Net Result
Positive 9
(+5) + (+4) = +9
Or
(+4) + (+5) = +9
 When finding the sum of positive integers
you add the magnitudes and keep the
positive sign.
Net Result
Negative 10
(-3) + (-7) = -10
Or
(-7) + (-3) = -10
 When finding the sum of negative
integers you add the magnitudes and keep
the negative sign.
Net Result
Positive 2
(+7) + (-5) = +2
Or
(-5) + (+7) = +2
 When finding the sum of a positive and a
negative integer you subtract the
magnitudes and keep the sign of the
integer with the largest magnitude.
Net Result
Zero
(+5) + (-5) = 0
Or
(-5) + (+5) = 0
 Positive symbol means
 Negative symbol means
You Have
or
You’ve
Earned
You Owe
 (+3) + (-7)
 (-5) + (-2)
 (-3) + (-6) + (+4)
 (+3) + (-2) + (+2)
 (+50) + (-100)
 (-25) + (+10)
 -60 + -20
 -20 + 15
 30 + -5
Positive Integers
To add two positive integers you add the
magnitude and keep the positive sign.
Negative Integers
To add two negative integers you add the
magnitude and keep the negative sign.
A Negative and a Positive Integer
To add a positive and a negative integer you
subtract the magnitudes and keep the sign of
the integer with the largest magnitude.
(+1) – (+4) =
(+1) – (+4) = -3
(-5) – (+3) =
(-5) – (+3) = -8
 (-8) – (-3) =
 (+4) – (-5) =
 (-4) – (-5) =
 (+1) – (-6) =
 (-5) – (+6) =
 (-2) – (-3) =
 (-20) – (-10) =
 (+30) – (-3) =
 (-20) – (-30) =
1. (-5) + (+2) = -3
2. (+6) + (-2) = +4
3. (-2) – (-6) = +4
4. (+7) + (-2) = +5
5. (-5) + (+2) = -3
6. (+8) + (-4) = +4
7. (-3) – (+6) = -9
8. (+50) – (-10) = +60
9. (-20) + (-30) = -50
(+2) x (+4) =
(+2) x (+4) = +8
This means you have two sets of four positive
tiles or you have earned two groups of four
dollars.
(+2) x (-4) =
(+2) x (-4) = -8
This means you have two sets of four negative tiles or
you have two bills that you owe,each bill is for four
dollars.
(-2) x (-4) =
(-2) x (-4) = +8
This means you don’t have two sets of four
negative tiles or you don’t owe two bills, each bill is
for four dollars.
 (+3) x (-2) =
 (-2) x (-2) =
 (+5) x (-2) =
 (-3) x (+2) =
 (+3) x (+4) =
 (+3) x (-2) =
 (-91) x (-101) =
 (+152) x (-21) =
 (-19) x (+203) =
 (-69) x (-102) =
 (-62) x (-11) =
 (-128) x (+12) =
 (-91) x (-101) =
 (+152) x (-21) =
 (-19) x (+203) =
 (-69) x (-102) =
 (-62) x (-11) =
 (-128) x (+12) =
FACTOR FACTOR PRODUCT
+ + +
_ _ +
_ + _
+ _ _
DIVIDEND DIVISOR QUOTIENT
+ + +
_ _ +
_ + _
+ _ _
 (-1) x (+1) x (-1) =
 (+1) x (+1) x (-1) =
 (-1) x (-1) x (+1) =
 (-1) x (-1) x (-1) =
 (-1) x (-1) x (+1) x (-1) x (+1) =
 (-1) x (+1) x (+1) x (-1) x (+1) =
a. (-1) x (+1) x (-1) = +1
b. (+1) x (+1) x (-1) = -1
c. (-1) x (-1) x (+1) = +1
d. (-1) x (-1) x (-1) = -1
If there is an even
number of negative
signs, the product is
positive
If there is an odd
number of negative
signs, the product is
negative
a. (-1) x (+1) x (-1) x (+1) =
b. (+1) x (+1) x (-1) x(-1) =
c. (-1) x (+1) x (-1) x (-1) x (+1) =
d. (-1) x (-1) x (-1) x (-1) x (+1) x (-1) =
e. (1) x (+1) x (-1) x (-1) x (+1) x (-1) =
f. (-1) x (-1) x (-1) x (-1) x (-1) x (-1) =
g. (-2) x (-3) x (-2) x (+1) =
h. (-1) x (-3) x (-2) x (-2) x (-3) =
 (-2) x (+2) x (-1)(-3)=
 (+1) x (+4) x (-5) =
 (-17) x (-2) x (+2) =
 (-2) x (-3) x (-6) x 4 =
 (-2) x (-3) x (-3)
(+2) x (+4) =
(+2) x (+4) = +2

Intro adding integres

  • 2.
    Net Result Positive 9 (+5)+ (+4) = +9 Or (+4) + (+5) = +9
  • 3.
     When findingthe sum of positive integers you add the magnitudes and keep the positive sign.
  • 4.
    Net Result Negative 10 (-3)+ (-7) = -10 Or (-7) + (-3) = -10
  • 5.
     When findingthe sum of negative integers you add the magnitudes and keep the negative sign.
  • 7.
    Net Result Positive 2 (+7)+ (-5) = +2 Or (-5) + (+7) = +2
  • 8.
     When findingthe sum of a positive and a negative integer you subtract the magnitudes and keep the sign of the integer with the largest magnitude.
  • 10.
    Net Result Zero (+5) +(-5) = 0 Or (-5) + (+5) = 0
  • 11.
     Positive symbolmeans  Negative symbol means You Have or You’ve Earned You Owe
  • 12.
     (+3) +(-7)  (-5) + (-2)  (-3) + (-6) + (+4)  (+3) + (-2) + (+2)
  • 13.
     (+50) +(-100)  (-25) + (+10)  -60 + -20  -20 + 15  30 + -5
  • 14.
    Positive Integers To addtwo positive integers you add the magnitude and keep the positive sign. Negative Integers To add two negative integers you add the magnitude and keep the negative sign. A Negative and a Positive Integer To add a positive and a negative integer you subtract the magnitudes and keep the sign of the integer with the largest magnitude.
  • 16.
    (+1) – (+4)= (+1) – (+4) = -3
  • 17.
    (-5) – (+3)= (-5) – (+3) = -8
  • 18.
     (-8) –(-3) =  (+4) – (-5) =  (-4) – (-5) =  (+1) – (-6) =  (-5) – (+6) =  (-2) – (-3) =  (-20) – (-10) =  (+30) – (-3) =  (-20) – (-30) =
  • 19.
    1. (-5) +(+2) = -3 2. (+6) + (-2) = +4 3. (-2) – (-6) = +4 4. (+7) + (-2) = +5 5. (-5) + (+2) = -3 6. (+8) + (-4) = +4 7. (-3) – (+6) = -9 8. (+50) – (-10) = +60 9. (-20) + (-30) = -50
  • 22.
    (+2) x (+4)= (+2) x (+4) = +8 This means you have two sets of four positive tiles or you have earned two groups of four dollars.
  • 23.
    (+2) x (-4)= (+2) x (-4) = -8 This means you have two sets of four negative tiles or you have two bills that you owe,each bill is for four dollars.
  • 24.
    (-2) x (-4)= (-2) x (-4) = +8 This means you don’t have two sets of four negative tiles or you don’t owe two bills, each bill is for four dollars.
  • 25.
     (+3) x(-2) =  (-2) x (-2) =  (+5) x (-2) =  (-3) x (+2) =  (+3) x (+4) =  (+3) x (-2) =
  • 27.
     (-91) x(-101) =  (+152) x (-21) =  (-19) x (+203) =  (-69) x (-102) =  (-62) x (-11) =  (-128) x (+12) =
  • 28.
     (-91) x(-101) =  (+152) x (-21) =  (-19) x (+203) =  (-69) x (-102) =  (-62) x (-11) =  (-128) x (+12) =
  • 29.
    FACTOR FACTOR PRODUCT ++ + _ _ + _ + _ + _ _
  • 30.
    DIVIDEND DIVISOR QUOTIENT ++ + _ _ + _ + _ + _ _
  • 31.
     (-1) x(+1) x (-1) =  (+1) x (+1) x (-1) =  (-1) x (-1) x (+1) =  (-1) x (-1) x (-1) =  (-1) x (-1) x (+1) x (-1) x (+1) =  (-1) x (+1) x (+1) x (-1) x (+1) =
  • 32.
    a. (-1) x(+1) x (-1) = +1 b. (+1) x (+1) x (-1) = -1 c. (-1) x (-1) x (+1) = +1 d. (-1) x (-1) x (-1) = -1 If there is an even number of negative signs, the product is positive If there is an odd number of negative signs, the product is negative
  • 33.
    a. (-1) x(+1) x (-1) x (+1) = b. (+1) x (+1) x (-1) x(-1) = c. (-1) x (+1) x (-1) x (-1) x (+1) = d. (-1) x (-1) x (-1) x (-1) x (+1) x (-1) = e. (1) x (+1) x (-1) x (-1) x (+1) x (-1) = f. (-1) x (-1) x (-1) x (-1) x (-1) x (-1) = g. (-2) x (-3) x (-2) x (+1) = h. (-1) x (-3) x (-2) x (-2) x (-3) =
  • 34.
     (-2) x(+2) x (-1)(-3)=  (+1) x (+4) x (-5) =  (-17) x (-2) x (+2) =  (-2) x (-3) x (-6) x 4 =  (-2) x (-3) x (-3)
  • 35.
    (+2) x (+4)= (+2) x (+4) = +2