medicine Reports
• To Err is Human (IOM, 2000) reported
that:
– 44,000 to 98,000 people die in U.S.
hospitals each year as a result of
preventable medical mistakes
– Mistakes cost U.S. hospitals $17 billion to
$29 billion yearly
– Individual errors are not the main problem
– Faulty systems, processes, and other
conditions lead to preventable errors
Patient Safety
• Humans are not perfect and are bound to
make errors
• Highlight problems in U.S. health care
system that systematically contributes to
medical errors and poor quality
• Recommends reform
• Health IT plays a role in improving patient
safety
Summary of These Reports
Image Source: (Left) http://docwhisperer.wordpress.com/2007/05/31/sleepy-heads/
(Right) http://graphics8.nytimes.com/images/2008/12/05/health/chen_600.jpg
To Err is Human 1: Attention
Image Source: Suthan Srisangkaew, Department of Pathology, Facutly of Medicine Ramathibodi Hospital
To Err is Human 2: Memory
• Cognitive Errors - Example: Decoy Pricing
The Economist Purchase Options
• Economist.com subscription $59
• Print subscription $125
• Print & web subscription $125
Ariely (2008)
16
0
84
The Economist Purchase Options
• Economist.com subscription $59
• Print & web subscription $125
68
32
# of
People
# of
People
To Err is Human 3: Cognition
• It already happens....
(Mamede et al., 2010; Croskerry, 2003; Klein,
2005; Croskerry, 2013)
What If This Happens in Healthcare?
Klein JG. Five pitfalls in decisions about diagnosis and prescribing. BMJ. 2005 Apr 2;330(7494):781-3.
“Everyone makes mistakes. But our reliance on
cognitive processes prone to bias makes
treatment errors more likely than we think”
Cognitive Biases in Healthcare
• Medication Errors
–Drug Allergies
–Drug Interactions
• Ineffective or inappropriate treatment
• Redundant orders
• Failure to follow clinical practice guidelines
Common Errors
Being Smart #3:
“To Err is Human”
External Memory
Knowledge Data
Long Term Memory
Knowledge Data
Inference
DECISION
PATIENT
Perception
Attention
Working
Memory
CLINICIAN
Elson, Faughnan & Connelly (1997)
Clinical Decision Making
Example of “Alerts & Reminders”
Reducing Errors through Alerts & Reminders
• Guideline adherence
• Better documentation
• Practitioner decision making or
process of care
• Medication safety
• Patient surveillance &
monitoring
• Patient education/reminder
Documented Values of Health IT
Being Smart #4:
Link IT Values to
Quality (Including Safety)
Health IT
Health
Information
Technology
Goal
Value-Add
Means
Hospital Information System (HIS) Computerized Physician Order Entry (CPOE)
Electronic
Health
Records
(EHRs)
Picture Archiving and
Communication System
(PACS)
Various Forms of Health IT
m-Health
Health Information
Exchange (HIE)
Biosurveillance
Telemedicine &
Telehealth
Images from Apple Inc., Geekzone.co.nz, Google, PubMed.gov, and American Telecare, Inc.
Personal Health Records
(PHRs)
Health IT Beyond Hospitals
ภาพรวมของงานด้าน Health IT
Intra-Hospital IT
• Electronic Health Records &
Health IT for Quality & Safety
• Digital Transformation
• AI, Data Analytics
• Hospital IT Quality
Improvement (HA-IT)
Inter-Hospital IT
• Health Information
Exchange (HIE)
Extra-Hospital IT
• Patients: Personal
Health Records (PHRs)
• Public Health: Disease
Surveillance & Analytics
Patient
at Home
Ordering Transcription Dispensing Administration
CPOE
Automatic
Medication
Dispensing
Electronic
Medication
Administration
Records
(e-MAR)
Barcoded
Medication
Administration
Barcoded
Medication
Dispensing
Health IT for Medication Safety
Strategic
Operational
ClinicalAdministrative
LIS
Health Information ExchangeBusiness
Intelligence
Word
Processor
Social
Media
PACS
Personal Health Records
Clinical Decision Support Systems
Computerized Physician Order Entry
Electronic Health Records
Admission-Discharge-Transfer
Master Patient Index
Enterprise Resource Planning
Vendor-Managed Inventory
Customer Relationship Management
4 Quadrants of Hospital IT
ภาพรวมของงานด้าน Health IT
Intra-Hospital IT
• Electronic Health Records &
Health IT for Quality & Safety
• Digital Transformation
• AI, Data Analytics
• Hospital IT Quality
Improvement (HA-IT)
Inter-Hospital IT
• Health Information
Exchange (HIE)
Extra-Hospital IT
• Patients: Personal
Health Records (PHRs)
• Public Health: Disease
Surveillance & Analytics
Patient
at Home
Hospital A Hospital B
Clinic D
Policymakers
Patient at
Home
Hospital C
HIE Platform
Health Information Exchange (HIE)
My Life-Long Dream...
Areas of Health Informatics
Patients &
Consumers
Providers &
Patients
Healthcare
Managers, Policy-
Makers, Payers,
Epidemiologists,
Researchers
Copyright  Nawanan Theera-Ampornpunt (2018)
Clinical
Informatics
Public
Health
Informatics
Consumer
Health
Informatics
Incarnations of Health IT
Clinical
Informatics
Public
Health
Informatics
Consumer
Health
Informatics
HIS/CIS
EHRs
Computerized Physician
Order Entry (CPOE)
Clinical Decision
Support Systems
(CDS) (including AI)
Closed Loop
Medication
PACS/RIS
LIS
Nursing
Apps
Disease Surveillance
(Active/Passive)
Business
Intelligence &
Dashboards
Telemedicine
Real-time Syndromic
Surveillance
mHealth for Public
Health Workers &
Volunteers
PHRs
Health Information
Exchange (HIE)
eReferral
mHealth for
Consumers
Wearable
Devices
Social
Media
Copyright  Nawanan Theera-Ampornpunt (2018)
Where We Are Today...
Copyright  Nawanan Theera-Ampornpunt (2018)
Clinical
Informatics
Public
Health
Informatics
Consumer
Health
Informatics
Technology that
focuses on the sick,
not the healthy
Silos of data
within hospitalPoor/unstructured
data quality
Lack of health data
outside hospital
Poor data
integration across
hospitals/clinics
Poor data integration
for monitoring &
evaluation
Poor data quality (GIGO)
Finance leads
clinical outcomes
Poor IT change
management
Cybersecurity
& privacy risks
Few real examples
of precision
medicine
Little access
to own
health data
Poor patient
engagement
Poor accuracy
of wearables Lack of evidence
for health values
Health literacy
Information 
Behavioral
change
Few standards
Lack of health IT
governance
Healthtech Startup Ecosystem
www.facebook.com/HealthTechThailand/ No endorsements implied
✓The Road to Digital Health Transformation
✓What is a “Smart Hospital”?
▪ Toward a “Smart” Hospital
Outline
WHO & ITU
Achieving Health Information Exchange (HIE)
https://www.hfocus.org/content/2016/02/11783
https://www.hfocus.org/content/2016/03/11968
https://www.hfocus.org/content/2016/09/12671
Myths
• We don’t need standards
• Standards are IT people’s jobs
• We should exclude vendors from this
• We need the same software to share data
• We need to always adopt international
standards
• We need to always use local standards
Theera-Ampornpunt (2011)
Myths & Truths about Standards
Being Smart #5:
Go for Systems that Use
Standards, Not a Unified,
Conquer-the-World System
Image Source: https://www.businessinsider.in/google-let-users-play-with-thanos-destructive-
power/articleshow/69054170.cms
http://www.ibtimes.com/google-deepminds-alphago-program-defeats-human-go-champion-first-time-ever-2283700
http://deepmind.com/ http://socialmediab2b.com
Rise of the Machines?
• CDS as a replacement or supplement of
clinicians?
– The demise of the “Greek Oracle” model (Miller & Masarie, 1990)
The “Greek Oracle” Model
The “Fundamental Theorem” Model
Friedman (2009)
Wrong Assumption
Correct Assumption
Clinical Decision Support Systems (CDS)
Being Smart #6:
Don’t Replace
Human Users.
Use ICT to Help Them
Perform Smarter & Better.
Some Risks of Clinical Decision Support Systems
• Alert Fatigue
Unintended Consequences of Health IT
Workarounds
Unintended Consequences of Health IT
Being Smart #7:
Health IT Also Have
Risks &
Unintended Consequences
Technology
ProcessPeople
Balanced Focus of Informatics
Being Smart #8:
Balance Your Focus
(People, Process, Technology)
ภาพรวมของงานด้าน Health IT
Intra-Hospital IT
• Electronic Health Records &
Health IT for Quality & Safety
• Digital Transformation
• AI, Data Analytics
• Hospital IT Quality
Improvement (HA-IT)
Inter-Hospital IT
• Health Information
Exchange (HIE)
Extra-Hospital IT
• Patients: Personal
Health Records (PHRs)
• Public Health: Disease
Surveillance & Analytics
Patient
at Home
• โรงพยาบาลจะพัฒนาระบบสารสนเทศของตัวเองให้เข้มแข็งได้อย่างไร
• เมื่อไรข้อมูลผู้ป่วยจะเชื่อมถึงกันได้ระหว่างโรงพยาบาลต่างๆ โดยเฉพาะข้ามสังกัด
และนอก สธ. // ควรมีซอฟต์แวร์เดียวใช้ทั้งประเทศหรือไม่
• มาตรฐานข้อมูล 43 แฟ้มไม่ครอบคลุมการใช้งาน จะปรับปรุงได้อย่างไร
• จะเลือกมาตรฐานข้อมูลยาที่เหมาะสมมาใช้งานใน รพ. ได้อย่างไร
• โครงสร้างการออกแบบ Data Center ระดับจังหวัด, เขต และประเทศ ควรเป็น
อย่างไร (Centralized, Decentralized, Distributed, Hybrid, etc.)
• การนาข้อมูลระดับ รพ. มาใช้ประโยชน์ในระดับจังหวัด เขต และประเทศ ควรเป็น
อย่างไร และออกแบบ Infrastructure Data Model อย่างไร
• Disruptive technology (AI, Blockchain, etc.) ควรมีบทบาทใน Healthcare
ไทยอย่างไร มากกว่าการเป็น buzzwords
• ความก้าวหน้าและยั่งยืนของกาลังคนด้าน Health IT เมื่อไรจะได้รับการแก้ไข
คาถามที่เจอบ่อยๆ ในวงการ Health IT ไทย
• ระบบข้อมูลการส่งต่อผู้ป่วยควรใช้โปรแกรมใด
• ระบบ IT การแพทย์ฉุกเฉินมีข้อจากัดการเชื่อมต่อ
• ระบบ IT PCC ควรเป็นอย่างไร
• ทาอย่างไรจึงจะมีระบบ PHRs ที่ครอบคลุมผู้ป่วยส่วนใหญ่ มีการใช้
ประโยชน์อย่างเต็มที่
• ข้อมูล Precision Medicine & Genomics จะ integrate ในการดูแล
ผู้ป่วยอย่างไร
• ข้อเสนอ: ควรเป็น Platform เดียวกัน
คาถามที่เจอบ่อยๆ ในวงการ Health IT ไทย
ข้อเสนอของสมาคมเวชสารสนเทศไทย ต่อ
รมว.สธ. (ศ. นพ.รัชตะ รัชตะนาวิน) เมื่อ พ.ศ. 2557
ข้อเสนอของสมาคมเวชสารสนเทศไทย ต่อ
รมว.สธ. (ศ. นพ.รัชตะ รัชตะนาวิน) เมื่อ พ.ศ. 2557
Necessary Standards in Health IT
Functional
Semantic
Syntactic
Technical Standards
(TCP/IP, encryption,
security)
Exchange Standards (HL7 V2,
HL7 V3 Messaging, HL7 CDA,
HL7 FHIR, DICOM)
Vocabularies, Terminologies,
Coding Systems (ICD-10, ICD-9,
CPT, SNOMED CT, LOINC)
Information Models (HL7 V3 RIM,
ASTM CCR, HL7 CCD)
Standard Data Sets
Functional Standards (HL7 EHR
Functional Specifications)
Some may be hybrid: e.g. HL7 V3, HL7 CCD
Unique ID
Envisioning a Smart Health Thailand
103
My Plea...
Less Fancy Roofs
More Enabling Foundations
104
#LessHype
#MoreHope
My Plea...

IT Use for Nursing Administration (June 21, 2019)