El khadir LAMRANI
Introduction to Data Science
& IoT
Plan
2
• Introduction to data science
• What is data science ?
• Data ?
• Big data ?
• Algorithms
• Data science process
• Data science application
• Data science for IoT
• IoT Platform
• Predictive maintenance modeling & Analysis
Introduction to data science
What is Data science ?
3
• An interdisciplinary field about scientific methods, processes, and systems to
extract knowledge or insights from data in various forms
• Concept to unify linear algebra, statistics, dataanalysis and their related methods
in order to understandand analyze actual phenomena with data
• An empirical approach that relies data to provide an answer to problems.
Mathematics
Artificial Intelligence
Domain expertise
Computer vision
Statistics
Machinelearning
Advancedcomputing
Linguistics
Database& StorageVisualization
Main academic disciplines that constitute data science
Introduction to data science
As the beginning was data ..
juin 18 4
What is data ?
“Data is the New Oil”
– World Economic Forum 2011
Introduction to data science
As the beginning was data ..
juin 18 5
• Type of Data
• Quantitative
• Qualitative
• Complexity of data
• Structured(relational database)
• Semi-structured(Json, XML, CSV, Logs)
• Unstructured(Images,Texts, Videos, Signal, ..)
• Where are the data ?
• Everywhere
• Open dataset
• API (twitter,google, Wikipedia,..)
• Web (web scrapping)
• IoT (sensors)
• …
Introduction to data science
Big data
juin 18 6
5 Vs of Big Data
• Raw Data: Volume
• Data types: Variety
• Change over time: Velocity
• Data Quality: Veracity
• Information for Decision Making: Value
Introduction to data science
Big data
juin 18 7
Hadoop Ecosystem -Hortonworks data platform
Introduction to data science
Algorithms.. To do what ?
8
1. Discover links in the data
2. That’s all
Type of problem to resolve
• Classification
• Regression
Learning mode
• Suppervised
Regression/Classification
• Unsuppervised
Data driven (Clustering)
• Reinforcement
Algorithms learn to react to an environment
Introduction to data science
There is a taxonomy of algorithms
9
Famous machine learning algorithms (Source: SAS Blog, Hui Li)
Introduction to data science
There is a taxonomy of algorithms
10
Introduction to data science
Data Science Process
11
• Transaction Databases -> Recommender systems (NetFlix), Fraud Detection
• Wireless Sensor Data ->Smart Home, Real-time Monitoring, Internet of
Things
• Text Data, Social Media Data -> Product Review and Consumer Satisfaction
(Facebook, Twitter, LinkedIn), Chatbots, ..
• Genotype and Phenotype Data -> Patient-CenteredCare, Personalized
Medicine, ..
• Images, vidéos -> Health-care, Facial recognition,
Introduction to data science
Data science Applications
12
Vast network of devices connected to the Internet
• Remote Monitoring of things.
• Things collect and exchange data.
Data science for IoT
What is IoT ?
13
Introduction to data science
IoT Platform
14
Data science for IoT
15
IoT Platform
Capteurs Passerelle
IoT
IoT HuB
Azure Stream
analytics Event HuB
Données de
référence
Base de données
Tableauxde
bord
Fichier JSON Fichier JSON
Modèle de
prédiction
Fichier JSON
Prédiction
en temps
réel
Fichier CSV
Kafka KafkaSpark streaming
Techniques are designed to help determine the condition of in-
service equipment in order to
• Build a model that predicts yield failure on their manufacturing
process
• Through analysis determine the factors that lead to yield failures in
their process.
Data science for IoT
Maintenance predictive modelling & analysis
16
• Our system will be able to
• Predict failures
• Classify failures
• Find similar cases
• Analyzing the reasons of failures
• Recommend a solution
Data science for IoT
Maintenance predictive modelling & analysis
17
Thank you.
18

Introduction to data science and IoT

  • 1.
    El khadir LAMRANI Introductionto Data Science & IoT
  • 2.
    Plan 2 • Introduction todata science • What is data science ? • Data ? • Big data ? • Algorithms • Data science process • Data science application • Data science for IoT • IoT Platform • Predictive maintenance modeling & Analysis
  • 3.
    Introduction to datascience What is Data science ? 3 • An interdisciplinary field about scientific methods, processes, and systems to extract knowledge or insights from data in various forms • Concept to unify linear algebra, statistics, dataanalysis and their related methods in order to understandand analyze actual phenomena with data • An empirical approach that relies data to provide an answer to problems. Mathematics Artificial Intelligence Domain expertise Computer vision Statistics Machinelearning Advancedcomputing Linguistics Database& StorageVisualization Main academic disciplines that constitute data science
  • 4.
    Introduction to datascience As the beginning was data .. juin 18 4 What is data ? “Data is the New Oil” – World Economic Forum 2011
  • 5.
    Introduction to datascience As the beginning was data .. juin 18 5 • Type of Data • Quantitative • Qualitative • Complexity of data • Structured(relational database) • Semi-structured(Json, XML, CSV, Logs) • Unstructured(Images,Texts, Videos, Signal, ..) • Where are the data ? • Everywhere • Open dataset • API (twitter,google, Wikipedia,..) • Web (web scrapping) • IoT (sensors) • …
  • 6.
    Introduction to datascience Big data juin 18 6 5 Vs of Big Data • Raw Data: Volume • Data types: Variety • Change over time: Velocity • Data Quality: Veracity • Information for Decision Making: Value
  • 7.
    Introduction to datascience Big data juin 18 7 Hadoop Ecosystem -Hortonworks data platform
  • 8.
    Introduction to datascience Algorithms.. To do what ? 8 1. Discover links in the data 2. That’s all
  • 9.
    Type of problemto resolve • Classification • Regression Learning mode • Suppervised Regression/Classification • Unsuppervised Data driven (Clustering) • Reinforcement Algorithms learn to react to an environment Introduction to data science There is a taxonomy of algorithms 9
  • 10.
    Famous machine learningalgorithms (Source: SAS Blog, Hui Li) Introduction to data science There is a taxonomy of algorithms 10
  • 11.
    Introduction to datascience Data Science Process 11
  • 12.
    • Transaction Databases-> Recommender systems (NetFlix), Fraud Detection • Wireless Sensor Data ->Smart Home, Real-time Monitoring, Internet of Things • Text Data, Social Media Data -> Product Review and Consumer Satisfaction (Facebook, Twitter, LinkedIn), Chatbots, .. • Genotype and Phenotype Data -> Patient-CenteredCare, Personalized Medicine, .. • Images, vidéos -> Health-care, Facial recognition, Introduction to data science Data science Applications 12
  • 13.
    Vast network ofdevices connected to the Internet • Remote Monitoring of things. • Things collect and exchange data. Data science for IoT What is IoT ? 13
  • 14.
    Introduction to datascience IoT Platform 14
  • 15.
    Data science forIoT 15 IoT Platform Capteurs Passerelle IoT IoT HuB Azure Stream analytics Event HuB Données de référence Base de données Tableauxde bord Fichier JSON Fichier JSON Modèle de prédiction Fichier JSON Prédiction en temps réel Fichier CSV Kafka KafkaSpark streaming
  • 16.
    Techniques are designedto help determine the condition of in- service equipment in order to • Build a model that predicts yield failure on their manufacturing process • Through analysis determine the factors that lead to yield failures in their process. Data science for IoT Maintenance predictive modelling & analysis 16
  • 17.
    • Our systemwill be able to • Predict failures • Classify failures • Find similar cases • Analyzing the reasons of failures • Recommend a solution Data science for IoT Maintenance predictive modelling & analysis 17
  • 18.