MORGAN AQUA, S.L.
Paseo de la Castellana, 115. 7ª
28046 Madrid. SPAIN
CIF: B85476091                    ENVIRONMENTAL TECHNOLOGIES
www.morganaqua.com                BIOMASS AND SUSTAINABLE RAW MATERIALS
gcBIOMASS
GREENHOUSE CROP BIOMASS
THE SUSTAINANABLE AND FULL ENVIRONMENT FRIENDLY BIOMASS FEEDSTOCK


                                       In Southeastern Spain, Morgan AQUA manage from
                                       1,086,261 t year -1 (fresh weight) up to 2,5 million t year of
                                       greenhouse crops Wastes (Cucurbita pepo L., Cucumis sativus
                                       L., Solanum melongena L., Solanum lycopersicum L.,
                                       Phaseoulus vulgarisL., Capsicum annuum L., Citrillus vulgaris
                                       Schrad. and Cucumis melo L.).

                                       This document is shown gcBIOMASS (Vegetable Greenhouse
                                       Waste) characterization. Reader must consider figures are
                                       the minimum gcBIOMASS managed by Morgan AQUA.


Morgan AQUA is the only company that has developed a proprietary technology to fit out the
greenhouse crop wastes into an homogeneous biomass, able to be provided on large scale basis to
the big biomass consumers.

                                            Economic viability of the greenhouse crop wastes like
                                            Biomass is possible thanks to the Morgan AQUA’s
                                            environmental technologies know-how; NO other
                                            company was capable to perform it.

                                            Korean, French, Spanish, German and some other
                                            environmental expertise tech developers were trying to
                                            find out a right model for this biomass on the last 30
                                            years with no results.


All the analyses in this work involve the use of worldwide recognized standards and methods and
all variables were performed in quintuplicate for each species (more than the required by the
standards). The total potential energy for the gcBIOMASS, was determined by direct analysis using
International Standards.

Readers must take into account that the provided figures are MINIMUM results obtained, it means
that could be bigger/better at any case.

gcBIOMASS has not the higher values of HHV, but is a continued and safe source of biomass
feedstock; stocks and provision are fully granted month by month, year by year.




     MORGAN AQUA, S.L.
     Paseo de la Castellana, 115. 7ª
     28046 Madrid. SPAIN
     CIF: B85476091                                                        ENVIRONMENTAL TECHNOLOGIES
     www.morganaqua.com                                                    BIOMASS AND SUSTAINABLE RAW MATERIALS
CROP RESIDUE
          AVERAGE VALUES OF PROXIMATE AND ELEMENTAL ANALYSIS, AND HIGHER HEATING VALUE (HHV)

                                                       HHV                  CHLORIDE             SULPHUR          ASH
                                                                                                                             HUMIDITY
                                            (HIGHER HEATING VALUE)             (Cl)                 (S)         CONTENT
                                           KWh/Kg                 kcal/Kg                   Percentage (%DRY WEIGHT )
           gcBIOMASS                            4,7                 4.073         0,007           0,001%         3,20               <8
           CEREAL A                             4,2                 3.614          0,04                ---          2                ---
           CEREAL B                             4,8                 4.130          0,17                ---          3                ---
           WOODCHIPS PELLETS                    4,0                 3.442     0,15/0,45                ---    0,2/0,5              20%
           STRAW PELLETS                    3,6/4,0          3.097/3.441          0,003                ---         ---               ---



          ASH METAL, CHLORIDE AND SULPHUR SPECIES (mg/kg)
                                               ASH %
                                                (DRY           Al     Ca    Cu     Fe        K      Mg     Mn        Mo     Na    P        S     Cl
                                               WEIGHT)
CURCUBITA PEPO L. (courgette)                      3,42       0,23   10,5   0,31   0,02      53      13    0,17     0,003    5     8       4,7   31,4
CUCUMIS SATIVUS L.(pepper)                            3,50    0,18   11,4   0,36   0,03      62      15    0,20     0,003    6    10       5,6   37,0
SOLANUM MELONGENA L. (aubergine)                      2,65    0,28   30,4   0,95   0,08     163      39    0,52     0,009   14    26   14,6      96,8
SOLANUM LYCOPERSYCUM L. (tomato)                      3,04    0,26   20,7   0,63   0,05     108      26    0,35     0,006   41    17       9,7   64,0
PHASEOULUS VULGARIS L. (bean)                         2,88    0,18   11,7   0,32   0,03      55      13    0,18     0,003    5     9       5,0   32,9
CAPSICUM ANNUM L. (pepper)                            3,56    0,15   31,4   0,96   0,08     165      40    0,53     0,009   13    26   14,8      98,2
CITRILLUS VULGARIS SCHARAD (water
                                                      3,08    0,24   22,1   0,65   0,05     111      27    0,36     0,006    9    18   10,0      66,2
melon)
CUCUMIS MELO L. (melon)                               3,21    0,21   31,6   0,88   0,07     151      37    0,48     0,008   37    24   13,6      89,9
BALANCED AVERAGE                                      3,20    0,22     23    0,7    0,1     116      28    0,37      0,01   26    18   10,4      68,8




          HIGHER HEATING VALUE (HHV)

                                                                     BEFORE MAQ TREATMENT                  AFTER MAQ TREATMENT
                                                                        KWh/Kg             kcal/Kg         KWh/Kg                Kcal/Kg
             CURCUBITA PEPO L. (courgette)                                3,57            3.069,65                4,14           3.559,76
             CUCUMIS SATIVUS L.(pepper)                                   3,50            3.009,46                4,05           3.482,37
             SOLANUM MELONGENA L. (aubergine)                             4,59            3.946,69                5,46           4.694,75
             SOLANUM LYCOPERSYCUM L. (tomato)                             4,12            3.542,56                4,85           4.170,25
             PHASEOULUS VULGARIS L. (bean)                                4,73            4.067,07                5,74           4.935,51
             CAPSICUM ANNUM L..(pepper)                                   4,24            3.645,74                5,01           4.307,82
             CITRILLUS VULGARIS SCHARAD (water melon)                     3,96            3.404,99                4,64           3.989,68
             CUCUMIS MELO L. (melon)                                      3,75            3.224,42                4,37           3.757,52
             BALANCED AVERAGE                                                                                     4,70           4.073,01




         MORGAN AQUA, S.L.
         Paseo de la Castellana, 115. 7ª
         28046 Madrid. SPAIN
         CIF: B85476091                                                                              ENVIRONMENTAL TECHNOLOGIES
         www.morganaqua.com                                                                          BIOMASS AND SUSTAINABLE RAW MATERIALS
MINIMUM CROP RESIDUE BIOMASS PRODUCED
                                                                          MINIMUM AVAILABLE      MINIMUM AVAILABLE
                                          PLANT           AREA
          STUDIED SPECIES                                                      BIOMASS                BIOMASS
                                         REMAINS         OCCUPIED
                                                                              (TONES YEAR)            (TONES YEAR)
                                         (T Ha. Year)      (ha)
                                                                             FRESH WEIGHT             DRY WEIGHT
CURCUBITA PEPO L. (courgette)                20                   4.492                89.840                    17.968
CUCUMIS SATIVUS L. (pepper)                  24                   4.551               109,224                   21.844,8
SOLANUM MELONGENA L.
(aubergine)
                                             27                   1.622                43.794                    8.758,8
SOLANUM LYCOPERSYCUM L.
(tomato)
                                             49              10.250                   502.250                   100.450
PHASEOULUS VULGARIS L. (bean)                23                   1.259                28.957                    5.791,4
CAPSICUM ANNUM L. (pepper)                   28                   7.057               197.596                   39.519,2
CITRILLUS VULGARIS SCHARAD
(water melon)
                                             24                   4.775               114.600                     22.920
CUCUMIS MELO L. (melon)                  33                 4,981                     164,373                  32.874,6
 TOTAL                                  228              38.987*                    1.086.261                 250.126,8
* Total area occupied that could be managed up to 46.900 ha



  BIOMASS ANALYSIS METHODS

                           PROPERTY                                             ANALYTICAL METHOD
                                            PROXIMATE ANALISYS
MOISTURE CONTENT                                    UNE-CEN/TS 14780:2008 EX; UNE-CEN/TS 14774-1:2007 EX
ASH                                                                            UNE-CEN/TS 14775:2007 EX
                                            ELEMENTAL ANALISYS
SULPHUR (S)                                                                               ASTM D4239-08
CHLORINE (Cl)                                                                               ASTM E776-87
HIGHER HEATING VALUE (via direct analysis).                                          UNE 164001:2005 EX
ASH ELEMENTAL METALS                                                                UNE-CEN/TS 14775 EX
ASH FUSIBILITY                                                        ASTM D1857-04 (Oxidising Atmosphere)




  ASH FUSIBILITY OF THE STUDIED SPECIES

    SPECIES                         SPECIES FUSIBILITY
                                        IT (◦C)             ST (◦C)              HT (◦C)              FT (◦C)
    Cucurbita pepo L.                  1.546,00            1.553,00             1.650,00             1.650,00
    Cucumis sativus L.                   993,00            1.650,00             1.650,00             1.650,00
    Solanum melongena L.               1.650,00            1.650,00             1.650,00             1.650,00
    Solanum lycopersicum L.              994,00            1.650,00             1.650,00             1.650,00
    Phaseoulus vulgaris L.             1.353,00            1.650,00             1.650,00             1.650,00
    Capsicum annuum L.                   993,00            1.650,00             1.650,00             1.650,00
    Citrillus vulgaris Schrad.         NO DATA             NO DATA              NO DATA              NO DATA
    Cucumis melo L.                    NO DATA             NO DATA              NO DATA              NO DATA

  IT: deformation temperature; ST: softening temperature; HT: hemisphere temperature; FT: fluidity temperature.




  MORGAN AQUA, S.L.
  Paseo de la Castellana, 115. 7ª
  28046 Madrid. SPAIN
  CIF: B85476091                                                                   ENVIRONMENTAL TECHNOLOGIES
  www.morganaqua.com                                                               BIOMASS AND SUSTAINABLE RAW MATERIALS
POTENTIAL ENERGY OF THE STUDIED GREENHOUSE WASTES

        BEFORE MAQ TREATMENT

                                                     HHV
                                    Biomass                       kWhkg−1                                         kWh
                                                   (kJ kg−1                     kcal kg-1      kJ year−1                     kcal year-1
                                   (t year−1)                     dry weight                                     year−1
                                                  dry weight)                   dry weight
  Cucurbita pepo L.
                                    17.968,0       12.849,37         3,57        3.071,07        230.877.480       64.133       55.181,04
  - Calabacín-
  Cucumis sativus L.
                                    21.844,8       12.595,82         3,50        3.010,47        275.153.169       76.431       65.763,18
  - Pepino -
  Solanum melongena L.
                                     8.758,8       16.529,71         4,59        3.950,70        144.780.424       40.217       34.603,35
  - Berenjena -
  Solanum lycopersicum
                                   100.450,0       14.826,78         4,12        3.543,69      1.489.350.051      413.708      355.963,20
  L.- Tomate -
  Phaseoulus vulgaris L.
                                     5.791,4       17.014,23         4,73        4.066,50         98.536.212       27.371       23.550,72
  - Judías -
  Capsicum annuum L.
                                    39.519,2       15.264,44         4,24        3.648,29        603.238.457      167.566      144.177,45
  - Pimiento-
  Citrillus vulgaris
                                    22.920,0       14.258,58         3,96        3.407,88        326.806.654       90.780       78.108,66
  Schrad.- Sandía -
  Cucumis melo L.
                                    32.874,6       13.501,26         3,75        3.226,88        443.848.522      123.291      106.082,34
  - Melón -
  TOTAL                            250.126,8                                                  3.612.590.968     1.003.497    863.429.241

        HHV: higher heating value.



        AFTER MAQ TREATMENT

                                                   HHV
                                  Biomass                       kWhkg−1        kcal kg-1
                                                 (kJ kg−1                                     kJ year−1        kWh year−1      kcal year-1
                                 (t year−1)                     dry weight     dry weight
                                                dry weight)
CURCUBITA PEPO L.
(courgette)
                                 17.968,0       14.904,00         4,14         3.559,76       267.795.072          74.388        63.961.768
CUCUMIS SATIVUS L.
(pepper)
                                 21.844,8       14.580,00         4,05         3.482,37       318.497.184          88.471        76.071.676
SOLANUM MELONGENA L.
(aubergine)
                                  8.758,8       19.656,00         5,46         4.694,75       172.162.973          47.823        41.120.376
SOLANUM LYCOPERSYCUM
L. (tomato)
                                100.450,0       17.460,00         4,85         4.170,25      1.753.857.000        487.183      418.901.613
PHASEOULUS VULGARIS L.
(bean)
                                  5.791,4       20.664,00         5,74         4.935,51       119.673.490          33.243        28.583.513
CAPSICUM ANNUM L.
(pepper)
                                 39.519,2       18.036,00         5,01         4.307,82       712.768.291         197.991      170.241.600
CITRILLUS VULGARIS
SCHARAD (water melon)
                                 22.920,0       16.704,00         4,64         3.989,68       382.855.680         106.349        91.443.466
CUCUMIS MELO L.
(melon)
                                 32.874,6       15.732,00         4,37         4.073,01       517.183.207         143.662      133.898.575
TOTAL                                                                                        4.244.792.897      1.179.109     1.024.222.586




         MORGAN AQUA, S.L.
         Paseo de la Castellana, 115. 7ª
         28046 Madrid. SPAIN
         CIF: B85476091                                                                         ENVIRONMENTAL TECHNOLOGIES
         www.morganaqua.com                                                                     BIOMASS AND SUSTAINABLE RAW MATERIALS
VGW MANAGED BY MORGAN AQUA - PRODUCTION ANNUAL CALENDAR


                                                    FRESH WEIGHT                    DRY WEIGHT

           MONTH              VGW (%)    VGW (m3)            VGW (ton)               VGW (ton)
       January                    19,2     654.190,66               208.562,11            48.024,35
       February                   10,5     460.616,21               114.057,41            26.263,31
       March                         5     221.682,73                54.313,05            12.506,34
       April                       6,4     282.496,89                69.520,70            16.008,12
       May                        23,6   1.029.793,97               256.357,60            59.029,92
       June                       18,6     812.546,77               202.044,55            46.523,58
       July                        9,3     408.481,28               101.022,27            23.261,79
       August                      0,9      49.640,12                 9.776,35             2.251,14
       September                   0,4      26.333,74                 4.345,04             1.000,51
       October                     1,2      59.083,05                13.035,13             3.001,52
       November                    1,7      83.215,38                18.466,44             4.252,16
       December                    3,2     143.110,89                34.760,35             8.004,06
       TOTAL                       100   4.231.191,69              1.086.261,00          250.126,80
       VGW: Vegetable Greenhouse Wastes

       250.126,80 Ton of gcBIOMASS produced yearly




MORGAN AQUA, S.L.
Paseo de la Castellana, 115. 7ª
28046 Madrid. SPAIN
CIF: B85476091                                                              ENVIRONMENTAL TECHNOLOGIES
www.morganaqua.com                                                          BIOMASS AND SUSTAINABLE RAW MATERIALS
REFERENCES

[1] Gil Mañero, Gloria, Ujados Lopez, Manuel. Agricultural crops waste conversion on homogeneous biomass.
2008.

[2] Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chronica Horticult 2004;44:28–34.

[3] Callejón-Ferre AJ, Manzano-Agugliaro F, Díaz-Pérez M, Carreño-Ortega A, Pérez-Alonso J. Effect of shading
with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse
conditions. Span J Agric Res 2009;7:41–9.

[4] Sanjuán JF. Detección de la superficie invernada en la provincia de Almería a través de imágenes ASTER.
Fundación para la Investigación Agraria de la Provincia de Almería (FIAPA). Almería; 2007.

[5] Castilla N. Invernaderos de plástico. Tecnología y manejo. Ed. Mundiprensa Madrid; 2005. 462 p.

[6] Callejón-Ferre AJ, López-Martínez JA. Briquettes of plant remains from the greenhouses of Almería (Spain).
Span J Agric Res 2009;7:525–34.

[7] Callejón-Ferre AJ, Carre˜no-Ortega A, Sánchez-Hermosilla J, Pérez-Alonso J. Environmental impact of an
agricultural solid waste disposal and transformation plant in the Province of Almería (Spain). Inf Constr
2010;62:79–93.

[8] Demirbas A. Combustion characteristics of different biomass fuels. Prog Energ Combust 2004;30:219–30.

[9] Chen LJ, Xing L, Han LJ. Renewable energy from agro-residues in China: solid biofuels and biomass briquetting
technology. Renew Sust Energ Rev 2009;13:2689–95.

[10] Yanli Y, Peidong Z, Wenlong Z, Yongsheng T, Yonchong Z, Lisheng W. Quantitative appraisal and potential
analysis for primary biomass resources for energy utilization in China. Renew Sust Energ Rev 2010;14:3050–8.

[11] Tock JY, Lay CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: a
Malaysian case study. Renew Sust Energ Rev 2010;14:798–805.

[12] Van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC. Large-scale bioenergy production from
soybeans and switchgrass in Argentina Part A: potential and economic feasibility for national and international
markets. Renew Sust Energ Rev 2009;13:1710–33.

[13] Saracoglu N. Fuel word as a source of energy in Turkey. Energ Source Part B 2009;4:396–406.

[14] Campbell AG. Recycling and disposing of wood ash. Tappi J 1990;73:141–6.

[15] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler
power systems and combustion related environmental issues. Prog Energy Combust 2005;31:171–92.

[16] Dai JJ, Sokhansanj S, Grace JR, Bi XT, Lim CJ, Melin S. Overview and some issues related to co-firing biomass
and coal. Can J Chem Eng 2008;86:367–86.

[17] Masarovicova E, Kralova K, Pesko M. Energetic plants – cost and benefit. Ecol Chem Eng S 2009;16:263–76.

[18] Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431–4.

[19] Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data.
Biomass Bioener 2005;28:499–507.




 MORGAN AQUA, S.L.
 Paseo de la Castellana, 115. 7ª
 28046 Madrid. SPAIN
 CIF: B85476091                                                                    ENVIRONMENTAL TECHNOLOGIES
 www.morganaqua.com                                                                BIOMASS AND SUSTAINABLE RAW MATERIALS
[20] Erol M, Haykiri-Acma H, Kücükbayrak S. Calorific value estimation of biomass from their proximate analyses
data. Renewable Energy 2010;35:170–3.

[21] Camacho-Ferre F, Callejón-Ferre AJ, Fernández-Rodríguez EJ, Montoya-García ME, Moreno-Cascó J,
Valverde-García A, et al. Estudio Técnico de Plan de Higiene Rural. Término Municipal de Níjar. Ed. Mónsul
Ingeniería. Almería, Spain; 2000. 554 p.

[22] Agugliaro FM. Gasificación de residuos de invernadero para la obtención de energía eléctrica en el sur de
España: Ubicación mediante SIG. Interciencia 2006;32:131–6.

[23] Delegación Provincial de Almería. Memoria resumen. Consejería de Agricultura y Pesca de la Junta de
Andalucía, 2008.

[24] Céspedes-López AJ, García-García MC, Pérez-Parra JJ, Cuadrado-Gómez IM. Caracterización de la
Explotación Hortícola Protegida de Almería. Ed. Isabel María Cuadrado Gómez (FIAPA). Almería; 2009. 177 p.

[25] Callejón-Ferre AJ, Pérez-Alonso J, Sánchez-Hermosilla J, Carreño-Ortega A. Ergonomics and psycho-
sociological quality indices in greenhouses, Almería (Spain). Span J Agric Res 2009;7:50–8.

[26] UNE-CEN/TS 14780:2008 EX. Biocombustibles sólidos. Métodos para la preparación de muestras. AENOR,
Madrid, Spain, 2008.

[27] UNE-CEN/TS 14774-1:2007 EX. Biocombustibles sólidos. Métodos para la determinación del contenido de
humedad. Método de secado en estufa. Parte 1: Humedad total. Método de referencia. AENOR, Madrid, Spain,
2007.

[28] UNE-CEN/TS 14775:2007 EX. Biocombustibles sólidos. Método para la determinación del contenido de
cenizas. AENOR, Madrid, Spain, 2007.

[29] UNE-CEN/TS 15148:2008 EX. Biocombustibles sólidos. Método para la determinación del contenido en
materias volátiles. AENOR, Madrid, Spain, 2008.

[30] UNE-CEN/TS 15104:2008 EX. Biocombustibles sólidos. Determinación del contenido total de carbono,
hidrógeno y nitrógeno. Métodos instrumentales. AENOR, Madrid, Spain, 2008.

[31] ASTM D4239-08. Standard test methods for sulfur in the analysis simple of coal and coke using high-
temperature tube furnace combustion methods. ASTM International. West Conshohocken, USA, 2008.

[32] ASTM E776-87. Standard test method for forms of chlorine in refuse-derived fuel. ASTM International, West
Conshohocken, USA, 2009.

[33] UNE 164001:2005 EX. Biocombustibles sólidos. Método para la determinación del HHV. AENOR, Madrid,
Spain, 2005.

[34] ASTM D1857-04. Standard test method for fusibility of coal and coke ash. ASTM International, West
Conshohocken, USA, 2004.

[35] Dempster AP. Elements of Continuous Multivariate Analysis. Reading: Addison-Wesley; 1969.

[36] Jobson JD. Applied multivariate data analysis, vol. 1: Regression and experimental design. New York:
Springer Verlag; 1999.

[37] Tomassone R, Audrain S, Lesquoy de Turckheim E, Miller C. La Régression, Nouveaux Regards sur une
Ancienne Méthode Statistique. Paris: INRA et MASSON; 1992.

[38] Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value A.J.
Callejón-Ferrea,∗, B. Velázquez-Martíb, J.A. López-Martíneza, F. Manzano-Agugliaroa. Renewable and
Sustainable Energy Reviews 15 (2011) 948–955 Science Direct.

 MORGAN AQUA, S.L.
 Paseo de la Castellana, 115. 7ª
 28046 Madrid. SPAIN
 CIF: B85476091                                                                    ENVIRONMENTAL TECHNOLOGIES
 www.morganaqua.com                                                                BIOMASS AND SUSTAINABLE RAW MATERIALS

gcBiomass (English)

  • 1.
    MORGAN AQUA, S.L. Paseode la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 2.
    gcBIOMASS GREENHOUSE CROP BIOMASS THESUSTAINANABLE AND FULL ENVIRONMENT FRIENDLY BIOMASS FEEDSTOCK In Southeastern Spain, Morgan AQUA manage from 1,086,261 t year -1 (fresh weight) up to 2,5 million t year of greenhouse crops Wastes (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgarisL., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.). This document is shown gcBIOMASS (Vegetable Greenhouse Waste) characterization. Reader must consider figures are the minimum gcBIOMASS managed by Morgan AQUA. Morgan AQUA is the only company that has developed a proprietary technology to fit out the greenhouse crop wastes into an homogeneous biomass, able to be provided on large scale basis to the big biomass consumers. Economic viability of the greenhouse crop wastes like Biomass is possible thanks to the Morgan AQUA’s environmental technologies know-how; NO other company was capable to perform it. Korean, French, Spanish, German and some other environmental expertise tech developers were trying to find out a right model for this biomass on the last 30 years with no results. All the analyses in this work involve the use of worldwide recognized standards and methods and all variables were performed in quintuplicate for each species (more than the required by the standards). The total potential energy for the gcBIOMASS, was determined by direct analysis using International Standards. Readers must take into account that the provided figures are MINIMUM results obtained, it means that could be bigger/better at any case. gcBIOMASS has not the higher values of HHV, but is a continued and safe source of biomass feedstock; stocks and provision are fully granted month by month, year by year. MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 3.
    CROP RESIDUE AVERAGE VALUES OF PROXIMATE AND ELEMENTAL ANALYSIS, AND HIGHER HEATING VALUE (HHV) HHV CHLORIDE SULPHUR ASH HUMIDITY (HIGHER HEATING VALUE) (Cl) (S) CONTENT KWh/Kg kcal/Kg Percentage (%DRY WEIGHT ) gcBIOMASS 4,7 4.073 0,007 0,001% 3,20 <8 CEREAL A 4,2 3.614 0,04 --- 2 --- CEREAL B 4,8 4.130 0,17 --- 3 --- WOODCHIPS PELLETS 4,0 3.442 0,15/0,45 --- 0,2/0,5 20% STRAW PELLETS 3,6/4,0 3.097/3.441 0,003 --- --- --- ASH METAL, CHLORIDE AND SULPHUR SPECIES (mg/kg) ASH % (DRY Al Ca Cu Fe K Mg Mn Mo Na P S Cl WEIGHT) CURCUBITA PEPO L. (courgette) 3,42 0,23 10,5 0,31 0,02 53 13 0,17 0,003 5 8 4,7 31,4 CUCUMIS SATIVUS L.(pepper) 3,50 0,18 11,4 0,36 0,03 62 15 0,20 0,003 6 10 5,6 37,0 SOLANUM MELONGENA L. (aubergine) 2,65 0,28 30,4 0,95 0,08 163 39 0,52 0,009 14 26 14,6 96,8 SOLANUM LYCOPERSYCUM L. (tomato) 3,04 0,26 20,7 0,63 0,05 108 26 0,35 0,006 41 17 9,7 64,0 PHASEOULUS VULGARIS L. (bean) 2,88 0,18 11,7 0,32 0,03 55 13 0,18 0,003 5 9 5,0 32,9 CAPSICUM ANNUM L. (pepper) 3,56 0,15 31,4 0,96 0,08 165 40 0,53 0,009 13 26 14,8 98,2 CITRILLUS VULGARIS SCHARAD (water 3,08 0,24 22,1 0,65 0,05 111 27 0,36 0,006 9 18 10,0 66,2 melon) CUCUMIS MELO L. (melon) 3,21 0,21 31,6 0,88 0,07 151 37 0,48 0,008 37 24 13,6 89,9 BALANCED AVERAGE 3,20 0,22 23 0,7 0,1 116 28 0,37 0,01 26 18 10,4 68,8 HIGHER HEATING VALUE (HHV) BEFORE MAQ TREATMENT AFTER MAQ TREATMENT KWh/Kg kcal/Kg KWh/Kg Kcal/Kg CURCUBITA PEPO L. (courgette) 3,57 3.069,65 4,14 3.559,76 CUCUMIS SATIVUS L.(pepper) 3,50 3.009,46 4,05 3.482,37 SOLANUM MELONGENA L. (aubergine) 4,59 3.946,69 5,46 4.694,75 SOLANUM LYCOPERSYCUM L. (tomato) 4,12 3.542,56 4,85 4.170,25 PHASEOULUS VULGARIS L. (bean) 4,73 4.067,07 5,74 4.935,51 CAPSICUM ANNUM L..(pepper) 4,24 3.645,74 5,01 4.307,82 CITRILLUS VULGARIS SCHARAD (water melon) 3,96 3.404,99 4,64 3.989,68 CUCUMIS MELO L. (melon) 3,75 3.224,42 4,37 3.757,52 BALANCED AVERAGE 4,70 4.073,01 MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 4.
    MINIMUM CROP RESIDUEBIOMASS PRODUCED MINIMUM AVAILABLE MINIMUM AVAILABLE PLANT AREA STUDIED SPECIES BIOMASS BIOMASS REMAINS OCCUPIED (TONES YEAR) (TONES YEAR) (T Ha. Year) (ha) FRESH WEIGHT DRY WEIGHT CURCUBITA PEPO L. (courgette) 20 4.492 89.840 17.968 CUCUMIS SATIVUS L. (pepper) 24 4.551 109,224 21.844,8 SOLANUM MELONGENA L. (aubergine) 27 1.622 43.794 8.758,8 SOLANUM LYCOPERSYCUM L. (tomato) 49 10.250 502.250 100.450 PHASEOULUS VULGARIS L. (bean) 23 1.259 28.957 5.791,4 CAPSICUM ANNUM L. (pepper) 28 7.057 197.596 39.519,2 CITRILLUS VULGARIS SCHARAD (water melon) 24 4.775 114.600 22.920 CUCUMIS MELO L. (melon) 33 4,981 164,373 32.874,6 TOTAL 228 38.987* 1.086.261 250.126,8 * Total area occupied that could be managed up to 46.900 ha BIOMASS ANALYSIS METHODS PROPERTY ANALYTICAL METHOD PROXIMATE ANALISYS MOISTURE CONTENT UNE-CEN/TS 14780:2008 EX; UNE-CEN/TS 14774-1:2007 EX ASH UNE-CEN/TS 14775:2007 EX ELEMENTAL ANALISYS SULPHUR (S) ASTM D4239-08 CHLORINE (Cl) ASTM E776-87 HIGHER HEATING VALUE (via direct analysis). UNE 164001:2005 EX ASH ELEMENTAL METALS UNE-CEN/TS 14775 EX ASH FUSIBILITY ASTM D1857-04 (Oxidising Atmosphere) ASH FUSIBILITY OF THE STUDIED SPECIES SPECIES SPECIES FUSIBILITY IT (◦C) ST (◦C) HT (◦C) FT (◦C) Cucurbita pepo L. 1.546,00 1.553,00 1.650,00 1.650,00 Cucumis sativus L. 993,00 1.650,00 1.650,00 1.650,00 Solanum melongena L. 1.650,00 1.650,00 1.650,00 1.650,00 Solanum lycopersicum L. 994,00 1.650,00 1.650,00 1.650,00 Phaseoulus vulgaris L. 1.353,00 1.650,00 1.650,00 1.650,00 Capsicum annuum L. 993,00 1.650,00 1.650,00 1.650,00 Citrillus vulgaris Schrad. NO DATA NO DATA NO DATA NO DATA Cucumis melo L. NO DATA NO DATA NO DATA NO DATA IT: deformation temperature; ST: softening temperature; HT: hemisphere temperature; FT: fluidity temperature. MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 5.
    POTENTIAL ENERGY OFTHE STUDIED GREENHOUSE WASTES BEFORE MAQ TREATMENT HHV Biomass kWhkg−1 kWh (kJ kg−1 kcal kg-1 kJ year−1 kcal year-1 (t year−1) dry weight year−1 dry weight) dry weight Cucurbita pepo L. 17.968,0 12.849,37 3,57 3.071,07 230.877.480 64.133 55.181,04 - Calabacín- Cucumis sativus L. 21.844,8 12.595,82 3,50 3.010,47 275.153.169 76.431 65.763,18 - Pepino - Solanum melongena L. 8.758,8 16.529,71 4,59 3.950,70 144.780.424 40.217 34.603,35 - Berenjena - Solanum lycopersicum 100.450,0 14.826,78 4,12 3.543,69 1.489.350.051 413.708 355.963,20 L.- Tomate - Phaseoulus vulgaris L. 5.791,4 17.014,23 4,73 4.066,50 98.536.212 27.371 23.550,72 - Judías - Capsicum annuum L. 39.519,2 15.264,44 4,24 3.648,29 603.238.457 167.566 144.177,45 - Pimiento- Citrillus vulgaris 22.920,0 14.258,58 3,96 3.407,88 326.806.654 90.780 78.108,66 Schrad.- Sandía - Cucumis melo L. 32.874,6 13.501,26 3,75 3.226,88 443.848.522 123.291 106.082,34 - Melón - TOTAL 250.126,8 3.612.590.968 1.003.497 863.429.241 HHV: higher heating value. AFTER MAQ TREATMENT HHV Biomass kWhkg−1 kcal kg-1 (kJ kg−1 kJ year−1 kWh year−1 kcal year-1 (t year−1) dry weight dry weight dry weight) CURCUBITA PEPO L. (courgette) 17.968,0 14.904,00 4,14 3.559,76 267.795.072 74.388 63.961.768 CUCUMIS SATIVUS L. (pepper) 21.844,8 14.580,00 4,05 3.482,37 318.497.184 88.471 76.071.676 SOLANUM MELONGENA L. (aubergine) 8.758,8 19.656,00 5,46 4.694,75 172.162.973 47.823 41.120.376 SOLANUM LYCOPERSYCUM L. (tomato) 100.450,0 17.460,00 4,85 4.170,25 1.753.857.000 487.183 418.901.613 PHASEOULUS VULGARIS L. (bean) 5.791,4 20.664,00 5,74 4.935,51 119.673.490 33.243 28.583.513 CAPSICUM ANNUM L. (pepper) 39.519,2 18.036,00 5,01 4.307,82 712.768.291 197.991 170.241.600 CITRILLUS VULGARIS SCHARAD (water melon) 22.920,0 16.704,00 4,64 3.989,68 382.855.680 106.349 91.443.466 CUCUMIS MELO L. (melon) 32.874,6 15.732,00 4,37 4.073,01 517.183.207 143.662 133.898.575 TOTAL 4.244.792.897 1.179.109 1.024.222.586 MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 6.
    VGW MANAGED BYMORGAN AQUA - PRODUCTION ANNUAL CALENDAR FRESH WEIGHT DRY WEIGHT MONTH VGW (%) VGW (m3) VGW (ton) VGW (ton) January 19,2 654.190,66 208.562,11 48.024,35 February 10,5 460.616,21 114.057,41 26.263,31 March 5 221.682,73 54.313,05 12.506,34 April 6,4 282.496,89 69.520,70 16.008,12 May 23,6 1.029.793,97 256.357,60 59.029,92 June 18,6 812.546,77 202.044,55 46.523,58 July 9,3 408.481,28 101.022,27 23.261,79 August 0,9 49.640,12 9.776,35 2.251,14 September 0,4 26.333,74 4.345,04 1.000,51 October 1,2 59.083,05 13.035,13 3.001,52 November 1,7 83.215,38 18.466,44 4.252,16 December 3,2 143.110,89 34.760,35 8.004,06 TOTAL 100 4.231.191,69 1.086.261,00 250.126,80 VGW: Vegetable Greenhouse Wastes 250.126,80 Ton of gcBIOMASS produced yearly MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 7.
    REFERENCES [1] Gil Mañero,Gloria, Ujados Lopez, Manuel. Agricultural crops waste conversion on homogeneous biomass. 2008. [2] Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chronica Horticult 2004;44:28–34. [3] Callejón-Ferre AJ, Manzano-Agugliaro F, Díaz-Pérez M, Carreño-Ortega A, Pérez-Alonso J. Effect of shading with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse conditions. Span J Agric Res 2009;7:41–9. [4] Sanjuán JF. Detección de la superficie invernada en la provincia de Almería a través de imágenes ASTER. Fundación para la Investigación Agraria de la Provincia de Almería (FIAPA). Almería; 2007. [5] Castilla N. Invernaderos de plástico. Tecnología y manejo. Ed. Mundiprensa Madrid; 2005. 462 p. [6] Callejón-Ferre AJ, López-Martínez JA. Briquettes of plant remains from the greenhouses of Almería (Spain). Span J Agric Res 2009;7:525–34. [7] Callejón-Ferre AJ, Carre˜no-Ortega A, Sánchez-Hermosilla J, Pérez-Alonso J. Environmental impact of an agricultural solid waste disposal and transformation plant in the Province of Almería (Spain). Inf Constr 2010;62:79–93. [8] Demirbas A. Combustion characteristics of different biomass fuels. Prog Energ Combust 2004;30:219–30. [9] Chen LJ, Xing L, Han LJ. Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology. Renew Sust Energ Rev 2009;13:2689–95. [10] Yanli Y, Peidong Z, Wenlong Z, Yongsheng T, Yonchong Z, Lisheng W. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew Sust Energ Rev 2010;14:3050–8. [11] Tock JY, Lay CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sust Energ Rev 2010;14:798–805. [12] Van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC. Large-scale bioenergy production from soybeans and switchgrass in Argentina Part A: potential and economic feasibility for national and international markets. Renew Sust Energ Rev 2009;13:1710–33. [13] Saracoglu N. Fuel word as a source of energy in Turkey. Energ Source Part B 2009;4:396–406. [14] Campbell AG. Recycling and disposing of wood ash. Tappi J 1990;73:141–6. [15] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust 2005;31:171–92. [16] Dai JJ, Sokhansanj S, Grace JR, Bi XT, Lim CJ, Melin S. Overview and some issues related to co-firing biomass and coal. Can J Chem Eng 2008;86:367–86. [17] Masarovicova E, Kralova K, Pesko M. Energetic plants – cost and benefit. Ecol Chem Eng S 2009;16:263–76. [18] Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431–4. [19] Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioener 2005;28:499–507. MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS
  • 8.
    [20] Erol M,Haykiri-Acma H, Kücükbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy 2010;35:170–3. [21] Camacho-Ferre F, Callejón-Ferre AJ, Fernández-Rodríguez EJ, Montoya-García ME, Moreno-Cascó J, Valverde-García A, et al. Estudio Técnico de Plan de Higiene Rural. Término Municipal de Níjar. Ed. Mónsul Ingeniería. Almería, Spain; 2000. 554 p. [22] Agugliaro FM. Gasificación de residuos de invernadero para la obtención de energía eléctrica en el sur de España: Ubicación mediante SIG. Interciencia 2006;32:131–6. [23] Delegación Provincial de Almería. Memoria resumen. Consejería de Agricultura y Pesca de la Junta de Andalucía, 2008. [24] Céspedes-López AJ, García-García MC, Pérez-Parra JJ, Cuadrado-Gómez IM. Caracterización de la Explotación Hortícola Protegida de Almería. Ed. Isabel María Cuadrado Gómez (FIAPA). Almería; 2009. 177 p. [25] Callejón-Ferre AJ, Pérez-Alonso J, Sánchez-Hermosilla J, Carreño-Ortega A. Ergonomics and psycho- sociological quality indices in greenhouses, Almería (Spain). Span J Agric Res 2009;7:50–8. [26] UNE-CEN/TS 14780:2008 EX. Biocombustibles sólidos. Métodos para la preparación de muestras. AENOR, Madrid, Spain, 2008. [27] UNE-CEN/TS 14774-1:2007 EX. Biocombustibles sólidos. Métodos para la determinación del contenido de humedad. Método de secado en estufa. Parte 1: Humedad total. Método de referencia. AENOR, Madrid, Spain, 2007. [28] UNE-CEN/TS 14775:2007 EX. Biocombustibles sólidos. Método para la determinación del contenido de cenizas. AENOR, Madrid, Spain, 2007. [29] UNE-CEN/TS 15148:2008 EX. Biocombustibles sólidos. Método para la determinación del contenido en materias volátiles. AENOR, Madrid, Spain, 2008. [30] UNE-CEN/TS 15104:2008 EX. Biocombustibles sólidos. Determinación del contenido total de carbono, hidrógeno y nitrógeno. Métodos instrumentales. AENOR, Madrid, Spain, 2008. [31] ASTM D4239-08. Standard test methods for sulfur in the analysis simple of coal and coke using high- temperature tube furnace combustion methods. ASTM International. West Conshohocken, USA, 2008. [32] ASTM E776-87. Standard test method for forms of chlorine in refuse-derived fuel. ASTM International, West Conshohocken, USA, 2009. [33] UNE 164001:2005 EX. Biocombustibles sólidos. Método para la determinación del HHV. AENOR, Madrid, Spain, 2005. [34] ASTM D1857-04. Standard test method for fusibility of coal and coke ash. ASTM International, West Conshohocken, USA, 2004. [35] Dempster AP. Elements of Continuous Multivariate Analysis. Reading: Addison-Wesley; 1969. [36] Jobson JD. Applied multivariate data analysis, vol. 1: Regression and experimental design. New York: Springer Verlag; 1999. [37] Tomassone R, Audrain S, Lesquoy de Turckheim E, Miller C. La Régression, Nouveaux Regards sur une Ancienne Méthode Statistique. Paris: INRA et MASSON; 1992. [38] Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value A.J. Callejón-Ferrea,∗, B. Velázquez-Martíb, J.A. López-Martíneza, F. Manzano-Agugliaroa. Renewable and Sustainable Energy Reviews 15 (2011) 948–955 Science Direct. MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 ENVIRONMENTAL TECHNOLOGIES www.morganaqua.com BIOMASS AND SUSTAINABLE RAW MATERIALS