Haptic Chameleon: ANew Concept of Shape-Changing
User Interface Controls with Force Feedback
G. Michelitsch, J. Williams, M. Osen, B. Jimenez, and S. Rapp
2015/05/29 橋爪智 #3鬼
どのようなものか?
形を変えることによるユーザーインターフェースの提
案
コンセプト
形と触覚を変えることによって、様々なものを便利に
するだろう。
• 実世界の物を真似して形が変わる。
• 選択肢の具現化
先行研究と比べてどこがすごいか?
それ自身の形が変わるだけでなく、ユーザーは掴むな
ど自由に扱っても構わない。
活用法
車の中のインターフェースがHaptic Chameleonであれ
ば、運転手は多くを見なくても操作ができる。
今後の展望
他の技術と組み合わせながらプロトタイプを作ってい
く
関連研究
Deformable Objects as Input Tools [Murakami et al.
2
FTL(electrical focus tunablelenses)
6DOF
7 2
Extended Depth-of-Field Projector by Fast Focal Sweep Projection
4
4
4
4
(IPSF) (SSIM) 2
2
3Image Pre-compensation: Balancing Contrast and Ringing
[Y. Ji, J. Ye, S. B. Kang, and J. Yu/CVPR2014]
IEEE VR 2015
4
2 5
2
36.
A Switchable LightField Camera Architecture
with Angle Sensitive Pixels and Dictionary-based Sparse Coding
4
4
4
4
4
5 2
2
CG 1 2
PSNR 2
2 3Compressive light field photography using overcomplete dictionaries and optimized projections
[K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar / TOG2013]
ICCP2014
4
Learning to Selectand Order Vacation Photographs
4
4
4
4
42
2
9 63
5 2
2
/ 2
3Jointly aligning and segmenting multiple web photo streams for the inference of collective
photo storylines [G. Kim and E. P. Xing. / CVPR2013]
3Photo sequencing.
[T. Basha, Y. Moses, and S. Avidan.. / CVPR2012]
WACV2015
(Disney)
39.
The Shading Probe:Fast Appearance Acquisition for Mobile AR
4 4
AR 5
2
3Reciprocal shading for mixed reality
[KNECHT, M., TRAXLER, C., MATTAUSCH, O., AND WIMMER,M/ 2012]
3A single-shot light probe
[DEBEVEC, P., GRAHAM, P., BUSCH, J., AND BOLAS, M. / 2012]
SIGGRAPH Asisa 2013
(Disney)
40.
Modeling and Estimationof Internal Friction in Cloth
4
4
4
4
2
1 1
2
Dahl’s model 2
5 3D
1 5 2
3Folding and crumpling adaptive sheets
[NARAIN, R., PFAFF, T., AND O’BRIEN, J. F. / ACM Transactions on Graphics 2013]
3A solid friction model. Tech. rep., The Aerospace Corporation.
[DAHL, P. R. / 1968]
SIGGRAPH Asisa 2013
(Disney)
4
1
2
Manufacturing Layered Attenuatorsfor Multiple Prescribed Shadow Images
4
4
4
4
5
2
2
PSNR 2
PSNR 2
1
2
5 1
1 2
3Parallax stereogram and process of making same.
[IVES F. E. / 1903]
3Layered 3D: Tomographic image synthesis for
attenuation-based light field and high dynamic range displays
[WETZSTEIN G., LANMAN D., HEIDRICH W.,RASKAR R. / ACM Transactions
EUROGRAPHICS 2012
(Disney)
43.
Modeling and AnimatingEye Blinks
4
4
4
4
4
5
2
( c) 1 ( b7
40 300fps
2 5 10 5
30fps 2
5 3Statistical models of appearance for eye tracking and eye-blink detection and measurement
[Bacivarov, I., Ionita, M., and Corcoran, / IEEE Transactions on Consumer Electronics 2008]
ACM Transactions 2011
(Disney)
4
1 5
2 2
44.
BetweenIT: An InteractiveTool for Tight Inbetweening
4
4
4
4
5 5 5 1
5 2
6 a,e b,c,d 6 77
5 1
5
1
5 2
3Proceedings of the 2nd international symposium on Nonphotorealistic animation and rendering
[KORT A. / MPAR2002]
Eurographics 2010
(Disney)
4
5 1 1
45.
A spatiotemporal super-resolutionalgorithm for a hybrid stereo video system
4
4
4
4
41
1
MOBILE 3DTV1Poznan 5 2
1
1 2
3 6SW-SSIM,LTG,PSNR7
5 5 1
5 5
3Super-resolution: a comprehensive survey.
[Nasrollahi,K., Moeslund, T.B / 2014]
3Subjective quality assessment of asymmetric stereoscopic 3D video.
Signal Image Video Process.
[Aflaki, P., Hannuksela, M.M., Gabbouj, M / 2015 ]
Signal, Image and Video Processing
Journal 2015
46.
SPATIOTEMPOR AL SEGMENTATIONFOR STEREOSCOPIC VIDEO
4
4
4
4
4
2 5 2
2 1 5
2 3Efficient hierarchical graph-based video segmentation
[Matthias Grundmann, Vivek K watra, Mei Han, and Irfan Essa,/ CVPR2010]
Quality of Multimedia Experience
2010
4
1 1 5
2
47.
Development of 480-fpsLED display by use of spatiotemporal mapping
4
4
4
480fps 5 5 LED
2
3D 1
2
1
2
3Parallax panoramagrams for viewing by reflected light
[H. E. Ives, / 1930]
3Viewing-Zone Control of Light-Emitting Diode Panel for Stereoscopic Display
and Multiple Viewing Distances
[H. Yamamoto, T. Kimura, S. Matsumoto, and S. Suyama / 2010]
IAS 2012
3 5
48.
Extracting 3D Layoutfrom a Single Image Using Global Image Structure
4
4
4
4
,
5 2
,
2
15 5 5 2
5 2000 2
5 12 5
2
5
2
TIP 2015
4
4
49.
Active Flattening ofCurved Document Image via Two Structured Beams
4
4
4
4
2
0
6 2
2 5 3Metric rectification of curved document images.
[G. Meng, C. Pan, S. Xiang, J. Duan, and N. Zheng / PAMI 2012]
CVPR2014
4
50.
Spatiotemporal Stereo Matchingfor Dynamic Scenes With Temporal Disparity Variation
90
0
50
0
6 0
6
6
9
5 9
,
5×5
5 6
6
7 5
2 1 belief propagation
Dense motion and disparity estimation via loopy belief propagation
[Michael Isard and John MacCormick / ACCV2006]
Non-parametric local transforms for computing visual correspondence
[Ramin Zabih and John Woodfill / ECCV1994]
Are we ready for autonomous driving? the kitti vision benchmark suite
[Andreas Geiger, Philip Lenz, and Raquel Urtasun/CVPR2012]
ICIP2013
51.
Evaluation of Super-VoxelMethods for Early Video Processing
90
0
50
0
6 0
1 1 2 8
7 3 5
4 9
8 1 9
5 5
3 1
5 1 1
8
Chellappa. Entropy rate superpixel segmentation.
[M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. / CVPR2011]
CVPR2012
4 90
1 5
5
52.
Label Propagation fromImageNet to 3D Point Clouds
90
0
50
0
3D 9 ,
6
2D 1 9 1
1 5 9
Exemplar SVM graphical model
Segmentation Propagation in ImageNet
[D. Kuettel, M. Guillaumin, and V. Ferrari / ECCV2012]
Ensemble of Exemplar-SVMs for Object Detection and Beyond
[T. Malisiewicz, A. Gupta, and A. A. Efros / ICCV2011]
SIGGRAPH Asisa 2013
(Disney)
53.
Predicting Matchability
0
50
0
6 0
3D85
6
99
5
1000 1 (4fps) 1
1320 185°
Modeling and recognition of landmark image collections using iconic scene graphs.
[X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm / ECCV2008]
Reconstructing the world from internet photos
[N. Snavely. BigSFM / http://www.cs.cornell.edu/projects/bigsfm , 2012]
CVPR2014
54.
Multiview Shape andReflectance from Natural Illumination
90
0
50
0
6 0
85 1
2 3 1 5 1 5
5
5 5
5
Color Constancy, Intrinsic Images, and Shape Estimation.
[J. Barron and J. Malik / ECCV2012]
Light Probe Image Gallery
[P. Debevec / http://www.pauldebevec.com/Probes/, 2012.]
CVPR2014
55.
Small Baseline Stereovision
90
0
50
0
60
5
5 5
6
1
Appariement fin d’images stéréoscopiques et instrument dédié avec un faible coefficient
stéréoscopique.
[Giros, A., Rougé, B., Vadon, H / 2004]
Journal of Mathematical
Imaging and Vision 2007
Gaze Estimation basedon 3D Face Structure and Pupil Centers
90
0
50
0
6 0
1
5 9
5
6
5
Combining head pose and eye location information for gaze estimation
[R. Valenti, N. Sebe, and T. Gevers, / IEEE T-IP2012]
ICPR2014
4 90
9 5 5
4 0
58.
Multi-UAV-based stereo visionsystem without GPS for ground
obstacle mapping to assist path planning of UGV
0
0
(UAV) 1
GPS 5 5
7 1
Collaborative navigation of UAV and UGV using vision and LIDAR sensors’
[Kim, J.H., Bae, I., Quan, C.H., Lee, S.H., Son, P.W., Rhee, J.H., Kim, S.,and Seo, J / 2013]
An aerialground robotic system for navigation and obstacle mapping in large outdoor areas
[Garzon, M., Valente, J., Zapata, D., and Barrientos, A / 2013]
ELECTRONICS LETTERS 2014
4 90
1 5
5 640×480 4
5 9
4
6 0
2.7 1 1
59.
Revisiting Depth Layersfrom Occlusions
900
4 90
0
6 0
5
1 2 39
6 0
24 6 18
[7] 1 6 ”Sound of
music”9
9 1
1
1
Probabilistic multi-view dynamic scene reconstruction and occlusion reasoning from
silhouette cues
[L. Guan, J. Franco, and M. Pollefeys / IJCV2010]
CVPR2014